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Abstract

It is common to have both observed and missing values in data. This paper
concentrates on the case where a value can be somewhere between those two
ends, partially observed and partially missing. To achieve that, a method
of using evidence nodes in a Bayesian network is studied. Different ways of
handling inaccuracies are discussed in examples and the proposed approach
is justified in the experiments with real image data.

Introduction

• Imperfections in data are common

•A single value can be somewhere between observed and missing

•Variational Bayesian framework called the Bayes Blocks [1] is used here

• Partial observations can be handled by virtual evidence

• Figure shows different types of data values in the case of a particular
person’s height
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Evidence approach

•To make a value x partially observed:

– Leave the value x missing

– Add an evidence node e as below

– Make e observed

e

x xx

Partially observedMissingObserved

•The options of Gaussian and logistic evidence U (x) are given

•The case U (x) =constant is equivalent to a completely missing value

Frozen approach

•Alternative approach

• Fix a distribution over the data value

•U (x) must be normalisable
(cannot handle the logistic or constant evidence)

Example

• Factor analysis for (x, y) toy data

• Some of the x values are only partially observed
(dash lines represent their confidence intervals)

• Frozen approach sticks to the uncertainty of the x and adjusts the model
accordingly

• Evidence approach adjusts the uncertain values based on the model
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Experiments

• 1000 data vectors x(t) are 10 × 10 patches of natural gray-scale images

• Independent Factor Analysis
x(t) = As(t) + b + n(t)
Super-Gaussian prior for the sources s(t)

• Each pixel has 10% chance of being corrupted with a Gaussian noise
(std evenly distributed from 0 to 1; data std is 1)

•Corruption level is assumed to be known for each pixel!

• Four different settings regarding on how the corrupted values are handled
Observed: Knowledge about corruption is discarded and corrupted val-
ues are treated as normal observed data
Missing: Corrupted values are discarded and regarded as missing
Frozen: A Gaussian distribution is fixed over each corrupted value
Evidence: Evidence nodes are used to give a Gaussian virtual evidence
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Reconstruction error as a function of the amount of corruption (std)

• Solid lines: 〈x(t)〉, the posterior mean of the data variable

•Dash lines: 〈As(t) + b〉, the reconstruction without the innovation at
the data node

• Evidence approach performs the best at all corruption levels

Conclusion

• Fill the gap between observed and missing values

• Implementation with evidence nodes in a Bayesian network

•Making use of the knowledge about inaccuracies pays off
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