Next: About this document ...
Up: Nonlinear Relational Markov Networks
Previous: Discussion and Conclusion
- 1
-
B. Bouzy.
Mathematical morphology applied to computer go.
IJPRAI, 17(2), 2003.
- 2
-
T. Graepel D. Stern and D. MacKay.
Modelling uncertainty in the game of Go.
In Proc. of the Conference on Neural Information Processing
Systems, Vancouver, December 2004.
- 3
-
G.E. Hinton.
Modelling high-dimensional data by combining simple experts.
In Proc. AAAI-2000, Austin, Texas.
- 4
-
M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul.
An introduction to variational methods for graphical models.
In M. Jordan, editor, Learning in Graphical Models, pages
105-161. The MIT Press, Cambridge, MA, USA, 1999.
- 5
-
M. Müller.
Computer Go.
Special issue on games of Artificial Intelligence Journal,
2001.
- 6
-
J. Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.
- 7
-
L. De Raedt and K. Kersting.
Probabilistic logic learning.
ACM-SIGKDD Explorations, special issue on Multi-Relational Data
Mining, 5(1):31-48, July 2003.
- 8
-
T. Raiko.
The go-playing program called Go81.
In Proceedings of the Finnish Artificial Intelligence
Conference, STeP 2004, pages 197-206, Helsinki, Finland, 2004.
- 9
-
B. Taskar, P. Abbeel, and D. Koller.
Discriminative probabilistic models for relational data.
In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI02), Edmonton, 2002.
- 10
-
H. Valpola, A. Honkela, M. Harva, A. Ilin, T. Raiko, and T. Östman.
Bayes blocks software library.
http://www.cis.hut.fi/projects/bayes/software/, 2003.
- 11
-
H. Valpola, T. Östman, and J. Karhunen.
Nonlinear independent factor analysis by hierarchical models.
In Proc. ICA2003, pages 257-262, Nara, Japan, 2003.
- 12
-
H. Valpola, T. Raiko, and J. Karhunen.
Building blocks for hierarchical latent variable models.
In Proc. ICA2001, pages 710-715, San Diego, USA, 2001.
Tapani Raiko
2005-06-17