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Abstract— It is common to have both observed and missing
values in data. This paper concentrates on the case where
a value can be somewhere between those two ends, partially
observed and partially missing. To achieve that, a method of using
evidence nodes in a Bayesian network is studied. Different ways of
handling inaccuracies are discussed in examples and the proposed
approach is justified in the experiments with real image data.
Also, a justification is given for the standard preprocessing step
of adding a tiny amount of noise to the data, when a continuous-
valued model is used for discrete-valued data.

I. I NTRODUCTION

Most of the data sets collected in real life are not perfect.
They contain errors and missing values. There are also cases
where some observations are left out on purpose, e.g. not all
patients are sent to all laboratory tests. Also, some observa-
tions are more accurate or reliable than others. Usually there
is some knowledge about these inaccuracies, but it is often
ignored in machine learning. Fuzzy logic, on the other hand,
is based on modeling inaccuracies.

Bayesian networks [1], [2] are very popular with the artifi-
cial intelligence and machine learning communities. They are
graphical models [3] where nodes represent random variables
and the lack of arcs represents conditional independence
assumptions. A complex system is built by combining simpler
parts. Traditional Bayesian networks use discrete variables
but in this paper, the emphasis is on continuous variables.
The experiments are run with Bayes blocks [4] that use
variational Bayesian learning. They can handle missing values
in a straightforward manner [5].

How to exploit the best features of the Bayesian and the
fuzzy frameworks? Wald [6] proved that every admissible
decision rule is a Bayes decision rule. Fuzzy logic is just a
construction of heuristics, but on the other hand, fuzzy con-
cepts are very intuitive. For instance, the distinction between
the conceptsa cupanda bowl is shown in [7] to be vague and
context-dependent. Pearl [1] studies so called virtual evidence
in Bayesian networks. It means that part of a situation is not
carefully modelled but instead some evidence is summarized
into virtual evidence. Virtual evidence corresponds essentially
to fuzzy observations. This paper shows how virtual evidence
can be used with a continuous valued model and what is it
good for.

There are numerous approaches to handling missing values
[8], [9] and some approaches work even in cases where the

missingness of the value can depend on the actual value. But
in these textbooks, a value is either observed or missing and
there is no option in between. Heitjan and Rubin [10], [11]
define coarse data which means that we might observe (no
more and no less than) that a data valuex belongs to some
set, sayx ∈ [a, b). Examples include rounded and out-of-
scale measurements. In this case, the value is not entirely
missing, since we observe to which set it belongs to. Zhang
and Honavar [12] use decision trees with partially specified
data. They can specify discrete values at different levels of
precision, e.g. the same shape can be described as a polygon in
general or a square in specific. These hierarchies are a special
case of coarse data.

Coarse data is already quite close to “fuzziness”. The gap
is closed completely by using a fuzzy membership function
U(x) ∈ [0, 1] as virtual evidence forx, instead of the regular
set membership restriction. I will stay in the Bayesian frame-
work and not use fuzzy logic. Section II describes two ways
of introducing fuzzy membership functions into Bayesian
networks. Section III briefly reviews the variational Bayesian
framework for background. Two examples that illustrate differ-
ent phenomena concerning partially observed values are given
in Section IV. Experiments with independent factor analysis
on image data are described in Section V. Subsequently, the
matters are discussed and concluded.

II. V IRTUAL EVIDENCE FORCONTINUOUS-VALUED

VARIABLES

Figure 1 shows examples of membership functionsU(x),
which can describe different types of observations: 1) An
exact observation that a person is 183 cm tall. 2) A missing
observation with no knowledge of the height of this particular
person. 3) A coarse observation that the person is taller than
180 cm. 4) Finally, a fuzzy observation that a person is “tall”.
The common sense of peoples heights (no-one can be 3 meters
tall etc.) corresponds to a model or prior experience. The
question is, how to combine the knowledge given by the model
to the knowledge given by the membership function.

