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Abstract. We present vote estimation results on the largely unexplored
Reddit voting dataset that contains 23M votes from 43k users on 3.4M
links. This problem is approached using Variational Bayesian Principal
Component Analysis (VBPCA) and a novel algorithm for k-Nearest
Neighbors (k-NN) optimized for high dimensional sparse datasets without
using any approximations. We also explore the scalability of the algo-
rithms for extremely sparse problems with up to 99.99% missing values.
Our experiments show that k-NN works well for the standard Reddit
vote prediction. The performance of VBPCA with the full preprocessed
Reddit data was not as good as k-NN’s, but it was more resilient to
further sparsification of the problem.
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1 Introduction

Recommender systems are software tools and techniques providing suggestions
for items or objects that are assumed to be useful to the user [11]. These
suggestions can relate to different decision-making processes, such as which books
might be interesting, which songs you might like, or people you may know in a
social network. The particular interest of an RS is that of reddit.com [10], which
is a type of online community where users can vote links either up or down, i.e.
upvote or downvote. Reddit currently has a global Alexa rank of 118 and 52 in
the US [2]. Our objective is to study whether the user will like or dislike some
content based on a priori knowledge of the user’s voting history.

This kind of problem can generally be approached efficiently by using collab-
orative filtering (CF) methods. In short, collaborative filtering methods produce
user specific recommendations of links based on voting patterns without any
need of exogenous information about either users or links [11]. CF systems need
two different entities in order to establish recommendations: items and users.
In this paper items are referred to as links. With users and links, conventional
techniques model the data as a sparse user-link matrix, which has a row for each
user and a column for each link. The nonzero elements in this matrix are the
votes.
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The two main techniques of CF to relate users and links are the neighborhood
approach and latent factor models. The neighborhood methods are based on find-
ing similar neighbors to either links or users and computing the prediction based
on these neighbors’ votes, for example, finding k nearest neighbors and choosing
the majority vote. Latent factor models approach this problem in a different
way by attempting to explain the observed ratings by uncovering some latent
features from the data. These models include neural networks, Latent Dirichlet
Allocation, probabilistic Latent Semantic Analysis and SVD-based models [11].

1.1 Related Work

This paper is heavily based on a master’s thesis [7], and the preprocessed
datasets are the same. The approach of estimating votes from the Reddit dataset
in this paper is similar to [9] although they preprocessed the dataset in a differ-
ent way and used root-mean-square error as the error measure while this paper
uses classification error and class average accuracy. There has also been some
research on comparing a k-NN classifier to SVM with several datasets of differ-
ent sparsity [3], but the datasets they used were lower-dimensional, less sparse
and not all users were evaluated in order to speed up the process. Still, their
conclusion that k-NN starts failing at a certain sparsity level compared to a
non-neighborhood model is the same as in this paper.

2 Dataset

Reddit dataset originated from a topic in social news website Reddit [6]. It
was posted by a software developer working for Reddit in early 2011 in hopes of
improving their own recommendation system. The users in the dataset represent
almost 17% of the total votes on the site in 2008, which means that the users
represented in the dataset are very in the whole Reddit community.

The original dataset consists of N = 23 091 688 votes from n = 43 976 users
over d = 3 436 063 links in 11 675 subreddits. Subreddits are similar to subforums,
containing links that have some similarity but this data was not used in the
experiments. The dataset does not contain any additional knowledge on the
users or the content of the links, only user-link pairs with a given vote that is
either -1 (a downvote) or 1 (an upvote).

Compared to the Netflix Prize dataset [8], Reddit dataset is around 70 times
sparser and has only two classes. For the missing votes, there is no information
on whether a user has seen a link and decided not to vote or simply not having
seen the link at all. In this paper, the missing votes are assumed to be missing at
random (MAR) [12]. This is a reasonable assumption due to high dimensionality
of the data and low median number of votes per user.

