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Abstract— This paper studies the learing of nonlinear state- though, control signals need to be selected either by fatigw
space models for a control task. This has some advantages overan example or by maximising a reward. The model should thus
traditional methods. Variational Bayesian learning provides a ot gy learn the dynamics, but also learn to help control.
framework where uncertainty is explicitly taken into account . . .
and system identification can be combined with model-predictive The.rest of the paper is struct_ured ‘?‘S follows: I_n Sectl_on I,
control. Three different control schemes are used. One of them @ nonlinear state-space model is reviewed and in Section IlI
optimistic inference control, is a novel method based directly on its use as a controller is presented. After experiments in

the probabilistic modelling. Simulations with a cart-pole swing-up  Section IV matters are discussed and concluded.
task confirm that the latent state space provides a representain

that is easier to predict and control than the original observation II. NONLINEAR STATE-SPACE MODELS

space.
P Nonlinear dynamical factor analysis (NDFA) [17] is a

|. INTRODUCTION powerful tool for modelling the dynamics of an unknown noisy

Nonlinear control is difficult even in the case that the systesystem. NDFA scales only quadratically with the dimensiona
dynamics are known. If the dynamics are not known, thty of the observation space, so it is also suitable for mougl
traditional approach is to make a model of the dynamigystems with fairly high dimensionality [17].
(system identification) and then try to control the simudate In NDFA, the observations(t) have been generated from
model (nonlinear model-predictive control). The modetteal the hidden state(¢) by the following generative model:
from data is of course not perfect, but these imperfections
are often ignored. The modern view of control sees feedback x(t) = £(s(t), 0¢) +n(t) @)
as a tool for uncertainty management [11], but managing it s(t) = g(s(t —1),0g) + m(t), (2)
already in the modelling might have advantages. For instang here@ is a vector containing the model parameters and time

Fhe cont.roIIer can avoid regions where the confidence in dnoqéIS discrete. The noise terms(t) andm(t) are assumed to
is not high enough [9].

The idea of studving uncertainty in control is not ne be Gaussian and white. Only the observatianare known

. ying un y . Wbeforehand, and both the statesnd the mapping$ and g
It is known that the magnitude of motor noise in human
hand motion is proportional to muscle activation [10] Ir‘;jlre learned from the data.

brop . : ' Multilayer perceptron (MLP) networks [6] suit well to

control theory, the theoretical foundations are alreadyl we . . . L

. . . modelling both strong and mild nonlinearities. The MLP

covered in [3]. In [14], a nonlinear state-space model iduse

" o . . - hetwork models fof andg are

for control. The nonlinearities are modelled using piecewi
affine mappings. Parameters are estimated using the poedict f(s(t),0¢) = Btanh [As(t) +a] + b ?3)
error met_hod, which is equivalent to the maximum likelihood g(s(t),0;) = s(t) + Dtanh [Cs(t) + c] +d, (4)

estimate in the Bayesian framework.

Nonlinear dynamical factor analysis (NDFA) [17] is awhere the sigmoidal tanh nonlinearity is applied component
state-of-the-art tool for finding nonlinear state-spacedet® wise to its argument vector. The parametérsnclude: (1)
with variational Bayesian learning. This paper is abouhgsi the weight matricesA ... D, the bias vectora...d; (2) the
NDFA for control. In NDFA, the parameters, the states, arphrameters of the distributions of the noise signals) and
the observations are real-valued vectors that are modelkedt) and the column vectors of the weight matrices; (3) the
with parametrised probability distributions. Uncert@stfrom hyperparameters describing the distributions of biasestlas
noisy observations and model imperfections are thus takparameters in group (2).
explicitly into account. There are infinitely many models that can explain any given

Learning is extremely important for control of complexdata. In Bayesian learning, all the possible explanatioase
systems [2]. The proposed method involves learning in moeeaged weighting by their posterior probability. The paste
than one way. The original NDFA is based on unsupervisgdobability p(s, 8 | x) of the states and the parameters after
learning. That is, it creates a model of the underlying dyicam observing the data, contains all the relevant informatiooua

by passively making observations. When used for contrdhem. Variational Bayesian learning is a way to approximate



the posterior density by a parametric distributigis, 8). The
misfit is measured by the Kullback-Leibler divergence:

_ 0(.0)
CkL = /q(s,@) log (5.0 %) dOds. (5)

