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Abstract. A deep Boltzmann machine (DBM) is a recently introduced Markov

random field model that has multiple layers of hidden units. It has been shown

empirically that it is difficult to train a DBMwith approximate maximum-likelihood

learning using the stochastic gradient unlike its simpler special case, restricted

Boltzmann machine (RBM). In this paper, we propose a novel pretraining algo-

rithm that consists of two stages; obtaining approximate posterior distributions

over hidden units from a simpler model and maximizing the variational lower-

bound given the fixed hidden posterior distributions. We show empirically that

the proposed method overcomes the difficulty in training DBMs from randomly

initialized parameters and results in a better, or comparable, generative model

when compared to the conventional pretraining algorithm.
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1 Introduction

Deep Boltzmann machine (DBM), proposed in [14], is a recently introduced variant of

Boltzmann machines which extends widely used restricted Boltzmann machines (RBM)

to a model that has multiple hidden layers. It differs from the popular deep belief net-

work (DBN) [5] in that every edge in the DBM model is undirected. In this way, DBMs

facilitate propagating uncertainties across multiple layers of hidden variables.

Although it is straightforward to derive a learning algorithm for DBMs using a

variational approximation and stochastic maximum likelihood method, recent research

(see, for example, [14, 4]) has shown that learning the parameters of DBMs is not trivial.

Especially the generative performance of the trained model, commonly measured by the

variational lower-bound of log-probabilities of test samples, tends to degrade as more

hidden layers are added.

In [14] a greedy layer-wise pretraining algorithm was proposed to be used to ini-

tialize parameters of DBMs, and it was shown that it largely overcomes the difficulty of

learning a good generative model.

Along this line of research, we propose another way to approach pretraining DBMs

in this paper. The proposed scheme is based on an observation that training DBMs

consists of two separate stages; approximating a posterior distribution over hidden units

and updating parameters to maximize the lower-bound of log-likelihood given those

states.
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Based on this observation, our proposed method pretrains a DBM in two stages.

During the first stage we train a simpler, directed deep model such as DBNs or stacked

denoising autoencoders (sDAE) to obtain an approximate posterior distribution over

hidden units. With this fixed approximate posterior distribution, we train an RBM that

learns a distribution over a combination of data samples and their corresponding poste-

rior distributions of hidden units. Finetuning the model is then trivial as one only needs

to free hidden variables from the approximate posterior distribution computed during

the first stage.

We show that the proposed algorithm helps learning a good generative model which

is empirically comparable to the pretraining method proposed in [14]. Furthermore, we

discuss the potential degrees of freedom in extending the proposed approach.

2 Deep Boltzmann Machines

We start by describing deep Boltzmann machines (DBM) [14]. A DBM with L layers

of hidden neurons is defined by the following energy function:
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are Nv binary visible units and Nl

binary hidden units in the l-th hidden layer. W = [wi,j ] is the set of weights between

the visible neurons and the first layer hidden neurons, while U(l) =
[

u
(l)
j,k

]

is the set of

weights between the l-th and l + 1-th hidden neurons. bi and c
(l)
j are a bias to the i-th

visible neuron and the j-th hidden neuron in the l-th hidden layer, respectively. We use

θ to denote a set of all these parameters.

With the energy function, a DBM can assign a probability to each state vector x =
[v;h(1); · · · ;h(L)] using a Boltzmann distribution p(x | θ) = 1

Z(θ) exp {−E(x | θ)} .

Based on this property the parameters can be learned by maximizing the log-likelihood

L =
∑N
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]

.

The gradient computed by taking the partial derivative of the log-likelihood function

with respect to each parameter is used in most cases with a mini-batch per update. It

is then used to update the parameters, effectively forming a stochastic gradient ascent

method. A standard way of computing gradient results in the following update rule for

each parameter θ:
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where 〈·〉d and 〈·〉m denote the expectation over the data distribution P (h | {v(n)},θ)
and the model distribution P (v,h | θ), respectively [3].



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 3

3 Training Deep Boltzmann Machines

Although the update rules in Eq. (2) are well defined, it is intractable to compute them

exactly. Hence, an approach that uses variational approximation together with Markov

chain Monte Carlo (MCMC) sampling was proposed in [14].