2.1 Preprocessing

The dataset can be visualized as a bipartite undirected graph (Figure 1). Even
though no graph-theoretic approaches were used in solving the classification
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problem, this visualization is particularly useful in explaining the preprocessing
and the concept of core of the data. In graph theory, the degree of a vertex v
equals to the number of edges incident to v. If the degree of any vertex is very
low, there may not be enough data about the vertex to infer the value of an
edge, meaning the vote, where this vertex is in the either end. An example of
this can be found in Figure 1 between link 4 and user 7, where the degree of
user 7 is 1 and the degree link 4 is 3. Clearly this is a manifestation of the new
user problem [1], meaning that the user would have to vote more links and the
link would have to get more votes in order to accurately estimate the edge.

Example of Reddit data

link_1 link_2 link_3 link_4link_5

user_1

1 1 1 -11

user_2

1

user_3

1

user_4

1 1

user_5

1

user_6

1 -1 1 1

user_7

?

user_8

?

Fig. 1: Bipartite graph representation of Reddit data. Subreddits are visualized as colors
on the links (square vertices). The vote values -1,1 are represented as numbers on the
arcs, where “?” means no vote has been given.

These kinds of new users and unpopular links make the estimation task very
difficult and thus should be pruned out of the data. This can be done by using
cutoff values such that all the corresponding vertices having a degree below the
cutoff value are pruned out of the data. With higher cutoff values, only a subset
of the data called core of the data remains, which is similar to the idea of k-cores
[13]. This subset contains the most active users who have voted a large part of all
the remaining links, and the most popular links which are voted by almost every
user. The full Reddit dataset was pruned into two smaller datasets, namely, the
big dataset using 4 as the cutoff value for all vertices (users and links), and the
small dataset with a stricter cutoff value of 135. See [7] for more details on these
parameters.

The resulting n×d data matrices M were then split randomly into a training
set Mtrain and a test set Mtest, such that the training set contained 90% of the
votes and the test set the remaining 10%, respectively. The splitting algorithm
worked user-wise, i.e., it randomly divided a user’s votes between the training
set and test set for all users such that at least one vote was put into the test set,
even if the user had given less than 10 votes.

Training set properties are described in Table 1 where it is apparent that
the ratio of upvotes gets higher as the pruning process gets closer to the core
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of the data. In general the estimation of downvotes is a lot more difficult than
upvotes. This is partly due to the fact that downvotes are rarer and thus the
prior probability for upvotes is around six to nine times higher than for the
downvotes. This also means that the dataset is sparser when using only the
downvotes. Summary statistics of the nonzero values in the training sets are
given in Table 2. Small test set contained 661,903 votes and big test set 1,915,124
votes.

Table 1: Properties of votes given by users and votes for links for the preprocessed
datasets.

Ratio of
Dataset Users (n) Links (d) Votes (N) Density ( N

nd
) upvotes

Small 7,973 22,907 5,990,745 0.0328 0.9015
Big 26,315 853,009 17,349,026 0.000773 0.8688
Full 43,976 3,436,063 23,079,454 0.000153 0.8426

Table 2: Summary statistics of the training sets on all given votes in general. Downvotes
and upvotes are considered the same here.

Mean Median Std Max

Small dataset: Users 751.4 354 1156.2 15820
Links 261.5 204 159.49 2334

Big dataset: Users 659.3 101 2335.7 82011
Links 20.3 7 55.6 3229

3 Methods

This section describes the two methods used for the vote classification prob-
lem: the k-nearest neighbors (k-NN) classifier and Variational Bayesian Princi-
pal Component Analysis (VBPCA). The novel k-NN algorithm is introduced in
Section 3.2.

3.1 k-Nearest Neighbors

Nearest neighbors approach estimates the behavior of the active user u based
on users that are the most similar to u or likewise find links that are the most
similar to the voted links. For the Reddit dataset in general, link-wise k-NN
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seems to perform better than user-wise k-NN [7] so every k-NN experiment was
run link-wise.