The approximationg needs to be simple for mathemat-
ical tractability and computational efficiency. Variablase
assumed to depend of each other in the following way:

T m

a(s.0) = [[[Jatsi0) | sitt =) [[at6).  ©

t=114i=1

Fig. 1.  Traditional model (left) and task-oriented identfion (right).
) . . ) Traditionally, the control signalsi(t) are coming from outside the model,
wherem is the dimensionality of the state spaceFurther- but in task-oriented identification they are within the model

more, ¢ is assumed to be Gaussian.
Learning and inference happen by adjustipguch that . . ] )
the cost functionCxy, is minimised. A good initialisation PY replacing the equation of dynamics (2) with one of these

and other measures are essential because the iteratimentpartVO Options:

algorithm can easily get stuck into a local minimum of the u(t —1)
cost function. The standard initialisation is based ongpial s(t) = ([ s(t—1) } 7‘9%) +m(l) @)
component analysis of the data augmented with embedding. u(t) u(t—1)
Details can be found in [17]. { s(t) ] = ({ st—1) } ,0g> + m(t). (8)

A. lterated Extended Kalman Smoothing The first one (7) assumes that the control signal is coming

In a typical NDFA learning phase, both the model pararfﬁ’-“tSiq_e the model. The Iattgr one (8) is ca!led task.—or'uhnte
eters® and the states are updated. The updating of thddentification _because_: it predicts the control S|_gma(ls) within
network weights is computationally the most expensive pdR€ model. Figure 1 illustrates these two options. o
of the process, so the speed of the updating of the states j¥/€ Choose to use task-oriented identification (Eq. 8) in this
of minor importance [17]. In the control schemes studied Per for the following reasons. Firstly, it allows for tareif-
this work, however, the model parameters can be kept fixEJent control schemes described in the next section. $igon
and only the states are inferred. As a faster alternativiado tt C€ates an opportunity to learn more. The learning algori
update process used in the NDFA Matlab package, extensidfidS such a state space that the prediction of observations
of Kalman filtering [7] are explored. and control signals is as accurate as possible. A well-&=hrn

Kalman smoothing estimates the state of a linear Gaussifite space should thus make control easier. Thirdly, it is

state-space model in a two-phase forward and backward pauglogically motivated. Different parts of the cerebelluran

Extended Kalman smoothing [1] does the same for a nonlindX USed for motor control and cognitive processing dependin
model by linearising the model based on the current estim&@@& Where their outputs are directed [5].
of the states and then applying linear Kalman smoothing. I1l. CONTROL SCHEMES

The process iterates between updating the states and thg0 far only passive observation and learning has been

linearisation. considered. Now we come to the question how the control

Kalman-based methods are fast because they propaga{fyais (or actions) are selected. That is, given the fyistor

information through the whole time window in every iterags ohservations . . ,x(to — 2),x(to — 1) and control signals

Fion, whereas the update rules included in NDFA p.ropaga.t_e. Ju(ty —2),u(ty — 1), select a good control signal(t,) at
information only one step forward and backward per iteratioy, o crrent time. Then, a new observation(, ) is made and

Unfortunately, Kalman-based methods have no guaranteeafo ; s increased by one. Three different control schemes

convergence when applied to nonlinear systems. To sol8e thp,y yeir cooperation are studied below and summarised in
issue we used iterated extended Kalman smoothing for f'nd'ﬁ’gble |

a good initialisation which was then improved by some NDFA
updates. A. Direct Control (DC)

In this work, a non-variational Kalman smoother is used. In direct control schemes, the neural network itself acts
A variational Kalman smoother does exists [4], but as thgs the controller. Many such schemes exists, includingctire
Kalman smoother is used only for the initialisation of NDFAinverse control, optimal control, and feedforward conffd].
the added complexity was not deemed worthwhile. Direct control can only mimic the control done in the data tha
has been used for learning. It therefore requires examgles o
correct control aiming at the same goal.

