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ABSTRACT switching units. Various model structures proposed in the
literature can be build out of these elements and we also
present some new model structures. They utilise Gaussian
. . : . ” variables which model the variance of other Gaussian vari-
tinuous and discrete variables, summation, addition, non-,, e allowing the variance to have a hierarchical or dynam-

'f'”eaT'ty anr? sr:/wtchlr;)g. Ensde;nble 'fjarf"”g r;])rowdfasb? COStical model. Related model structures have been proposed
unction which can be used for updating the variables asg, instance in [7, 8,9, 10, 11, 12] but with these methods

well as optimising the model structure. The blocks are de-y; ¢ ifficylt to learn the structure of the model or compare
signed to fit together and to yield efficient update rules. Em- different model structures

phasis is on local computation which results in linear com-
putational complexity. We propose and test a structure with bri
a hierachical nonlinear model for variances and means.

We introduce building blocks from which a large variety of
latent variable models can be built. The blocks include con-

This paper is organised as follows. Section 2 gives a

ef overview of ensemble learning. The building blocks

are introduced in Section 3 and various models structures

which utilise them are discussed in Section 4. Experiments

1. INTRODUCTION with a hierarchical nonlinear model for means and variances
are reported in Section 5.

We report principles which have been found useful in de-

signing and learning large factor-analysis-like latenti-va 2. ENSEMBLE LEARNING

able models. The design is based on a small number of basic

building blocks which can be flexibly combined. Three im- This section gives a brief overview of ensemble learning

portant issues arise within this design: 1) the need for & cos with emphasis on solutions yielding linear computational

function which can be used for learning the model struc- complexity. Thorough introductions to ensemble learning

ture, 2) a learning method which avoids over-fitting and 3) can be found for instance in [13, 14].

the requirement of roughly linear computational complexit Ensemble learning is a method for approximating pos-

for scalability. terior probability distributions. It enables to choose &po
Ensemble learning [1] has proven to satisfy these re- terior approximation ranging from point estimates to exact

quirements. Ensemble learning and related variationalposterior. The misfit of the approximation is measured by

methods have been successfully applied to various extenthe Kullback-Leibler divergence between the posterior and

sions of linear Gaussian factor analysis. The extensionsits approximation. Let us denote the observed variables by

have included mixtures-of-Gaussian distributions forseu X, the latent variables (parameters) of the modebland

signals [2], nonlinear units [3, 4] and MLP networks to the approximation of the true posteripf@ | X) by ¢(6).

model nonlinear observation mappings [5] and nonlinear The cost functiorC' used in ensemble learning is

dynamics of the sources [6]. Ensemble learning has also
C = <ln a(6) > - <1nﬂ> “np(X), (1)
p(X,0) p(8 | X)

been applied to large discrete models such as belief net-
works and hidden Markov models.

In this paper we discuss models which are build from where the operatof) denotes an expectation over the dis-
addition and multiplication, Gaussian variables possibly tributiong(8). Note that for practical reasons the cost func-
followed by a nonlinearity, as well as discrete variabled an tion equals the Kullback-Leibler divergence only up to a

This research has been funded by the European Commissif@tipro constant-Inp(X). This means that the cost function can

BLISS, and the Finnish Center of Excellence Programme (202005) be .tumed into a lower bound of _the model evidep¢X)
under the project New Information Processing Principles. which can then be used for learning the model structure.




2.1. Linear computational complexity There are far less local minima with a posterior approxima-
tion taking into account the posterior dependences, btit tha
would sacrifice computational efficiency. It seems that lin-
ear time learning algorithms cannot avoid local minima in
general, but suitable choices of model structure and legrni
scheme can ameliorate the problem considerably.

Each variable in the model yields one multiplicative term
in p(X,0). The terms can be expressed in the form
p(variable | parent$. The parents can be either compu-
tational nodes, such as summation, addition or switch, or
other variables. The difficult part of the cost function is
(Inp(X, 8)) which is taken oveg(0). The logarithm splits
the product of simple terms into a sum. If each of the simple
terms can be computed in constant time, the overall compu-
tational complexity is linear.

In general, the computation time is constant if the par-
ents are independent accordingt@). The independence
is violated if any variable receives inputs from a latenivar
able through multiple paths or from two latent variables
which are dependent accordingg@).