Pearl’s virtual evidence [1] can be implemented as follows.
Let us consider a Bayesian network and a single valuex in it.
To makex partially observed, we add a binary nodee called an
evidence node [13], to it (see Figure 2). The evidence nodee
hasx as the only parent and it has no children. The conditional
probability function (cpf)p(e = 1 | x) = U(x) is the fuzzy
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Fig. 1. Different types of observations of a person’s height. Top, solid
line: observed value, dashed line: missing value. Bottom, solid line: coarse
observation, dashed line: fuzzy observation. All of these cases can be
interpreted as partially observed values.
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Fig. 2. The nodex in a Bayesian network can be either observed (left),
missing (middle) or partially observed (right). The nodee is called an evidence
node. A shaded node represents an observed variable and a white node
represents a latent variable.

membership functionU(x). Now we leavex latent but observe
e = 1. This provides evidence forx that corresponds exactly to
U(x) and therefore this can be called theEvidence approach.

The modelp(x | H,X) for x given the model structureH
and the rest of the dataX, is combined with the evidence
given bye = 1. Together they form the posterior distribution

p(x | H,X, e = 1) =
p(x | H,X)p(e = 1 | x,H,X)

p(e = 1 | H,X)

∝ p(x | H,X)p(e = 1 | x)

= p(x | H,X)U(x).

(1)

The partial observationU(x) of x is thus further specified by
the model. Note that the marginal likelihoodp(e = 1 | H,X)
is a constant w.r.t.x and can be thus ignored. The Evidence
approach can be thought of as making a noisy observation
e about x. The actual valuex is then reconstructed during
learning by combining prior experiencep(x | H,X) with
the evidenceU(x) from the noisy observation. One should
be careful not to include any prior information inU(x) since
it would then be taken into account twice. Note also that if
U(x) is scaled by a constant, it still produces exactly the same
evidence.

Morris et al. [14] define soft missing data by fixing a
distribution over each data value:p(x) ∝ U(x). A Dirac
delta function corresponds to a fully observed value, but
unfortunately a very wide function does not approach a fully
missing value as will be shown in Section IV-A. In this case,
the model cannot further specify the partial observationU(x),

since the posterior distribution is fixed toU(x). I call this
the Frozen approach. It can be thought of as knowing that
the true data is distributed in a specific way. This time, all
prior information should be included inU(x) but that might
be difficult in practice.

Now, let us consider the continuous-valued case and a
partial observation thatx is probably greater than a constant
c. For that, one can use the Evidence approach with a logistic
membership function

U(x) =
1

1 + e−(x−c)/α
, (2)

whereα is a constant that sets the slope or fuzziness of the
membership function. This can be implemented with a soft-
max node [4] fore with x/α andc/α as parents. Using several
different soft-max nodes combined with logical operations,
one could build practically arbitrary membership functions.
Note that the Frozen approach cannot handle unnormalisable
membership functions such as the logistic function.

There are also other ways to produce a virtual evidence for
x. One can use for instance the Gaussian evidence node [13].
A partial observation aboutx is that it is aroundx0 with a
varianceσ2. The cpf for a continuous-valued evidence node
e is defined asp(e | x) = N(e;x, σ2). Observinge = x0

changes the posterior distribution ofx to

p(x | H,X, e = x0) =
p(x | H,X)p(e = x0 | x,H,X)

p(e = x0)

∝ p(x | H,X)p(e = x0 | x)

= p(x | H,X)N(x;x0, σ
2),

(3)

corresponding to a Gaussian membership functionU(x) =
N(x;x0, σ

2). The last step of (3) becomes clear when noticing
that the differencee − x is normally distributed. The Frozen
approach with a Gaussian distribution is handled simply by
fixing p(x) = N(x;x0, σ

2).

III. VARIATIONAL BAYESIAN LEARNING

Variational Bayesian learning techniques are based on ap-
proximating the true posterior probability density of the un-
known variables of the model by a function with a restricted
form. Currently the most common technique is ensemble
learning [15], [16], [17], [18] where the Kullback-Leibler
divergence measures the misfit between the approximation and
the true posterior.

