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Abstract

Variational Bayesian (VB) methods are typically only apdlito models in the conjugate-exponential
family using the variational Bayesian expectation maxaticn (VB EM) algorithm or one of its
variants. In this paper we present an efficient algorithmafagulying VB to more general models.
The method is based on specifying the functional form of fhgraximation, such as multivariate
Gaussian. The parameters of the approximation are optinisiag a conjugate gradient algorithm
that utilises the Riemannian geometry of the space of theoappations. This leads to a very ef-
ficient algorithm for suitably structured approximatiotisis shown empirically that the proposed
method is comparable or superior in efficiency to the VB EM icage where both are applica-
ble. We also apply the algorithm to learning a nonlinearestgtace model and a nonlinear factor
analysis model for which the VB EM is not applicable. For thesodels, the proposed algorithm
outperforms alternative gradient-based methods by afgignt margin.

Keywords: variational inference, approximate Riemannian conjugasglient, fixed-form ap-
proximation, Gaussian approximation

1. Introduction

Bayesian methods have recently gained popularity in machine learning. Bhis&st partially due
to their robustness against overfitting compared to maximum likelihood and rogtbods based
on point estimates. Variational Bayesian (VB) methods provide an effiaimhioften sufficiently
accurate deterministic approximation to Bayesian learning (Bishop, 200€anMeld type VB
also has the benefit that its objective function can be used for choosimgdtiel structure or model
order. Most work on variational methods has focused on the classpfgate exponential models
for which simple EM-like learning algorithms can be derived easily (Ghahnaarad Beal, 2001;
Winn and Bishop, 2005). These models and algorithms are computationallgréent but they
rule out many interesting model types.

x. These authors contributed equally to this work. This project may bedfathitp://www.cis.hut.fi/projects/
bayes/ .
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Many practically important models are not in the conjugate-exponential familyttzey have
received far less attention in the VB literature. In this paper we presegffiarent general method
for applying VB learning to these more general models. The method coulddzkta speed up,
for instance, the Gaussian variational approximation method of Opper mémbeau (2009), or
other previous more specific methods (e.g., Lappalainen and Honkely,\20pola and Karhunen,
2002).

Our method is based on first selecting the functional form of the approximdtmr parts of the
model that are conjugate-exponential, the corresponding factoripexential family distribution
is often a good choice, while in general we may use something else such #s/anmate Gaussian.

After fixing the functional form, we must be able to evaluate the variatiors émergy as a
function of the variational parameters. The details of this step depend andtiel—often most
terms can be evaluated analytically while others may require computing somésbdondan et al.,
1999) or applying some linearisation techniques (see, e.g., Honkela #mola/&2005) or other
approximations.

Once the free energy is known, we are left with a typically high-dimensiogpigtisation prob-
lem. Heré we propose using an approximate conjugate gradient algorithm that utilesdigh
mannian geometry of the space of the approximations to speed up coreerdgene of the main
contributions of this paper is to use the geometry of the approximations. Thiscisninast to
more common applications of Riemannian geometry in natural gradient methingdghes geome-
try of the predictive model. The geometry of the approximations is the natooide if the varia-
tional inference is viewed as an optimisation problem in the space of apprinxgntistributions.
Furthermore, the geometry of the approximation is often much simpler, leadingrem efiwient
computation and generic algorithms. The computational complexity of operatitim¢he Fisher
information matrix determining the geometry can be linear if the approximation is faditpfis-
ing or if its multivariate Gaussian blocks have a tree-like dependence seutbuinstance. The
resulting algorithm can provide dramatic speedups of potentially sevefatsoof magnitude over
state-of-the-art Euclidean conjugate gradient methods.

In previous machine learning algorithms Riemannian geometry is usually intbkaagh the
natural gradient of Amari (1998). There, the aim has been to use maxlikelihood to directly
update the model parametdgaking into account the geometry imposed by the predictive dis-
tribution of the datgp(X|0). The resulting geometry is often quite complicated as the effects of
different parameters cannot be separated and the Fisher informatiar imadtatively dense. Re-
cently Girolami and Calderhead (2011) have applied this in a Bayesian sastangnethod to speed
up Hamiltonian Monte Carlo samplers. In this paper, only the simpler geometrye 0¥ Bhap-
proximating distributions|(0|§) is used. Because the approximations are often chosen to minimise
dependencies between different parameethe resulting Fisher information matrix with respect
to the variational parametetswill be mostly diagonal and hence easy to work with.

The rest of the paper is organised as follows. Section 2 introduces thkgrband in varia-
tional Bayes and information geometry. The proposed approximate Riemaonipugate gradient
learning algorithm is introduced in Section 3. The method is demonstrated indhseestudies:
a Gaussian mixture model, a nonlinear state-space model and a nonlineaafedysis model in
Secs. 4, 5 and 6, respectively. We end with discussion in Section 7.