According to our experience, almost maximally facto-
rial ¢(0) suffice for latent variable models. It seems that a
good model structure is usually more important than a good

approximation of the posterior probability of the model. :
Density estimates of continuous valued latent variables of els. Gaussmn and soft-max are chosen pecause the OUtP.UtS
of the Gaussian nodes can be used as inputs to Gaussian

fer a large adygntage over p_o!nt estimates in _bemg .rObUStor soft-max nodes as will be explained shortly. This makes
against over-fitting and providing a cost function suitable

; . : the nodes compatible with each other. Each variable can be
for learning model structures. With ensemble learning the _.
density estimates are almost as efficient as point estimates elther observed or latent. _—

) Since the variable nodes are probabilistic, the values
propagated between the nodes have distributions. When
2.2. Pruning and local minima ensemble learning together with a factorial posterior ap-
proximation is used, the cost function can be computed by
propagating certain expected values instead of full distri
butions. Consequently the cost function can be minimised
based on gradients w.r.t. these expectations computed by
back-propagation.

3. BUILDING BLOCKS

In this section we introduce the building blocks and equa-
tions for computation with them. The building blocks con-
sist of variable nodes and computation nodes. The symbols
we use for them are shown in Figure 1. We shall refer to
inputs and outputs of the nodes. For variable nodes, input
means a value which is used for the prior distribution and
output is the value of the variable. For computation nodes,
output is a fixed function of the inputs.

The variable nodes can be either continuous valued with
Gaussian prior models or discrete with soft-max prior mod-

Restricting the posterior approximation to have a facto-
rial form effectively means neglecting the posterior depen
dences of variables. Taking into account posterior depen-
dences usually increases computational complexity signif
i & arger model with 2 Smple posteror approximaton. 1 MPULTOrprior mean o a Gaussian node requires the
Moreover, often the latent variable models exhibit rotailo mean and variance. Wlt.h a swtable. parametrlsanpn, mean
' and expected exponential are required from the input for

and other invariances which ensemble learning can use by_ . . : .
. . . S 7 “Jprior variance. The output of a Gaussian node can provide
choosing a solution where the factorial approximation is

most accurate (see [6] for an example) the mean, variance and expected exponential and can thus
Factorial ori imati P ﬁ leads t . be used as an input to both the mean and variance of an-
actorial posteriorapproximation often eads to pruning .o ayssian node. Gaussian nodes are suitable parents
of some of the connections in the model. When there is

not enouah data to estimate all th rameter me dir for discrete nodes as well since soft-max requires the mean
ot enough data to estimate afl the parameters, Some direcy, expected exponential of the input. The expectations re-
tions are ill-determined. This causes the posterior digtri

tion along those directions to be roughly equal to the prior quired by the inpuits and provided by the outputs of different

o i : ; nodes are listed below:
distribution. In ensemble learning with a factorial poste-

rior approximation, the ill-determined directions tendytt Output provides:
aligned with the axis of the parameter space because then| Gaussian () | Var{-} | (exp-)
the factorial approximation is most accurate. Gaussian with nonlinearity (-) | Var {-}

The pruning tendency makes it easy to use for instance | addition () | Var{-} | (exp-)
sparsely connected models because the learning algorithm | multiplication () | Var{-}
automatically selects a small amount of well-determined pa | switch () | Var{-} | (exp-)
rameters. In the early phases of learning, pruning can be Prior for variable nodes requires:
harmful, however, because large parts of the model can get | mean of Gaussians () | Var{-}
pruned away before a sensible representation has emerged. variance of Gaussians () (exp -)
This corresponds to a local minimum of the algorithm. soft-max of discrete () (exp -)




upper bound of’, as will be explained later. 3) Third, the

Si C;
S minimum of C = C, + C, is solved. This can be done
v k analytically if ¢ = 0, otherwise the minimum is obtained
Sy k

iteratively.
ST

Fig. 1. First from left: A Gaussian latent variablemarked 3.2 Addition and Multiplication

with a circle, has.a prior meam and a prior variance  aqgition and multiplication nodes can be used e.g. for con-
exp(—v). Second: A nonlinearity’ is applied immedi-  g,cting linear mappings and affine transformations be-
ately after a Gaussian variable. Third: A switch selects the yeen the variables. Denoting the inputshythe outputs

kth continuous valued input as the output. Fourth: Discrete are ", s; for addition and[[, s; for multiplication nodes.

