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Abstract. It is difficult to train a multi-layer perceptron (MLP) when there are
only a few labeled samples available. However, by pretraining an MLP with vast
amount of unlabeled samples available, we may achieve better generalization per-
formance. Schulz et al. (2012) showed that it is possible to pretrain an MLP in a
less greedy way by utilizing the two-layer contractive encodings, however, with
a cost of a more difficult optimization problem. On the other hand, Raiko et al.
(2012) proposed a scheme for making the optimization problem much easier in
deep networks. In this paper, we show that it is beneficial to combine these two
approaches.
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1 Introduction

Multi-layer perceptrons (MLP) are provably powerful at performing nonlinear classifi-
cation or regression tasks [8]. However, until recently it was believed that it is difficult
to train an MLP well to have a good generalization performance (see, e.g., [1]). In [7,
12, 3], greedy layer-wise pretraining which initializes the parameters of an MLP in un-
supervised manner was proposed to overcome this problem.

Often, only a few labeled training samples are available together with vast amount
of unlabeled samples. Semi-supervised learning [5] aims to utilize not only the labeled
samples but also the unlabeled samples to improve generalization performance of a clas-
sifier. Pretraining of an MLP naturally fits well in this framework of semi-supervised
learning, as the pretraining procedure does not require any labeled sample. In short, an
MLP can be initialized with pretraining using the vast amount of unlabeled samples and
subsequently finetuned with (few) labeled samples.

In this paper, we empirically evaluate an advanced procedure for training an MLP
in the task of semi-supervised classification. Unlike the existing approach of greedily
pretraining an MLP with unlabeled samples, we investigate pretraining an MLP in a
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less greedy way by pretraining two hidden layers at a time, as proposed in [15]. This
approach, which requires training a regularized autoencoder with two hidden layers is
made practical by utilizing the recently proposed method of linearly transforming per-
ceptrons [10]. We empirically show that we can achieve a better classification accuracy
on unseen test samples by using the two-layer contractive encoding and the linear trans-
formation of hidden neurons, when only a few labeled samples are available.

In Sec. 2, we discuss in more detail the motivation behind our work. A two-layer
contractive encoding and linear transformation of perceptrons which constitute the main
parts of our proposed framework are described briefly in Sec. 3. The empirical evalu-
ation of the propose framework is provided in Sec. 4, followed by the conclusion and
discussion in Sec. 5.

2 Motivations

2.1 Training an MLP with Few Labeled Samples
In the framework of multi-layer perceptrons (MLP), unsupervised pretraining is a nat-
ural way to incorporate the vast amount of unlabeled samples (see, e.g., [7]). As the
parameters of an MLP are initialized in an unsupervised manner, all available samples
including both labeled and unlabeled ones may be exploited during pretraining. Once
the parameters are initialized, we can finetune the whole model using only the labeled
samples. This approach was adopted earlier by, for instance, [11] which showed that
pretraining helps improving generalization performance when only a few labeled sam-
ples together with a large amount of unlabeled samples were available.

One prominent method of pretraining an MLP is a greedy layer-wise pretraining
originally proposed in [7, 3, 12]. The greedy layer-wise pretraining sequentially trains
each consecutive pair of layers of an MLP in unsupervised manner.

One hypothesis by Bengio et al. (see, e.g., [1, 2]) on why the greedy layer-wise pre-
training helps in semi-supervised learning is that stacking of unsupervised neural net-
works disentangles factors of variations and that this disentangled factors have better
discriminative property than raw variables. Unlabeled samples are used during unsu-
pervised pretraining to better disentangle factors of variations, and labeled samples are
subsequently used to find mapping between those factors and labels. Then, one way to
improve this procedure of unsupervised pretraining and subsequent finetuning is to re-
place the oft-used layer-wise pretraining with a more sophisticated pretraining method.

2.2 Less Greedy Pretraining
Although greedy layer-wise pretraining has been found to be a good strategy to initial-
ize the parameters of a multi-layer perceptron (MLP) with vast amount of unlabeled
samples, recently in [15] it was found that this greedy strategy may fail to help an MLP
to discover features that are inherently nonlinear. In certain cases, it was shown that
greedy layer-wise pretraining could actually hurt the overall performance of an MLP.