First, the variational approximation is used to compute the expectation over the data

distribution. It starts by approximating p(h | v,θ), which is intractable unless L = 1,

by a factorial distributionQ(h) =
∏L

l=1

∏Nl

j=1 µ
(l)
j . The variational parameters µ

(l)
j can

then be estimated by the following fixed-point equation:

µ
(l)
j ← f





Nl−1
∑

i=1

µ
(l−1)
i w

(l−1)
ij +

Nl+1
∑

k=1

µ
(l+1)
k w

(l)
kj + c

(l)
j



 , (3)

where f(x) = 1
1+exp{−x} . Note that µ

(0)
i = vi and the update rule for the top layer

does not contain the second summation term, that is NL+1 = 0.

This variational approximation provides the values of variational parameters that

maximize the following lower-bound with respect to the current parameters:

p(v | θ) ≥ EQ(h) [−E(v,h)] +H(Q)− logZ(θ), (4)

where
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is an entropy functional. Hence, each gradient update step does not increase the exact

log-likelihood but its variational lower-bound.

Second, the expectation over the model distribution is computed by persistent sam-

pling. The simplest approach is to use Gibbs sampling.

This approach closely resembles variational expectation-maximization (EM) algo-

rithm (see, for example, [2]). Learning proceeds by alternating between finding the

variational parameters µ and updating the DBM parameters to maximize the given vari-

ational lower-bound using the stochastic gradient method. However, it has been known

and will be shown in the experiments in this paper that training a DBM using this ap-

proach starting from randomly initialized parameters is not trivial [14, 4].

Hence, in [14] a pretraining algorithm to initialize the parameters of DBMs was

proposed. The pretraining algorithm greedily trains each layer of a DBM by considering

each layer as an RBM, following a pretraining approach used for training deep belief

networks (DBN) [5]. However, due to the undirectedness of edges in DBMs it has been

proposed to use the first layer RBM with two duplicate copies of visible units with tied

weights and the last layer RBM with two duplicate copies of hidden units with tied

weights. Once one layer has been trained, another layer can be trained on the aggregate

posterior distribution of the hidden units of the lower layer to extend the depth. After

the pretraining, learned weights are used as initializations of weights of DBMs.
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Fig. 1. Illustration of the two-stage pretraining algorithm followed by finetuning of all parameters.

Shaded nodes indicate clamped variables whereas white nodes are free variables.

4 A Two-stage Pretraining Algorithm

In this paper, we propose an alternative way of initializing parameters of a DBM com-

pared with the one described at the end of Section 3. We employ an approach that

separately obtains posterior distributions over hidden units and initializes parameters.

Before proceeding to the description of the proposed algorithm, we first divide the

hidden layers of a DBM into two sets. Let us denote a vector of hidden units in the

odd-numbered layers as h+ and the respective vector in the even-numbered layers as

h−. In this sense we may define µ+ and µ− as variational parameters of the hidden

units in the odd-numbered layers and the even-number layers, respectively.

Stage 1: We focus on finding a good set of variational parametersµ− ofQ(h−) that has
a potential to give a reasonably high variational lower-bound in Eq. (4). In other words,

we propose to first find a good posterior distribution over hidden units given a visible

vector regardless of parameter values of a DBM. Although it might sound unreasonable

to find a good set of variational parameters without any fixed parameter values, we can

do this by borrowing posterior distributions over latent variables from other models.

DBNs and sDAE’s, described in [5] and [16], are natural choices to find a good

approximate posterior distribution over units in the even-numbered hidden layers. One

justification for using either of them is that they can be trained efficiently and well (see,

e.g., [1] and references therein). It becomes a trivial task as one can iteratively train each

even-numbered layer as either an RBM or a DAE on top of each other, as is a common

practice when a DBN or a sDAE is trained.

Stage 2: Once a set of initial variational parameters µ− is found from a DBN or an

sDAE, we train a model that has predictive power of the variational parameters given a

visible vector. It can be simply done by letting an RBM learn a joint distribution of v

and µ−.

The structure of the RBM can be directly derived from the DBM such that its visible

layer corresponds to the visible layer and the even-numbered hidden layers of the DBM

and its hidden layer to the odd-numbered hidden layers of the DBM. The connections

between them can also follow those of the DBM. This corresponds to finding a set of

DBM parameters that fit the variational parameters obtained in the first stage.