1. This paper is an extended version of the earlier conference gdpekéla et al., 2008).
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2. Background

The approximate Riemannian conjugate gradient learning algorithm follonysyaturally from an
optimisation view of variational Bayes and the Riemannian geometry of probatisitybutions in
information geometry. We will start with a brief introduction to both of these tepgles separately.

2.1 Variational Bayes

Variational Bayesian (VB) learning (Jordan et al., 1999; GhahranmahBaal, 2001; Bishop, 2006)

is based on approximating the posterior distributg@|X) with a tractable approximation(8|),
whereX is the data@ are the unobserved variables (including both the parameters of the nmaddel a
the latent variables), arflare the variational parameters of the approximation (such as the mean
and the variance of a Gaussian approximation). The approximation is fittedhliyising the free
energy

F(0(818)) ~ Eqop { loa 7 5 | = Drc ((BE)pOX)) —l0gpOx) &

This is equivalent to minimising the Kullback-Leibler (KL) divergeridg, (q||p) betweeng and
p (Bishop, 2006). The negative free energy also provides a lowendon the marginal log-
likelihood, that is, logp(X) > — F(q(6|§)) due to non-negativity of the KL-divergence.

Typical classes of approximations used in VB include factorising apprdioms most often
starting from assuming the latent variables and parameters to be indepandesxtending to the
fully factorising mean-field approximation, and approximations having a fixectional form, such
as a Gaussian.

In the former case, learning is typically performed using the variationaé8iay expectation
maximisation (VB EM) algorithm which alternates between minimising the free enétlyyespect
to the distribution of the latent variables (VB-E step) and the distribution of éharpeters (VB-M
step) (Bishop, 2006).

In the case of approximation with a fixed functional form, EM-like updatesiaually not avail-
able and generic gradient-based optimisation methods have to be usedds€2pper and Archam-
beau, 2009). This is often very challenging in practice, as the problesrguite high dimensional
and the lack of specific knowledge of interactions of the parameters tfiaedbhe geometry of
the problem can seriously hinder generic optimisation tools. Such methodsbesrtheless been
applied to a number of models that are not in the conjugate exponential fanulyas multi-layer
perceptron (MLP) networks (Barber and Bishop, 1998), kernaisdiers (Seeger, 2000), nonlin-
ear factor analysis (Lappalainen and Honkela, 2000; Honkela anal&alp005; Honkela et al.,
2007) and nonlinear dynamical models (Valpola and Karhunen, 200afwmbeau et al., 2008),
non-conjugate variance models (Valpola et al., 2004; Raiko et al., 28@v@lhas Gaussian process
latent variable models (Titsias and Lawrence, 2010). Optimisation methodsncaveed the con-
jugate gradient algorithm and heuristic speed-ups, but the use of a RiEmaonjugate gradient
algorithm for VB as proposed in this paper is novel.

In practice, convergence of conjugate gradient algorithms in latentblariaodels is often
really slow. To get an intuition of why this is the case, let us consider a gelaent variable
model with latent variables that connect to one observation each antigtara that connect to a
number of observations. As we increase the number of observationgatiient with respect to the
parameters grows linearly, whereas the gradient with respect to the Vat@dtles stays constant.
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As a result, with a reasonable number of observations, conjugate grattierithms are forced to
take very small steps to avoid overshooting the parameters, and as ahedatent variables are
hardly changed at all. The Riemannian gradient provides an automaticyem#ds problem by
properly scaling the gradient.

2.2 Information Geometry and Optimisation on Riemannian Manifolds

When applying a generic optimisation algorithm to a problem such as optimisingetaemhergy
(1), a lot of background information on the geometry of the problem is loke garameter§ of
q(8|§) can have different roles as location, shape, and scale parametetiseareffect is influenced
by other parameters. This implies that the geometry of the problem is in mostratsguclidean.

Riemannian geometry studies smooth manifdl@$|& } that are locally diffeomorphic witiR".
The manifold has an inner produgt-)x defined at every poirl of the manifold. The inner product
is defined for vectors in tangent spakg of M atéy as

(*.y)=x"GEy =Y xyigij (&), (2)
1]

whereG (&) is the Riemannian metric tensor&t Most Riemannian manifolds are curved, with
geodesics as the counterparts of Euclidean straight lines as length-minicususg between two
points (Murray and Rice, 1993).

Information geometry studies the Riemannian geometric structure of the marifolobability
distributions (Amari, 1985). It has been applied to derive efficient mhggnadient learning rules
for maximum likelihood algorithms in independent component analysis (ICAnanti-layer per-
ceptron (MLP) networks (Amari, 1998). The approach has beeninssslieral other problems as
well, for example in analysing the properties of an on-line variational BaydsM method (Sato,
2001).