Hence, in [15] a two-layer contractive encoding was proposed as a way to pretrain
an MLP in a less greedy way. The experiments in [15] revealed that a better classifi-
cation performance can be achieved by using the two-layer contractive encoding as a
building block than by using a neural network with a single hidden layer.
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It is, however, often more difficult to train an unsupervised neural network such as a
deep autoencoder using a stochastic gradient method (SGD) without greedily pretrain-
ing each layer. Raiko et al. [10] proposed to linearly transform each hidden neuron,
while also introducing connections that skip the hidden layer. They showed that in this
way, it is possible to train a deep neural network directly with good generalization per-
formance. This approach effectively makes SGD closer to second-order optimization
method [16] without sacrificing its computational advantage.

In this paper, hence, we focus on the approach of pretraining an MLP less greedily.
We aim to provide empirical evidence that one must use both the two-layer contractive
encoding and the linear transformation order to achieve good initialized parameters
using less greedy pretraining. In other words, we claim that a less greedy pretraining
approach requires both well-founded regularization and powerful learning algorithm.

3 Background

In this section, we discuss each one of those two methods, the linear transformations
and the two-layer contractive encoding, in more detail.

3.1 Linear Transformations in Perceptrons

Let us study a single hidden layer within a possibly deep MLP network. The inputs
to this layer are marked with column vectors xt and its outputs as column vectors yt,
where t is the sample index. We allow short-cut connections that by-pass one or more
hidden layers.3 The mapping from xt to yt is modelled as

yt = Af (Bxt) +Cxt, (1)

where f is a nonlinearity (such as tanh) applied to each component of the argument
vector separately, A, B, and C are the weight matrices. In order to avoid separate
bias vectors that complicate formulas, the input vectors xt are assumed to have been
supplemented with an additional component that is always one.

Let us supplement the tanh nonlinearity with auxiliary scalar variables αi and βi
for each nonlinearity fi. They are updated during training in order to help learning of
the other parameters A, B, and C. We define

fi(bixt) = tanh(bixt) + αibixt + βi, (2)

where bi is the ith row vector of matrix B. We will ensure that

0 =

T∑
t=1

fi(bixt), 0 =

T∑
t=1

f ′i(bixt) (3)

by setting αi and βi to

αi = −
1

T

T∑
t=1

tanh′(bixt), βi = −
1

T

T∑
t=1

[tanh(bixt) + αibixt] .

3 Both the inputs and outputs of this particular layer may actually be on several layers.
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These seemingly arbitrary update rules are motivated below.
The effect of changing the transformation parameters αi and βi are compensated

exactly by updating the shortcut mapping C by

Cnew = Cold −A(αnew −αold)B−A(βnew − βold) [0 0 . . . 1] , (4)

where α is a matrix with elements αi on the diagonal and one empty row below for the
bias term, and β is a column vector with components βi and one zero below for the bias
term. Thus, any change in αi and βi does not change the overall mapping from xt to yt
at all, but they do change the optimization problem instead.

One way to motivate the transformations in Equations (3), is to study the expected
output yt and its dependency on the input xt:

1

T

∑
t

yt = A

[
1

T

∑
t

f(Bxt)

]
+C

[
1

T

∑
t

xt

]
(5)

1

T

∑
t

∂yt
∂xt

= A

[
1

T

∑
t

f ′(Bxt)

]
BT + C (6)

We note that by making nonlinear activations f(·) zero mean in Eq. (3) (left), we disal-
low the nonlinear mapping Af (B·) to affect the expected output yt, that is, to compete
with the bias term. Similarly, by making the nonlinear activations f(·) zero slope in
Eq. (3) (right), we disallow the nonlinear mapping Af (B·) from affecting the expected
dependency on the input, that is, to compete with the linear short-cut mapping C. In tra-
ditional neural networks, the linear dependencies (expected ∂yt/∂xt) are modeled by
many competing paths from an input to an output (e.g. via each hidden unit), whereas
this architecture gathers the linear dependencies to be modeled only by C.