In ensemble learning, the posterior approximationq(θ) of
the unknown variablesθ is required to have a suitably factorial
form

q(θ) =
∏

i

q(θi) , (4)

whereθi denotes a subset of the unknown variables. The misfit
between the true posteriorp(θ | X) and its approximationq(θ)
is measured by the Kullback-Leibler divergence. An additional
term− ln p(X) is included to avoid calculation of the model
evidence termp(X) =

∫
p(X,θ)dθ. The cost function then



has the form [19], [15]

C = D(q(θ) ‖ p(θ|X)) − ln p(X)

= 〈ln q(θ)〉 − 〈ln p(X,θ)〉 ,
(5)

where〈·〉 denotes expectation over the distributionq(θ). Note
that sinceD(q ‖ p) ≥ 0, it follows that the cost function
provides a lower boundp(X) ≥ exp(−C) for the model
evidencep(X).

For each update of the posterior approximationq(θi), the
variableθi requires the prior distributionp(θi | parents) given
by its parents and the likelihoodp(children | θi, co-parents)
obtained from its children. The relevant part of the Kullback-
Leibler divergence to be minimised is, up to a constant
independent ofq(θi)

C(q(θi)) =

〈
ln

q(θi)

p(θi | parents)p(children| θi, co-parents)

〉
.

(6)
To make it concrete, let us look at a Gaussian variable node
[4] which is a basic building block for a number of models.

A Gaussian variables has two inputsm and v and a cpf
p(s|m, v) = N(s;m, exp(−v)). The variance is parametrised
this way because then the mean and expected exponential of
v suffice for computing the cost function. It can be shown
that whens, m and v are mutually independent a posteriori,
i.e. q(s,m, v) = q(s)q(m)q(v), Cp(qs(s)) = −〈ln p(s|m, v)〉
yields

Cp(q(s)) =
1

2

{
〈exp v〉

[
(〈s〉 − 〈m〉)

2
+ Var {m}+

+ Var {s}
]
− 〈v〉 + ln 2π

}
. (7)

For observed variables this is the only term in the cost function
but for latent variables there is also a termCq resulting from
〈ln q(s)〉. The posterior approximationq(s) is defined to be
Gaussian with means and variancẽs: q(s) = N(s; s, s̃). This
yields

Cq(q(s)) = −
1

2
ln 2πes̃ (8)

which is the negative entropy of a Gaussian variable with
variance s̃. The parameterss and s̃ are optimised during
learning.

IV. PHENOMENA WITH PARTIALLY OBSERVEDVALUES

This Section gives two examples that illustrate interesting
phenomena that might occur with partially observed values.
Both examples concern Gaussian membership functions. In the
first case, the variances are large and a comparison is done to
the fully missing value. The second case shows how adding
even the tiniest amount of inaccuracy to the data can make a
difference by getting rid of degenerate solutions.

A. Wide Membership Functions

Figure 3 depicts an example of two-dimensional(x, y) data
for factor analysis. Factor analysis is a version of principal
component analysis (PCA) with a noise model. Some of the
valuesx(t) are only partially observed. Their distributions are

y

x

Fig. 3. Some x-values of the data are observed only partially.They are
marked with dotted lines representing their confidence intervals. Top: A toy
data set for a factor analysis problem. Bottom left: In the Frozen approach, the
model needs to adjust to cover the distributions. Bottom right: In the Evidence
approach, the partially observed values are reconstructedbased on the model.

Gaussians with fairly large variances that are assumed to be
known.

The Frozen approach (see Section I) assumes that the data
is really distributed according to the membership function
U(x(t)) = N(x(t);x(t), x̃(t)). Therefore, the model has to
cover the whole distributions. In the Evidence approach, onthe
other hand, the posterior distribution (Eq. 1) of the partially
observed values can be adjusted based on the model. Figure 3
shows the (hypothetical) situation after learning. The Frozen
approach is disturbed by the partially observed values, whereas
the Evidence approach reconstructs them based on the rest of
the data.