For the k-NN model, vector cosine-based similarity and weighted sum of oth-
ers’ ratings were used, as in [14]. More formally, when I denotes the set of all
links, i, j ∈ I and i, j are the corresponding vectors containing votes for the
particular links from all users, the similarity between links i and j is defined as

wij = cos(i, j) =
i · j
‖i‖‖j‖

. (1)

Now, let Nu(i) denote the set of closest neighbors to link i that have been
rated by user u. The classification of r̂ui can then be performed link-wise by
choosing an odd number of k neighboring users from the setNu(i) and classifying
r̂ui to the class that contains more votes. Because the classification depends on
how many neighbors k are chosen in total, all the experiments were run for 4
different values of k. For better results, the value of parameter k can be estimated
through K-fold cross validation, for example.

However, this kind of simple neighborhood model does not take into account
that users have different kinds of voting behavior. Some users might give down-
votes often while some other users might give only upvotes. For this reason it is
good to introduce rating normalization into the final k-NN method [14]:

r̂ui = r̄i +

∑
j∈Nu(i)

wij(ruj − r̄j)∑
j∈Nu(i)

|wij |
. (2)

Here, the term r̄i denotes the average rating by all user to the link in i and is
called the mean-centering term. Mean-centering is also included in the nominator
for the neighbors of i. The denominator is simply a normalizing term for the
similarity weights wij .

The algorithm used for computing link-wise k-NN using the similarity matrix
can generally be described as:

1. Compute the full d×d similarity matrix S from Mtest using cosine similarity.
For a n× d matrix M with normalized columns, S = MTM .

2. To estimate r̂ui using Eq. (2), find k related links j for which ruj is observed,
with highest weights in the column vector Si.

For the experiments, this algorithm is hereafter referred to as “k-NN full”.

3.2 Fast sparse k-NN Implementation

For high-dimensional datasets, computing the similarity matrix S may be in-
feasible. For example, the big Reddit dataset would require computing half of
a 853,009×853,009 similarity matrix, which would require some hundreds of gi-
gabytes of memory. The algorithm used for computing fast sparse k-NN is as
follows:
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1. Normalize link feature vectors (columns) of Mtrain and Mtest.
2. FOR each user u (row) of Mtest DO

(a) Find all the links j for which ruj is observed and collect the corresponding
columns of Mtrain to a matrix Au.

(b) Find all the links j for which r̂uj is to be estimated and collect the
corresponding columns of Mtest to a matrix Bu.

(c) Compute the pseudosimilarity matrix Su = ATuBu which corresponds to
measuring cosine similarity for each link between the training and test
sets for user u.

(d) Find the k highest values (weights) for each column of Su and use Eq. (2)
for classification.

3. END

This algorithm is referred to as “k-NN sparse” in Sec. 4.
Matrix Su is called a pseudosimilarity matrix since it is not a symmetric

matrix and most likely not even a square matrix in general. This is because the
rows correspond to the training set feature vectors and the columns to the test set
feature vectors. The reason this algorithm is fast is due to the high sparsity and
high dimensions of M . Also, the fact that only the necessary feature vectors from
training and test are multiplied as well as parallelizing this in matrix operation,
makes this operation much faster. On the contrary, for less sparse datasets this is
clearly slower than computing the full similarity matrix S from the start. If the
sparsifying process happens to remove all votes from a user from the training
set, a naive classifier is used which always gives an upvote. This model could
probably be improved by attempting to use user-wise k-NN in such a case. With
low mean votes per user, the matrices Su stay generally small, but for the few
extremely active users, Su can still be large enough not to fit into memory (over
16 GB). In these cases, Su can easily be computed in parts without having to
compute the same part twice in order to classify the votes.

It is very important to note the difference to a similar algorithm that would
classify the votes in Mtest one by one by computing the similarity only between
the relevant links voted in Mtrain. While the number of similarity computations
would stay the same, the neighbors Nu(i) would have to be retrieved from Mtrain

again for each user-link pair (u, i), which may take a significant amount of time
for a large sparse matrix though the memory usage would be much lower.