When the dynamic system is controlled by a continuous- Equation (8) provides a prediction of the control signal
valued control signal vectai(t), it can be taken into accountu(ty) based on the previous control signalt, — 1) and the

B. Task-Oriented ldentification



TABLE |
I CONTROL SCHEME SUMMARY

| L
! ! ! Scheme Based on Data Speed
'§ : : DC internal MLP task-oriented fast
g 0/—\: : olc probabilistic inference general slow
| | NMPC cost minimisation general slow
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Fig. 2. Optimistic inference control (see Section IlI-B). eTlinferred

observations and control signals are plotted with confideintervals. The ; .
current time isto = 0 and after timeto + 7. = 40, the observatiorx(¢) is C. Nonlinear Model Predictive Control (NMPC)

assumed to be at the desired level Nonlinear model predictive control (NMPC) [13] is based
on minimising a cost functiod defined over a future window
. The prediction of fixed length T,.. For example, the quadratic difference

previous estimate of the hidden state; — 1) i ,
detween the predicted future observationgind a reference

mapping is called the policy in Figure 1. A control methodtth
we simply call direct control (DC), chooses the control sign Signalr can be used:

by collapsing the inferred probability distributiaffu(ty)) to T,

its expected value. When the control signel,) is selected J(s(to),u(to), ..., ulto+T. — 1)) = Z Ix(to+7) —r|*.
and the observatior(ty) is made, the two probability distri- f—

bution collapse and these changes affect the estimatesof th (9)
statess(t) that are then re-inferred. This works as the errdrhenJ is minimised w.r.t. the control signais and the first

feedback mechanism. oneu(ty) is executed.
In this paper, the states and observations (but not control

B. Optimistic Inference Control (OIC) signals) are modelled probabilistically so we actually imiise
Optimistic inference control (OIC) is a novel method whiclhe expected cost,{J}. The current guess(t), . .., u(to+
works as follows. Assume that after a fixed del@y, the 7. — 1) defines a probability distribution over future states
desired goal is reached. That is, (some components of) #ied observations. This inference can be done with a single
observationsc are at the desired level Given this optimistic forward pass, when ignoring the policy mapping, that is, the
assumption and the observations and control signals so t@&pendency of the state on future control signals. In thée ca
infer what happens in between. Then choose the expectatipiakes sense to ignore the policy mapping anyway, since the
of g(u(to)) as before. An example situation is illustrated ifuture control signals do not have to follow the policy.
Figure 2. Minimisation of E,{J} is done with a certain quasi-Newton
OIC in a nutshell: algorithm [12]. For that, the partial derivativés(t,)/0u(t,)
Given observations. . , x(to — 2), x(to — 1) and for all o St <ty <to+T.are computed' efficiently based
control signals . ., u(ty — 2), u(to — 1) on the chain ryle .and dynamic programming. Details are left
1 Fix futurex(to + 7.) = x(to + T, + 1) = -+~ =r for future publications due to lack of space. .
2:  Infer the distributiong(u(t), s(¢), x()) for all ¢ The use of a cost function makes NMPC very versatile.
3: Select the mean af(u(t,)) as the control signal Qosts for contrql signals a.nd. observations can be set for
4: Observex(ty) and release(ty + T.) instance to restrict values within bounds etc. Quadratatsco
5: Increaset, and loop from1 such as (9) make things easy for the optimisation algorithm.

OIC propagates the same evidence forwards as the DC and IV. EXPERIMENTS
additionally, the evidence from the desired future backisar
The inference is conceptually simple, but algorithmicalif Mechanical dynamical systems are easily understandable by
ficult. The information from the future needs to flow througlpeople and thus illustrative as examples. We chose a sieallat
tens of nonlinear mappings before it affectsu(ty). system to ease experimentation. To make the setting more
In case there are constraints for control signals or obseealistic, the controllers do not have access to the sifounlat
vations, they are forced after every inference iteratibihé equations but have to adapt to control an unknown system
horizon is set too short or the goal is otherwise overoptimis instead.



During the training phase for indirect methods, trainintada
with 2500 samples was used. In [18], different reinforcetmen

1) learning algorithms require from 9000 up to 2500000 samples
to learn to control the cart. Most of the training data caesis

of a sequence generated with semi-random control where the
only goal was to ensure that the cart does not crash into the
boundaries. Training data also contained some examples of
hand-generated sections to better model the whole range of
the observation and the dynamic mapping. The model was
trained for 500000 iterations, which translates to threesdd