In [10] it was shown experimentally that less competition between parts of the
model will speed up learning. In [16], more careful connections to second-order op-
timization methods were drawn.

3.2 Two-Layer Contractive Encoding

A common regularizer for MLPs is the L2 penalty on the weight matrices. This regular-
izer is well-motivated for linear methods (e.g. ridge regression or logistic regression),
where it penalizes strong dependence of y on few variables in x, and thus ensures in-
variance of y to small changes in x. For MLPs, which contain saturating non-linearities,
this desirable property can be achieved with strongly positive or negative weights as
well. Rifai et al. [14] show that the generalization of the L2-norm penalty to the case
where non-linearities are involved in the computation of y is a penalty on the Frobenius
norm of the Jacobian ‖Jy(x)‖F (“contractive” regularization). [14, 13] demonstrate that
pretraining simple auto-encoders with the contractive penalty produces features which
identify the data manifold and can aid finetuning. However, Schulz et al. [15] demon-
strate that auto-encoders with one hidden layer can fail to identify stable features in
the input when their variables in x are XOR-related. [15] generalize the contractive
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Fig. 1: Schematic visualization of our encoder.
Features h of input x are determined both by
a one-layer encoder via C, and by a two-layer
encoder via B and A. Contractive regulariza-
tion [14] and two-layer contractive regularization
[15] are used to learn stable linear/non-linear rep-
resentations in h, respectively. Linear transfor-
mations in the two-layer part are moved to C us-
ing compensations [10] (not shown).

regularizer to the two-layer case,

‖Jh(x)‖2F =

N∑
n

M∑
m

(
1− h2

n

)2( K∑
k

AnkBkm(1− h′
2
k)

)2

, (7)

where x ∈ RM , B ∈ RK×M , A ∈ RN×K , and h = tanh(A tanh(Bx)) = tanh(Ah′).
In this paper, we argue that while two-layer encodings are harder to learn, we can

combine their ability to detect highly non-linear features with the easy-to-learn one-
layer encodings by introducing shortcuts. Shortcut weights C from the input to the
second hidden layer can be regularized as in [14], while the two-layer encoder is reg-
ularized as in [15]. We employ linear transformations and compensations (Sec. 3.1) to
ensure that simple features continue to be learned by the shortcut weights, while the
two-layer part of the encoder can focus on the difficult features. For this purpose, we
extend the two-layer contractive regularizer to account for the linear transformations
in (1) and (2),

‖Jh(x)‖2F =
∑

(1− h2)2
T
(C+A(Bα +B′))

2
, (8)

where Bα
km = αkBkm, B′km = Bkm(1−tanh2(Bk·x)). Fig. 1 visualizes the proposed

encoder structure.

4 Experiments

In the experiment, we evaluate the proposed framework in a semi-supervised setting
using a handwritten digit dataset (MNIST, [9]). We assume that only 1200 training sam-
ples have their labels available, while all the other training samples are unlabeled. The
task is to use an MLP trained on the training samples to classify 10,000 test samples.

4.1 Model and Learning

Our base model is a multi-layer perceptron (MLP) with two hidden layers having tanh
hidden neurons. The output of the MLP is

y = W (tanh (A tanh (Bx))) , (9)
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Table 1: Classification accuracies
depending on training strategy on
MNIST using 1200 labeled exam-
ples, and the size of the second hid-
den layer fixed to 100. Standard de-
viations are over 10 trials with dif-
ferent draws of the training set.

Strategy Test Error Std. Dev.

S 13.27 1.47
U+S 8.835 0.33

C+U+S 8.989 0.25
T+U+S 9.132 0.19

2C 8.77 0.43
C+T+U+S 8.695 0.41

where W, A and B are weight matrices. We have omitted biases for simplicity of
notation. As baseline we trained this MLP both with and without pretraining. For the
pretrained MLP we consider the bottom two layers as an autoencoder with two hidden
layers and trained them using both labeled and unlabeled samples.