Once an RBM has been trained, we can use the learned parameters as initializations

for training the DBM, which corresponds to freeing h− from its variational posterior

distribution obtained in the first stage.

A simple illustration of the two-stage pretraining algorithm is given in Fig. 1.
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4.1 Discussion

It is quite easy to see that the proposed algorithm has high degree of freedom to plug in

alternative algorithms and models in both stages.

The most noticeable flexibility can be found in Stage 1. Any other machine learning

model that gives reasonable posterior distributions over multiple layers of binary hidden

units can be used instead of RBMs or DAEs. Also, instead of stacking each layer at a

time, one could opt to train deep autoencoders at once using advanced backpropagation

algorithms (see, for instance, [10]).

In Stage 2, one may opt to use a DAE instead of an RBM. It will make learning

faster and therefore leave more time for finetuning the model afterward. Also, the use

of different algorithms for training an RBM can be considered. For quicker pretraining,

one may use contrastive divergence [6] , or for better initial models, advanced MCMC

sampling methods could be used.

Another obvious possibility is to utilize the conventional pretraining algorithm pro-

posed in [14] during the first stage. This approach gives approximate posterior distribu-

tions over all hidden units as well as initial values of the parameters. In this way, one

may use either an RBM or a fully visible BM (FVBM) during the second stage starting

from the initialized parameters. When an RBM is used in the second stage, one could

simply discard µ+.

One important point of the proposed algorithm is that it provides another research

perspective in training DBMs. The existing pretraining scheme developed in [14, 11]

was based on the observation that under certain assumptions the variational lower-

bound could be increased by learning weight parameters layer wise. However, the suc-

cess of the proposed scheme suggests that it may not be the set of parameters that need

to be directly pretrained, but the set of variational parameters that determine how tight

the variational lower-bound is and their corresponding parameters.

5 Experiments

In the experiments, we train DBMs on two datasets which are a handwritten digit dataset

(MNIST) [7] and Caltech-101 Silhouettes dataset [8]. We used the MNIST and Caltech-

101 Silhouettes datasets because experimental results of using DBMs for both datasets

are readily available for direct comparison [13, 12, 9].

We train DBMs with varying numbers of units in the hidden layers; 500-1000, 500-

500-1000, 500-500-500-1000. The first two architectures were used in [13, 12], which

enables us to directly compare our proposed algorithm with the conventional pretraining

algorithm.

For learning algorithms, we extensively tried various combinations. They are pre-

sented in Table 1. In summary, aDBM
stage1
stage2 denotes a deep Boltzmann machine in which

its superscript and subscript denote the algorithms used during the first and second

stages, respectively.

We used contrastive divergence (CD) to train RBMs in the first stage, and the persis-

tent CD [15] with coupled adaptive simulated annealing (CAST) was used in the second

stage. DAEs were trained using stochastic backpropagation algorithm.
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Fig. 2. Performance of the trained DBMs. Best performing models are in bottom right corners of

each plot.

When a DBM was finetuned, we estimated the variational parameters by running at

most 30 mean-field fixed-point updates. The model statistics, the negative part of the

gradient, was computed by CAST.

We evaluated the resulting models withStage 1 Stage 2 Finetuning

DBM × × DBM

DBMsDAE
RBM sDAE RBM DBM

DBMDBN
RBM DBN RBM DBM

DBMS&H (S) × DBM

DBMS&H
RBM (S) RBM DBM

DBMS&H
FVBM (S) FVBM DBM

Table 1. Algorithms used in the experiment.

(S) – the pretraining algorithm from [14].

the variational lower-bound of log-probabilities

and the classification error of test samples.

The variational lower-bounds reflect the gen-

erative performance of the model. The clas-

sification accuracy computed from a linear

support vector machine (SVM) tells us the

discriminative property of the hidden units.

We trained a linear SVM for each hidden

layer l using µl as its features. This is ex-

pected to show howmuch information about

input samples is captured by each hidden layer of the model.

All models were trained five times starting from different random initializations. We

report medians over these random trials.