variablek, marked with a triangle, has a soft-max prior de- Thg mean, variance and expected exponential of the addi-
rived from continuous valued variables tion node are

3.1. Gaussian variables (s14+82) = (s1)+ (s2) 4)

) . . . Var{s; + s2} = Var{s;}+ Var{s2} (5)
A Gaussian variable has two inputsn andv and prior
probability p(s|m, v) — N(s;m, exp(—v)). The variance (exp(s1 +52)) = (expsi) (expsy) )
is parametrised this way because then the mean and ex
pected exponential of suffice for computing the cost func-
tion. It can be shown that whesy m andv are mutu-
ally independent, i.eg(s,m,v) = q(s)q(m)q(v), Csp =
— (Inp(s|m,v)) yields

assumings; independent. For a multiplication node, the
expected exponential cannot be evaluated without knowing
the exact distribution of the inputs. Assuming independenc
betweens;, the mean and the variance of the output are

1 A (s1s2) = (s1)(s2) )
Cop = 5{ (expo) [ ((s) = (m))* + Var {m} + Var {s1s5}) = (s1)° Var {s:} ®)
+ Var{s}} —(v) +1In 271'} . @ +Var {s: } ((82)2 + VaI"{Sz}) .
For observed variables this is the only term in the cost func- The equations for larger sums or products are obtained by
tion but for latent variables there is al§g ,: the partre-  induction, e.gs15253 = (5152)s3.
sulting from (In¢(s)). The posterior approximatioq(s)
is defined to be Gaussian with meanand variances: 3.3. Gaussian variablewith nonlinearity

q(s) = N(s;3,5). Thisyields . .
A nonlinear computation node can be used for construct-
C. = 1 In 27mes ®) ing nonlinear mappings between the variable nodes. For
54 2 ) most nonlinear functions it is impossible to compute the re-

which is the negative entropy of Gaussian variable with-vari duired expectations analytically, but for the functjf() =

ances. The parameters ands are to be optimised during  ©XP(—s”) the mean and variance have analytical expres-
learning. sions provided that they have Gaussian inputs, i.e. the non-

The output of a latent Gaussian node trivially provides linearity has to follow immediately after a Gaussian node

expectation and variance{s) = 3 and Var {s} = 3. [15]. The required expectations are

The expected exponential can be shown to(dep s) = -

exp(5+5/2). The outputs of observed nodes are scalar val- (f(s)) = exp < — ) (25 + 1)*% 9)

ues instead of distributions and th{s = s, Var {s} = 0 25 +2 1

and(exp s) = exp s. o _ 25 A4 1)+ 10
The posterior distribution(s) of a latent Gaussian node {F6)7) PTG (@s+1)72. (10)

can be updated as follows. 1) First, the gradient€pf

W.rt. (s), Var{s} and (exps) are computed. 2) Second, The variance is obtained byar {f(s)} = (f*(s)) —

the terms inC,, which depend om ands are assumed to be  (f(s))”>. The update of a Gaussian node followed by the
b[(s — a)® + 3] + c{exp s), wheredC,/d5 = 2b(s — a), nonlinearity is similar to the plain Gaussian node: the gra-
0C, /05 = banddC/d (exp s) = c. This assumption holds  dients of C,, w.r.t. (f(s)) and Var {f(s)} are assumed to
exactly if the output of the node is propagated to Gaussianarise from a quadratic term. This assumption holds since
nodes only and not to discrete nodes. If the output is usedthe nonlinearity can only propagate to the mean of Gaus-
by a discrete node with a soft-max prior, this term gives an sian nodes.