A. Cart-Pole Swing-Up Task computation time. Six-dimensional state spa¢g was used

) ) because it resulted in a model with the lowest cost function
The Cart-Pole system [8] is a classic benchmark for HOQE
n

linear control. The system consist of a pole (which acts as

y
Fig. 3. The cart-pole system

: ) For the direct control method, training data consisted of
inverted pendulum) attached to a cart (Figure 3). The foreg, examples of successful swing-ups with 100 samples each.

applied to the cart can be gqntrolled, anq .the.goal .is to S\’Viﬁ‘@ley were generated using the NMPC method with a horizon
the pole to an upward position and stabilise it. This must k?gngth of 40 time steps. Four-dimensional state space grove

accomplished without the cart crashing into the walls of ﬂ}g be the best here. and the model was trained for 100000
track. Note that a linear controller cannot perform the gwin;, . . '

up. , . For all the models, the first 1000 iterations of the training

The observed variables of the system are the posmo_n'of I'\zk\‘/%re run with the embedded versions of the data to avoid
carty, a_ngl_e of ‘h? pqle measured from the upw_ard POSHION o4 |ocal optima. Time-shifted versions of the observed dat
and their first derivativey’ and¢’. Control input is the force _ , — 1), with 7 = 1,2,4,8, 16 , were used in addition to the
F applied to the cart. The detailed dynamics and constrairbt% ’ e

for the simulated cart-pole syst be found in [8 ginal data.
or the simulated cart-poie system can be found In [8]. The states(t) was estimated using the iterated extended
A discrete system was simulated with a time step\of=

. . Kalman smoother. A history of five observations and control
0.05s. The possible force was constrained betweéaN and y

10N. and th ition betweens 43m. Th ‘ signals seemed to suffice to give a reliable estimate. The
U, and the position betweensm an/ m./ € SySlem Was \oference signat was ¢ = 0 and ¢’ = 0 at the end of the
initialised to a random state aroufd y’, ¢, ¢'] = [0, 0, —, 0]

: . .. horizon and for five observations beyond that.
with a standard deviation of 0.1 for all the observed vagabl To take care of the constraints in the system with NMPC,

B. Simulation a slightly modified version of the cost function (9) was used.
All simulations were ran with both lowo( = 0.001) and Out-of-bounds values of the location of the cart and thedorc

high (= = 0.1) level of Gaussian additive observation noisdNcurred a quadratic penalty, and the full cost function fis o

Gaussian process noise with= 0.001 was used in all the 1€ form

simulations and the training data set. For the NMPC and OIC J1(to, u) =J (to, u)+ (11)
methods the length of the control horizon was set to 40 time T

steps corresponding to 2 seconds of system’s real time. The Z(min(lo, lu(to + 7)|) — 10)2+

simulations were run for 60 time steps corresponding to 3
seconds of real time to ensure that the controller was able to
stabilise the pole. (min(3, |z, (to + 7)|) — 3)%,

To study the benefits of using a hidden state-space in
modelling the dynamics of an unknown system, a comparison .
model was built which used identity mappidignstead of an where, (t) refers to the location componegtof the obser-

MLP f for the observation mapping. In practice this meanvsatlon vectorx(t).

replacing (1) with D. Simulation Results

x(t) = s(t) + n(t). (10) For all the control schemes, the cart-pole simulation was

Also, a modified version of the problem was considered, wherrun for 100 times and the number of successful swing-ups

. . Was collected. As in [8], a swing-up is considered succéssfu
only two observations, .the location of the cgrand the angle the final angle is betweer0.1337 and0.133m, final angular
of the pole¢, were available.

velocity between—2rad/s and2rad/s, and the cart has not
C. Implementation crashed into the boundaries of the area during swing-up.

The NDFA package version 0.9.5, the scripts for running the The results of all the simulations are collected in Table 1.

experiments, and the used training data are publicly avafla FOr €ach simulation type, the number of successful swing-
ups and the number of partial successes are listed. Thalparti

Lhttp:/Avww.cis.hut.fi/projects/bayes/software/ successes include all the simulation runs that at some point

q
S
I
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Fig. 5. Example of a successful swing-up with NMPC and higts@oihe
system is plotted with the observation noise included.

4) Dynamic Model Based Directly on the Observations:
With the modified model using the observation space as the
state space, the performance was still perfect when the nois
level was low. However, with high noise level, the original
model performed clearly better than the modified model.