5.1 Result and Analysis

Fig. 2 presents the result using both the lower-bound of log-probabilities and the clas-

sification error of the test samples. As has already been expected, none of the models
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Fig. 3. Layer-wise Discriminative Performance. Lower is better.

trained without pretraining have been able to perform well enough to be presented in-

side the boundaries of the boxes in Fig. 2.

It is clear from the figures that the proposed two-stage pretraining algorithm out-

performs, in all cases, the conventional pretraining algorithm (DBMS&H). On MNIST,

the DBMs pretrained with the proposed algorithm using the conventional pretraining

algorithm in the first stage achieved the best performance. In the case of Caltech-101

Silhouettes, DBMsDAE
RBMwas able to achieve superior performance in both generative and

discriminative modeling. It is notable that without any pretraining (DBM) we were not

able to achieve any reasonable performance.

Fig. 3 presents layer-wise classification errors. It is clear from the significantly lower

accuracies in the higher hidden layers of the DBMs trained without pretraining that

pretraining is essential to allow upper layers to capture structures of data. DBMDBN
RBMand

DBMS&H
RBMwere most effective in ensuring the upper hidden layers to have better dis-

criminative property.

6 Conclusions

The experimental success of the proposed two-stage pretraining algorithm in training

DBMs suggests that the difficulty of DBM learning might be due to the fact that the es-

timated variational lower-bound at the initial stage of learning is too crude, or too loose.

Once one initializes the variational parameters well enough by utilizing another deep
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hierarchical model, the parameters of a DBM can be fitted to give a tighter variational

lower-bound which facilitates jointly estimating all parameters.

The proposed two-stage pretraining algorithm provides a general framework in

which many hierarchical deep learning models can be used. It even makes possible

to include the conventional pretraining algorithm as a part of the proposed algorithm

and improve upon it. This is a significant step in developing and improving a training

algorithm for DBMs, as it allows us to fully utilize other learning algorithms that have

been extensively studied previously.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation Learning: A Review and New Perspec-

tives. arXiv:1206.5538 [cs.LG] (Jun 2012)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, corrected 2nd printing

edn. (2007)

3. Cho, K.: Improved Learning Algorithms for Restricted Boltzmann Machines. Master’s the-

sis, Aalto University School of Science (2011)

4. Desjardins, G., Courville, A., Bengio, Y.: On training deep Boltzmann machines.

arXiv:1203.4416 [cs.NE] (Mar 2012)

5. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (July 2006)

6. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Com-

putation 14, 1771–1800 (August 2002)

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. In: Proceedings of the IEEE. pp. 2278–2324. No. 11

8. Marlin, B.M., Swersky, K., Chen, B., de Freitas, N.: Inductive principles for restricted Boltz-

mann machine learning. In: Proc. of the 13th Int. Conf. on Artificial Intelligence and Statis-

tics (AISTATS 2010). pp. 509–516 (2010)

9. Montavon, G., Müller, K.R.: Deep Boltzmann machines and the centering trick. In: Mon-

tavon, G., Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the trade, Reloaded,

LNCS, vol. 7700. Springer, 2nd edn. (2012)

10. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in

perceptrons. In: Proc. of the 15th Int. Conf. on Artificial Intelligence and Statistics (AISTATS

2012). La Palma, Canary Islands, Spain (April 2012)

11. Salakhutdinov, R., Hinton, G.E.: A Better Way to Pre-Train Deep Boltzmann Machines. In:

Advances in Neural Information Processing Systems (2012)

12. Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC. In:

Fürnkranz, J., Joachims, T. (eds.) Proc. of the 27th Int. Conf. on Machine Learning (ICML

2010). pp. 943–950. Omnipress, Haifa, Israel (June 2010)

13. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines.

Tech. Rep. MIT-CSAIL-TR-2010-037, MIT (August 2010)

14. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: Proc. of the Int. Conf. on

Artificial Intelligence and Statistics (AISTATS 2009). pp. 448–455 (2009)

15. Tieleman, T., Hinton, G.E.: Using fast weights to improve persistent contrastive divergence.

In: Proceedings of the 26th Annual International Conference on Machine Learning. pp.

1033–1040. ICML ’09, ACM, New York, NY, USA (2009)

16. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-

coders: Learning useful representations in a deep network with a local denoising criterion.

Journal of Machine Learning Research 11, 3371–3408 (Dec 2010)