3.4. Discretevariables m Y m

The prior probabilities of discrete variables wittpossible
: . ; Y W
values can be assigned frontontinuous valued signais ls(t) u(t) ls(t)
using soft-max prior:
exp ¢; Fig. 2. Left: Sources(t) has a time independent prior vari-
—_— (12) S ; S : ;
> expe ancev. Right: A variance neuron is included to give a time

’ dependent prior varianagt) for the sources(t).

plk=ic)=

The term({— ln p(% | ¢)) of the cost function cannot be com-
puted exactly but it can be approximated from above by us-

ing 4. EXAMPLE STRUCTURES
(—Inp(k | ¢)) = <(3k +1n Z exp cj> (12) The building blocks can be connected together rather freely
i but there are the following restrictions: 1) the resultirg-n
n work has to be a directed acyclic graph; 2) nonlinearity is
< —{c) +1n Z (expe;) = Crp, (13) always immediately after a Gaussian latent variable; 3) out
=1 puts of multiplication or nonlinearity cannot propagate to

soft-max or variance prior because the expected exponen-
tial cannot be evaluated; 4) the output of a discrete latent
variable can only be used for a switch and 5) there should
be only one computational path from a latent variable to
variable. If there are multiple paths, ensemble learning be
comes more complicated [5] and the situation is out of the
scope of this paper.

which follows from the Jensens’ inequality assuming all the
inputs independent. Note that the terfasp c;) appear in-
side the concave logarithmic function. A linear approxima-
tion based on the derivative w.r{exp ¢;) therefore yields
an upper bound for the cost function.

For latent discrete variables there are no restrictions to
the posterior approximatiaf(k). The termCy, , in the cost
function arising from(ln ¢(k)) is simply the negative en-
tropy ofg(k). 4.1. Variance Neurons

The update ofj(k) is analogous to Gaussian variables:
the gradient of”), w.r.t. the vectog(k = i) with1 <i <mn
is assumed to arise from a linear tepmy q(k = i)Cp(k =

In most currently used models, the means of Gaussian nodes
have hierarchical or dynamical models. In many real cases
; ; 1 the variance is not constant either but it is more difficult
i), whereC, (k = i) denotes the value af,, assuming that  y, odel it. We propose a variance neuron shown in Fig-
g(k = i) = 1. The linearity assumption holds exactly if ;.o 5 |t can convert a prediction of mean into a prediction
the value of the discrete node propagates only to Gaussian,t \ariance and thus allows to build hierarchical or dynami-
variables (through switches) and corresponds to an Uppeig| models for the variance. In general the variance neuron
bound of the cost function if the values are used by other o, 15 in 4 heavy-tailed super-Gaussian model for the Gaus

discrete variables with soft-max prior. It can be shown that g, e it is attached to. This can be useful for instance in
at the minimum of the cost function it holdgk = i) modelling outliers in the observations.

exp(—Cy(k = i)).

35, Switch 4.2. Linear Independent Factor Analysis

The addition and multiplication nodes can be used for build-

ing an affine transformation from Gaussian source nodes
s(t) to Gaussian observation node&). This corresponds

to linear factor analysis. With an independent mixture-of-

Gaussians prior for each of the sources, the model corre-

In a switch node, an input with n discrete values se-
lects one of thes continuous valued inputs as the output:
sout = sk. The required expectations are as follows:

n

(soup = ZQ(k =) (si) (14) sponds to linear independent factor analysis [2]. Figure 3
’21 shows how switches can be used to build such a prior for a
. sources(t). A variance neuron is used in order to prevent
(sdu) = D alk=i)(s?) (15) 5() P

multiple paths from the discrete node to the source.

(exp sout) = Zq(k =1) (exp 8;) - (16) 4.3. Hierarchical Nonlinear Variance M odel
i=1

_ . _ , ) Figure 4 shows the structure for the hierarchical nonlinear
The variance is obtained Bjar {sout} = (sdup) — (sout variance (HNV) model. It utilises variance neurons and
and(s?) = (si)” + Var {s;}. nonlinearities in building a hierarchical model for botke th



Fig. 3. A mixture-of-Gaussians prior fo#(¢) is achieved

using switches. Fig. 5. Samples from the 1000 image patches used in the

bars problem.

that are manifested by increased variance. Samples of the
image patches are shown in Figure 5.