When the variancẽx(t) of a Gaussian membership function
goes to infinity,U(x(t)) is constant in any finite set. In the
Evidence approach, the constant evidence corresponds to a
(fully) missing value. To see what happens in the Frozen
approach, one can write down the sample variance of thex-
component over the data set

Var{x} =
1

T − 1

T∑

t=1

[
(x(t) − E{x})2 + x̃(t)

]
. (9)

The model has to adjust to account for the variance in the
data. When anỹx(t) → ∞, also the whole sample variance
Var{x} → ∞. That is, the learning will lead to a degenerate
solution in which the model forx is unreasonably wide.

B. Narrow Membership Functions

Let us think about an example of a one-dimensional
mixture-of-Gaussians model for data. In case there areT data
samplesx(1), . . . , x(T ) exactly at the same point, a Gaussian
cluster with a meanm = x(1) = · · · = x(T ) might specialise
in those samples with a tiny varianceσ2. Ignoring the rest of
the clusters and data samples, the essential likelihood factor is
proportional toT/σ. When the cluster gets narrower,σ → 0,
the posterior densityp(m,σ | H,X) → ∞. That is, the
solution is degenerate but it gets an infinitely good score. Note
that the problem occurs even in caseT = 1, that is, when
nothing is assumed about the data.
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Fig. 4. A model structure representing a single Gaussian cluster with mean
m containing data samplesx(1), . . . , x(T ). On the left, the data points are
fully observed and on the right, only partially observed. The dark dot at the
side of a node represents the variance input.

The problem is not that serious when variational Bayesian
learning is used instead. Figure 4 depicts the model structure.
The cluster mean has a cpfN(m;mm, exp(−vm)) and a
posteriorq(m) = N(m;m, m̃). The cpfs for the data variables
x(t) areN(x(t);m, exp(−vx)). The essential terms of the cost
function from Equations (7) and (8) are

C(q(x,m)) =
T

2
(〈exp vx〉 m̃ − 〈vx〉)

+
1

2
(〈exp vm〉 m̃ − ln m̃) . (10)

Solving them̃ to minimizeC(q(x,m)) gives

m̃ =
1

T 〈exp vx〉 + 〈exp vm〉
(11)

which is substituted back into (10) to give

C(q(x,m)) =

1

2
[1 + ln (T 〈exp vx〉 + 〈exp vm〉) − T 〈vx〉] . (12)

In caseT > 1, when vx goes to infinity (corresponding to
σ2 → 0), the cost goes to negative infinity. This means that a
similar degenerate solution, that is rated infinitely good,exists
in caseT > 1.

Let us then assume that the data samples are not exactly
observed. Instead, they have a Gaussian membership function
with a varianceǫ2 > 0. The likelihood term atx does not
change which means that maximum a posteriori learning is
still prone to the same problem. Variational Bayesian learning,
on the other hand, gets rid of the problem even in casesT > 1.
Figure 4 depicts the model structure with evidence nodes. The
posterior ofx(t) is q(x(t)) = N(x(t);x(t), x̃(t)) and the cpf
of an evidence nodee(t) is p(e(t) | x(t)) = N(e(t);x(t), ǫ2).
Variancesm̃ and x̃(t) can be solved like in (11) and the
resulting cost is similar to (12) with an additional term
(T/2) ln(〈exp vx〉 + ǫ−2). Now the cost approaches positive
infinity when vx → ∞ and thus the degenerate solution no
longer exists.