When the hidden neurons, or perceptrons, in the MLP were linearly transformed,
we added shortcut connections from the input to the second hidden layer to maintain
the equivalence after the transformation. In that case, the output of the MLP is

y = Wh = W tanh(Ah′ +Cx), (10)

where h′ = tanh(Bx) +Bαx+ β, and C is the weight matrix of the shortcuts.4.
As a comparison, we tried both using either one of the two-layer contractive encod-

ing and the linear transformation and using both of them together. In this way, we can
easily see the effectiveness of the proposed way of using both approaches together.

Specifically, we used six different training strategies:

1. S: MLP trained with labeled samples only
2. U+S: MLP pretrained with unlabeled samples and finetuned
3. 2C: MLP pretrained with stacked contractive auto-encoders
4. C+U+S: MLP pretrained and finetuned with two-layer contractive encoding
5. T+U+S: MLP with shortcuts pretrained and finetuned with linear transformation
6. C+T+U+S: MLP with shortcuts pretrained and finetuned using both the two-layer

contractive encoding and linear transformation

We estimated hyperparameters such as learning rates, weight decay constant, regu-
larization strength and the size of the first hidden layer using hyperopt [4]. The number
of training epochs is determined with early stopping. For pre-training, we minimized
reconstruction error on a 10 000 sample validation set for every training strategy. We
then determined 1200 labeled training samples randomly and employed five-fold cross
validation and hyperopt to determine learning rates for finetuning on the cross-entropy
loss function. To reduce overfitting induced by the small size of labeled samples, we
fixed the number of hidden neurons in the second hidden layer to 100 (see, e.g., [3]).
The weight matrices A and B were initialized randomly according to the normalized
scale [6], while C was initialized with zeroes.

4 When we pretrained the MLP as a two-layer contractive encoding, we tied the weights A and
B between the encoder and decoder. However, we did not share C, αl’s and βl’s.
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Once the hyperparameters were found, we evaluated each strategy by training 10
MLPs with different sets of randomly sampled 1200 labeled training samples and clas-
sifying the held-out test samples.

4.2 Result and Analysis

In Table 1, the resulting classification accuracies for all six strategies are presented. As
expected the best performing strategy was the one which pretrained the MLP as the two-
layer contractive encoding using the linear transformation (C+T+U+S). This strategy
was able to outperform the strategies U+S, C+U+S as well as T+U+S. On the other
extreme, any approach which pretrains an MLP less greedily significantly outperforms
the case where only labeled samples were used to finetune an MLP (S). Our proposed
method also has a slight advantage over the stacked contractive auto-encoder (2C).

Interestingly, using either the two-layer contractive encoding or the linear trans-
formation only turned out to be just as good as the naı̈ve pretraining strategy (U+S).
This suggests that it is not easy to train the two-layer contractive encoding well easily
without a good training algorithm. Only when training became easier by linearly trans-
forming perceptrons to have zero-mean and zero-slope on average, we were able to see
the improvement (C+T+U+S), which confirms our claim.

5 Conclusions

In this paper we claimed that a less greedy approach of pretraining a multi-layer percep-
tron (MLP) can be improved by having both good regularization based on minimizing
the Jacobian of hidden activations with respect to the input [15, 14] and powerful learn-
ing algorithm based on linearly transforming hidden neurons [10, 16]. We focused on
validating this claim in a semi-supervised setting where only few labeled samples and
vast amount of unlabeled samples are available

We empirically demonstrated the validity of our claim by considering a task of clas-
sifying handwritten digits using an MLP when only 1200 training samples out of 60,000
were assumed to have corresponding labels. It was clear from the experiment that a less
greedy pretraining approach indeed helps significantly when there were only a handful
of labeled samples. Furthermore, we were able to see that generalization performance
could be significantly improved by pretraining an MLP with a two-layer contractive
encoding using the linear transformation, confirming the validity of our claim.

The experiments in the paper are, however, limited in a couple of dimensions.
Firstly, the structure of the MLP was limited to have only two hidden layers, and a
small fixed-size second hidden layer, which makes it important for future to evaluate
the proposed method with larger and deeper models. Secondly, it will be desirable to
evaluate the proposed method with other datasets. These are left for future to be further
investigated.
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