5) Models with Fewer Observation&€ven though most of

10 20 30 40 50 60

imet the information on the speed and the angular velocity’
can still be inferred taking into account past observatiams
Fig. 4. Example of a successful swing-up with NMPC and low @oighe practice the problem of learning the dynamics of the system

cart starts from the middle with the pole hanging down, andsdef to swing

the pole up. becomes harder and relying on past observations increases t

reaction time. The model with hidden state could still perfo

the swing-up with some success, but a model based directly on
observations could not handle the swing-up at all. Thisltesu
was to be expected, as the dynamic mapping (8) alone cannot
adequately describe the modified system.

TABLE I
RESULTS. NUMBER OF SUCCESSFUL AND SEMISUCCESSFUL(IN
BRACKETS) SWING-UPS WITH LOW AND HIGH NOISE LEVELo.

Setting | 0=0001 | 0=01 6) Horizon length: Horizon length was of no great impor-
Direct Control 14 (48)| 4 (31) i
Optimistic Inference Control 97 (100)| 94 (98) rance to the performance of Fhe NMPC or th_e QIC. All horizon
NMPC 100 (100)| 94 (95) engths between 30 and 45 time steps had similar performance
NMPC (onlyy and ¢ observed)| 14  (66) | 1 (21) Horizon lengths between 25 and 30 had problems with the
NMPC (f = I 100 (100)| 70  (70) cart crashing to the walls. Horizons shorter than 25 time

NMPC (f =L, onl d 0 0| 0 (© ) .
( only y and¢) © © steps could not reliably perform the swing-up task because

the reference signal became too unrealistic.

Very long horizons were also problematic. First of all,
reached the desired state, but possibly still failed eitleeause they increase the computational burden of the algorithne Th
the pole was not stabilised or the cart crashed into a wall. increase in the number of the parameters often also leaals int

1) Direct Control: The direct control could perform theincrease in the number of local minima, which makes the
swing-up part of the task quite well, but there were problenaptimisation problem more involved. In addition, becauslky o
with stabilising the pole. Further testing is still neededé¢rify an approximative model of the system is available, preaticti
if the performance of the method can be improved by extfar to the future become more unreliable. This can lead the
training with pole stabilising data. algorithm to choose an optimisation strategy which is not

2) Indirect Control: Even though there was some modellindgeasible in practice.
error left in the model used with indirect control schemes,
both methods performed extremely well under low noise
conditions. Even with added noise, the performance was$ypret Three different control schemes were studied in the frame-
satisfactory. Examples of successful swing-ups can bedfouwvork of nonlinear state-space models. Direct control i$ fias
in Figures 4 and 5. use, but requires the learning of a policy mapping, which is

3) Performance: With modern hardware (2.2 GHz AMD hard to do well. Optimistic inference control is a novel nueth
Opteron) the direct control typically worked in real-timéthv based on Bayesian inference answering the question: “Assum
the cart-pole simulation. On average, the traditional NMPi@g success in the end, what will happen in near future?” It
method was about 20 times slower than real-time and OI€based on a single probabilistic inference but unforteiyat
more than 100 times slower. The bad performance of Oltither of the two tested inference algorithms work wellhwit
resulted from the Kalman smoothing (see Section II-A) nat The third control scheme is a probabilistic version oé th
converging and having to switch to the slow update modstandard nonlinear model-predictive control, which isdohas
Further optimisations to the algorithms or improvements ion optimising control signals based on a cost function. The
hardware are clearly required, before systems with fast dgiter two schemes are both indirect control methods ang the
namics can be controlled. performed comparably well in the experiments.

V. DIscussION ANDCONCLUSION



A. Future Work Nonlinear state-space models seem promising for complex
ntrol tasks, where the observations about the systera stat
those phenomena that appear in the data. If the data is & mcczrrEpIete or thetdyn_?r:mcs_ of Ithe SXFTT E’.ng.t vre:jl
uniform, the model will not become robust. In other words.oW"- !N€ EXperiments with a simple control task incicate
the benefits of the proposed approach. There is still wotlrief

one should balance between exploration and exploitation. batina high tational lexit din aivi
this paper, the data sets are generated partly by hand and"gf['Pating high computational complexity and In giving some

the control schemes aim at exploitation only. A good stg‘:;rtirrgu"’mjmtees or proofs on performance especially in unesgect

point for taking exploration into account is in [16]. Situations or near boundaries.
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