3.3 Variational Bayesian Principal Component Analysis

Principal Component Analysis (PCA) is a technique that can be used to com-
press high dimensional vectors into lower dimensional ones and has been exten-
sively covered in literature, e.g. [5].

Assume we have n data vectors of dimension d represented by r1, r2, . . . , rn
that are modeled as

ru ≈Wxu + m, (3)

where W is a d× c matrix, xj are c× 1 vectors of principal components and m
is a d× 1 bias vector.



VBPCA versus k-NN on a Reddit Dataset 7

PCA estimates W ,xu and m iteratively based the observed data ru. The
solution for PCA is the unique principal subspace such that the column vectors
of W are mutually orthonormal and, furthermore, for each k = 1, . . . , c, the first
k vectors form the k-dimensional principal subspace. The principal components
can be determined in many ways, including singular value decomposition, least-
square technique, gradient descent algorithm and alternating W-X algorithm.
All of these can also be modified to work with missing values. More details are
discussed in [4].

Variational Bayesian Principal Component Analysis (VBPCA) is based on
PCA but includes several advanced features, including regularization, adding
the noise term into the model in order to use Bayesian inference methods and
introducing prior distributions over the model parameters. VBPCA also includes
automatic relevance determination (ARD), resulting in less relevant components
tending to zero when the evidence for the corresponding principal component
for reliable data modeling is weak. In practise this means that the decision of the
number of components to choose is not so critical for the overall performance of
the model, if there is not too few chosen. The computational time complexity of
VBPCA using the gradient descent algorithm per one iteration is O((N+n+d)c).
More details on the actual model and implementation can be found in [4].

In the context of the link voting prediction, data vectors ru contain the
votes of user u and the bias vector m corresponds to the average ratings r̄i in
Eq. (2). The c principal components can be interpreted as features of the links
and people. A feature might describe how technical or funny a particular link i is
(numbers in the 1×c row vector of Wi), and how much a person enjoys technical
or funny links (the corresponding numbers in the c × 1 vector xu). Note that
we do not analyse or label different features here, but they are automatically
learned from the actual votes in an unsupervised fashion.

4 Experiments

The experiments were performed on the small and big Reddit datasets as de-
scribed in Section 2. Also, we further sparsified the data such that for each step,
10% of the remaining non-zero values in the training set were removed com-
pletely at random. Then the models were taught with the remaining training
set and error measures were calculated for the original test set. In total there
were 45 steps such that during the last step the training set is around 100 times
sparser than the original. Two error measures were utilized, namely classifica-
tion error and class average accuracy. The number of components for VBPCA
was chosen to be the same as in [7], meaning 14 for the small dataset and 4 for
the big dataset. In short, the heuristic behind choosing these values was based
on the best number of components for SVD after 5-fold cross validation and
doubling it, since VBPCA uses ARD. Too few components would make VBPCA
underperform and too many would make it overfit the training set, leading to
poorer performance.
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The k-NN experiments were run for all 4 different k values simultaneously,
which means that the running times would be slightly lower if using only a single
value for k during the whole run.

Classification error was used as the error measure, namely 1/N#{r̂ui 6= rui}.
Class average accuracy is defined as the average between the proportions of
correctly estimated downvotes and correctly estimated upvotes. For classification
error, lower is better while for the value of class average accuracy higher is better.

VBPCA was given 1000 steps to converge while also using the rmsstop cri-
terion, which stops the algorithm if either the absolute difference |RMSEt−50 −
RMSEt| < 0.0001 or relative difference |RMSEt−50 − RMSEt|/RMSEt < 0.001.
Since VBPCA parameters are initialized randomly, the results and running times
fluctuate, so VBPCA was ran 5 times per each step and the mean of all these
runs was visualized.

In addition to k-NN and VBPCA, naive upvote and naive random models
were also implemented. Naive upvote model estimates all r̂ui as upvotes and naive
random model gives an estimate of upvote with the corresponding probability of
upvotes from the training set, e.g. p = 0.9015 for small dataset, and a downvote
with probability 1− p.