An interpretation of the situation follows. When using a
point estimate for the cluster meanm, the cluster can be made
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Fig. 5. The model structure used for the experiments. Each nodecorresponds
to a matrix of variables. Variance sourcesu are used for making the sources
s super-Gaussian. The square node represents an affine transformation with
a weight matrixA and a bias vectorb. Hierarchical priors are hidden for
clarity.

infinitely narrow with no cost. In variational Bayesian learning,
describing the cluster meanm with a great accuracy shows up
in the cost. In case there is just one data samplex(1) in the
cluster, the advantage in cost is similar to the cost that went
into describingm well. WhenT > 1, the advantage isT -fold
and thus the degenerate solution seems infinitely good. The
“happy surprise” that the data pointsx(1), . . . , x(T ) collide
is as great at all levels of accuracy. But when an explicit
inaccuracy ofǫ is introduced, the surprise of data points
colliding is limited to the level of accuracyǫ. An information
theoretic point of view [20] to the situation is enlightening.

V. EXPERIMENTS

A model structure that implements Independent factor
analysis (IFA) [16], is depicted in Figure 5 and used for
the experiments. The data vectorsx(t) are assumed to be
generated from unknown sourcess(t) through an unknown
linear mapping with noise

p(x(t) | ·) = N(x(t);As(t) + b,diag(exp(−vx))), (13)

wherediag(exp(−vx))) is a diagonal covariance matrix with
valuesexp applied componentwise to the vector−vx, on the
diagonal. The sourcess(t) have a zero-mean super-Gaussian
distribution generated as a Gaussian with a varying variance:

p(s(t) | u(t)) = N(s(t);0,diag(exp(−u(t)))). (14)

The variablesA, b, andu(t) have hierarchical priors [9]. The
prior of A is sparse (mixture of a Gaussian and a delta function
at zero) and the other priors are Gaussians.

The model is initialised randomly and learned using vari-
ational Bayesian learning. The learning scheme is designed
to minimise the cost functionC in Equation (5) by iterative
updates, by addition and pruning of weights, and by line
search. More details can be found in [21].

The first experiment is a comparison of different ways
to reconstruct corrupted values, when exact knowledge of
the corruption is available. The second experiment shows a
situation where the learning diverges towards a degenerate
solution. Solution to avoid the problem is given.
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Fig. 6. Reconstruction error as a function of the amount of corruption (std).

A. Reconstruction

The first data set consists of 13 different gray-scale natural
images. 1000 samples of 10-by-10-pixel patches are chosen
randomly. The patches are normalised to zero mean and unit
variance. Each pixel has a 10% chance of being corrupted by
a Gaussian noise with a standard deviation (std) that is evenly
distributed from 0 to 1. The amount of corruption is assumed
to be known. That is, in addition to the datax(t), the stds
ve(t) are known. The ICA model initialised with 100 sources
is learned for 1000 sweeps through the data in four different
settings:

• Evidence: Evidence approach as defined in Section II.
The corrupted data values (ve,i(t) > 0) are marked
missing and Gaussian evidence nodes (Eq. 3) are attached
to them:p(ei(t) | xi(t)) = N(ei(t);xi(t), ve,i(t)).

• Missing: Corrupted values are discarded and treated as
missing values.

• Frozen: Frozen approach as defined in Section II. A
Gaussian distribution with the given mean and std is fixed
over each corrupted data value.

• Observed: The knowledge about corruption is discarded
and values are treated as observed values.

The following table shows the root mean square errors for
the reconstruction of corrupted values in different settings:

Evidence Missing Frozen Observed
〈x〉 0.31 0.48 0.57 0.57

〈As + b〉 0.34 0.48 0.36 0.38

Both the expectation over the posterior distribution of data
〈x(t)〉 and the conditional probability〈p(x(t) | A, s(t),b)〉 =
〈As(t) + b〉 are presented, because the Frozen and the Ob-
served settings have the corrupted data directly as〈x(t)〉
(the result0.57 is the corruption level). The same results are
separated into 10 different levels of corruption and shown as
curves in Figure 6. Note that the optimal constant prediction
0 gives the reconstruction error1 since the data is normalised.