Data was generated by first choosing whether vertical
and/or horizontal orientations are active, each with proba
bility 1/2 independently. If an orientation is active, thés
a probability 1/3 for each bar of that orientation to be ac-
tive. For both orientations, there are 6 regular bars, one fo
each row or column, and 3 variance bars that are 2 rows or
columns wide. The intensities are drawn from normalised
positive exponential distribution. Regular bars are addi-
Fig. 4. HNV model can be built up in stages. Left: A tive and variance bars produce additive Gaussian noise with
variance neuron is attached to each Gaussian observatiofitandard deviation of its intensity. Finally, Gaussiansgoi
node. The nodes represent vectors. Middle: A layer of With standard deviation 0.1 was added to each pixel.
sources with variance neurons attached to them is added.

The nodes next to the weight matricés andB; represent  5.1. Learning Procedure

affine transformations including a bias term. Right: Anothe
layer is added. The size of the layers may vary. More layers
can be added in the same manner.

The network was initialised in stages shown in Figure 4.
The first layer was added after 20 sweeps and the second
after 100 sweeps. Each sweep corresponds to updating each
latent variable node once. To prevent falling to local min-
means and variances. Without the variance neurons théma, 1) automatic pruning was discouraged initially, 2) new
model would correspond to a multi-layer perceptron with sources were generated and pruned sources removed from
latent variables at hidden neurons. Note that computationtime to time and 3) the activations of the sources were reset
nodes as hidden neurons would result in multiple paths fromg few times.
upper layer latent variables to the observations. This tfpe
structure was used in [5] and it has a quadratic as opposedo._z_ Results
to linear computational complexity.
In the initial phases of learning, some of the sources rep-
4.4. Dynamics resented multiple bars and there were multiple sources rep-
resenting a single bar. There was also a source which was
From the point of view of the equations for the nodes, con- specialised to diminish variance in cases where both the hor
nections forward in time are no different from connections jzontal and vertical orientations were inactive. Thesaloc

down the hierarchy as long as the network remains a di-minima were escaped, however, as the weights after 1200
rected acyclic graph. The building blocks can therefore be sweeps in Figure 6 demonstrate.

used to build dynamical models by defining mappings from  The sources of the second layer are ordered for visuali-

past sources to future sources or observations. sation purposes according to the weighAts and B, using
self-organising map. The two sources on the second layer
5. THE BARS PROBLEM correspond to the horizontal and vertical orientations and

the 18 sources on the first layer correspond to the bars.
We have tested the HNV model to an extension of the bars  Regular bars, present iA;, are reconstructed accu-
problem [16]. The data set consists® 6 pixel image rately but the variance bars B; exhibit some noise. The
patches with horizontal and vertical bars. In addition #® th distinction between horizontal and vertical orientatioms
regular bars, we used horizontal and vertical variance barsclearly visible inA,.



A, (18 x 2) B, (18 x 2)

(2]

A, (36 x 18) B; (36 x 18)
|HEE EREEE o
| | - = -
— [4]
| _=— f
Il =

Fig. 6. Posterior means of the weight matrices after 1200
sweeps. The matrices are organised in patches and dark 5
shades represent positive values. (6]

6. DISCUSSION

(7]
The building blocks discussed in this paper can be used for
constructing a wide variety of models. An important fu-
ture line of research will be automated construction of the
model. The search through different model structures is fa- [8]
cilitated by the ability of ensemble learning to automdtjca
shut down parts of the model. In the experiments reported [9]
here, we did not make use of sparsely connected networks
but for large models they are likely to prove useful.

The hierarchical nonlinear variance model was shown to [10]
be able to learn the structure of the underlying data gener-
ating process. In most real cases the generative process can
be expected to be more complex, but the same model strucf11]
ture can handle a variety of different cases. In some of the
preliminary experiments we have conducted on image data,
second-level sources which resemble complex cells [11, 12]
have emerged. However, so far we have used fully con-[12]
nected mappings which seems to discourage the formation
of complex-cell-like sources as each of them typically mod-
els the variance of only a small number of the lower-level
sources. [13]

Externally the variance neurons appear as any other
Gaussian nodes. It is therefore easy to build for instance
dynamic models for the variance. These kinds of models
can be expected to be useful in many domains. For exam{14]
ple volatility in financial markets is known to have temporal
auto-correlations.

The scope of this paper was restricted to models with [15]
purely local computation. In some cases it may be necessary
to use models where a group of simple elements is treated as
a single element whose external computations are local buf16l
whose internal computations may be more complex. The
elements in Figure 3 for instance can be grouped as in [2].
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