All of the algorithms and experiments were implemented in Matlab running
on Linux using an 8-core 3.30 GHz Intel Xeon and 16 GB of memory. However,
there were no explicit multicore optimizations implemented and thus k-NN al-
gorithms were practically running on one core. VBPCA was able to utilize more
than one core.

4.1 Results for Small Reddit Dataset

The results for the methods on the original small Reddit dataset are seen in Table
3, which includes the user-wise k-NN before sparsifying the dataset further. The
naive model gives a classification error of 0.0982, the dummy baseline for the
small dataset. The running time of k-NN full is slightly lower than k-NN sparse in
Figure 2a during the first step, but after sparsifying the training set, k-NN sparse
performs much faster. It can be seen from Figure 2b that the k-NN classifier
performs better to a certain point of sparsity, after which VBPCA is still able to
perform below dummy baseline. This behavior may partly be explained by the
increasing number of naive classifications by the k-NN algorithm caused by the
increasing number of users in Mtrain with zero votes given. Figure 2c indicates
that the higher the number of neighbors k, the better. Downvote estimation is
consistently higher with VBPCA than with k-NN (Figure 2d).

4.2 Results for Big Reddit Dataset

Classification error for the dummy baseline is 0.1313 for the big dataset. Fig-
ure 3b indicates that the fast k-NN classifier loses its edge against VBPCA
quite early on, around the same sparsity level as for the small dataset. However,
VBPCA seems to take more time on converging (Figure 3a). Higher k values
lead to better performance, as indicated in Figure 3c. Downvote estimation with
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Table 3: Metrics for different methods on the small Reddit dataset.

Class
Classification average

Method Accuracy error accuracy Downvotes Upvotes

Naive 0.9018 0.0982 0.5000 0.0000 1.0000
Random 0.8225 0.1775 0.4990 0.0965 0.9016
k-NN User 0.9176 0.0824 0.6256 0.2621 0.9890
k-NN Link 0.9237 0.0763 0.6668 0.3470 0.9865
VBPCA 0.9222 0.0778 0.6837 0.3870 0.9805
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Fig. 2: Figures of the experiments on small dataset.

k-NN seems to suffer a lot from sparsifying the training set (Figure 3d), while
VBPCA is only slightly affected.

5 Conclusions

In our experimental setting we preprocessed the original Reddit dataset into two
smaller subsets containing some of the original structure and artificially sparsi-
fied the datasets even further. It may be problematic or even infeasible to use



10 J. Klapuri et al.

Table 4: Metrics for different methods on the big Reddit dataset.

Class
Classification average

Method Accuracy error accuracy Downvotes Upvotes

Naive 0.8687 0.1313 0.5000 0.0000 1.0000
Random 0.7720 0.2280 0.5002 0.1316 0.8689
k-NN User 0.8930 0.1070 0.6738 0.3766 0.9711
k-NN Link 0.9048 0.0952 0.7091 0.4438 0.9745
VBPCA 0.8991 0.1009 0.6929 0.4132 0.9726
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Fig. 3: Figures of the experiments on big dataset.

standard implementations of k-NN classifier for the high-dimensional very sparse
dataset such as the Reddit dataset, but this problem was avoided using the fast
sparse k-NN presented in Sec. 3. While initially k-NN classifier seems to perform
better, VBPCA starts performing better when the sparsity of the datasets grow
beyond approximately 0.99990. VBPCA is especially more unaffected by the
increasing sparsity for the downvote estimation, which is generally much harder.

There are many ways to further improve the accuracy of k-NN predictions.
The fact that the best results were obtained with the highest number of neighbors



(k=51) hints that the cosine-based similarity weighting is more important to
the accuracy than a limited number of the neighbors. One could, for instance,
define a tunable distance metric such as cos(i, j)α, and find the best α by cross-
validation. The number of effective neighbors (sum of weights compared to the
weight of the nearest neighbor) could then be adjusted by changing α while
keeping k fixed to a large value such as 51.
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