The following observations can be made:

• Evidence: As expected, the Evidence approach was the
best way of reconstructing corrupted values at all corrup-
tion levels. Small corruption leads to accurate reconstruc-
tions and as the corruption level increases, the Evidence
setting approaches the Missing setting.

• Missing: The data posterior〈x〉 is the same as〈As + b〉.
The reconstructions are independent of the corruption
level since all the corrupted values were discarded. The
discarded information was so important that the recon-
structions were the worst.

• Frozen: Reconstructions are the second best overall. One
would still need to justify when and why to use the
reconstructions given by〈As + b〉 and not by〈x〉. If
the corruption level increases further, the reconstructions
become worse than those of the Missing setting.

• Observed: Ignoring the corruption mechanism gives the
second worst results. Reconstruction accuracy depends
much on the corruption level.

B. Problem with noiseless data

The second data set consists of 13 different diagram-like
images. They have discrete gray-scale values from 0 to 255
even though mostly they are black and white. Setting 1 has
no added noise, whereas in Setting 2, a tiny amount of
Gaussian noise with a standard deviation of 0.1 is added to
the images. After that, figures are normalised to zero-mean and
unit variance. 1000 samples of 6 by 6 image patches are chosen
randomly. The same ICA-model is used, this time initialised
with an over-complete basis of 50 sources.

Figure 7 shows the learning curves for the first 100 sweeps
through the data. In the beginning, the two settings behave
similarly, but after 45 sweeps they start to differ. After 100
sweeps, the modelled variance of the data is of the order
10−28 in Setting 1 and the learning is becoming unstable
for numerical reasons. The same phenomenon as explained
in Section IV-B is applying. The learning is diverging towards
a degenerate solution that is rated infinitely good. Setting2 is
stable, even though the original difference in the two settings
was very small.

The problem of a degenerate solution is often encountered
when variances are modelled. As explained in Section IV-B,
the problem is not as serious when using variational Bayesian
learning as when using point estimates, but it still exists.
The solution is to add a tiny amount of noise to the data.
Whether it is done by explicitly sampling noise using a
random number generator or adding the noise implicitly using
either the Evidence or the Frozen approach, makes no real
difference in results. Explicit sampling is usually the simplest
and computationally lightest so it has become the standard.

VI. D ISCUSSION

Some real-world applications for partially observed values
could be brought from the fuzzy logic community to machine
learning community. Perhaps the most promising option is to
find some clinical data which would contain information about
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the inaccuracies. Morris [14] studied speech recognition with
soft missing data.

Often, it is known that the data set contains errors, but
it is not known which values are erroneous. This could be
modelled as evidence of evidence. The first evidence node
would be left latent and its posterior distribution would tell the
probability of the corresponding value to be correct or not.The
second evidence node would be observed and it would give a
membership function for the first evidence, and through that,
some likelihood factor for the actual data value, too. It would
be easier to find data for this kind of a model, since it does not
require explicit knowledge of individual errors. Applications
for outlier detection [22] are already well known.

Variational Bayesian learning is prone to local minima so
tricks to avoid them during learning are useful. The Gaussian
evidence node was first used in [13] to keep parts of the
network fixed to initial values until the other parts have
adapted appropriately. The width of the Gaussian evidence
was increased after each iteration until the whole node was
removed. The persistence of the initialisation could be thus
controlled accurately.

VII. C ONCLUSION

Partially observed values fill the gap between observed and
missing values in data. A distinction is made between fixing
a distribution over a data value (the Frozen approach) and
getting evidence about the data value through a noisy obser-
vation (the Evidence approach). Only the Evidence approach
has a missing value as a limit case. It can be implemented by
adding an extra node to a Bayesian network for each partially
observed value.

Experiments with natural image data and an IFA model
with variational Bayesian learning show that making use of
the knowledge about inaccuracies pays off. Also, a problem
with applying continuous-valued models to discrete data is
solved by using variational Bayesian learning combined with
a tiny amount of additional noise to the data.
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