For probability distributions, the most natural metric is given by the Fishernmdtion

2
061 1) 2000001065008))_ (00008

Here the last equality is valid ¢f(0|§) is twice continuously differentiable (Murray and Rice, 1993).
Fisher information is a unique metric for probability distributions in the senseittigthe only
metric which is invariant with respect to transformations to sufficient statidics(i and Nagaoka,
2000).

In a Riemannian space, the direction of steepest ascent of a funE(@nis given by the
Riemannian or natural gradient

07 (€) =G '&)0F &) (4)

instead of the regular gradiet7 (§). This can be verified by finding the maximum $f(§ + A%)
subject to the constraiffidg ||z = (A, A8)g = AET G(§) AE < €2. The relation between gradient and
Riemannian gradient is illustrated in Figure 1.

This choice of geometry between Euclidean and Riemannian is, howevepeindent of the
choice of the optimisation algorithm, and recently several authors have cedntmnjugate gradient
methods with the Riemannian or natural gradient (Smith, 1993; 8enand Dorronsoro, 2008;
Honkela et al., 2008). In principle this can be achieved by replacing elbwvspace operations in

(3)
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Figure 1: Gradient and Riemannian gradient directions are shown fonéa®m of distributiorg.
VB learning with a diagonal covariance is applied to the posteriary) O exp—9(xy—
1)? — x? —y?]. The Riemannian gradient strengthens the updates in the directions where
the uncertainty is large.

the conjugate gradient algorithm with their Riemannian counterparts: Rienmaimmier products
and norms, parallel transport of gradient vectors between difféagigient spaces as well as line
searches and steps along geodesics in the Riemannian space. In lpplttiitams some of these
can be approximated by their flat-space counterparts. We shall applpghexanate Riemannian
conjugate gradient (RCG) method which implements Riemannian (natural) gisidiger products
and norms but uses flat-space approximations of the others as our optimagtathm of choice
throughout the paper. As shown in Appendix A, these approximationetaffect the asymptotic
convergence properties of the algorithm. The difference betweeiegtaghd conjugate gradient
methods is illustrated in Figure 2.

In this paper we propose using the Riemannian structure of the distributi6f& to derive
more efficient algorithms for approximate inference and especially VB wgipgoximations with
a fixed functional form. This differs from the traditional natural gratllearning by Amari (1998)
which uses the Riemannian structure of the predictive distribyt{®j0). The proposed method
can be used to jointly optimise all the parameferd the approximatior(0|§), or in conjunction
with VB EM for some parameters.
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p
gradient
—— conjugate gradient

Figure 2: Gradient and conjugate gradient updates are applied to fitdimgaximum of the pos-
terior p(x,y) 0 exp—9(xy— 1)2 —x? —y?]. The step sizes that maximigeare used. Note
that the first steps are the same, but following gradient updates argonthlovhereas
conjugate gradient finds a much better direction.

2.3 Information Geometry of VB EM

The optimal VB approximation has an information-geometric interpretation ascfisgrojection
of the true posterior to a manifold of tractable distributions (Tanaka, 2004ik interpretation is
equally valid for all optimisation methods.

Amari (1995) has also presented the geometric interpretation of the EMthlgars alternating
projections for E- and M-steps. This asymmetric view does not directlyrgbse to the VB EM
method when used to infer distributions over all parameters, because VB Bjnmetric with
respect to different parameters.

By embedding the VB-E step update within the VB-M step with point estimates amgldzo
ering the resulting update, the VB EM algorithm for conjugate exponentialffanodels can be
interpreted as a natural gradient method (Sato, 2001). It therefore ittyptiptimally utilises the
Riemannian geometric structure@®|&) (Amari, 1998). Nevertheless, the EM-based methods are
prone to slow convergence, especially under low noise, even thoughetadrgrate optimisation
schemes can speed up their convergence somewhat. It is worth pointitigadthis correspon-
dence of VB EM is with the regular natural gradient algorithm, not Rieman(matural) conjugate
gradients as proposed in this paper.

3. Approximate Riemannian Conjugate Gradient L earning for Fixed-Form VB

Given a fixed-form approximatiog(8|§) and the free energ§ (q(0/§)), it is possible to use stan-
dard gradient-based optimisation technigues to minimise the free energy vadtréest. We will
use VB EM updates for some variational parame¥&!$ and RCG for other§RCC.

Instead of a regular Euclidean gradient algorithm, we optimise the fregyensing a conjugate
gradient algorithm that is adapted to Riemannian space by using Riemannérpioducts and
norms instead of Euclidean ones. Steps are still taken along Euclidearmstieég and the step
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length is determined using a line search. We call this the (approximate) Riemasongugate
gradient (RCG) algorithm.

Our RCG is an approximation of a true Riemannian conjugate gradient algdttmith, 1993),
in which the steps are taken along geodesic curves and tangent veetiosted at different points
are transformed to the same tangent space using parallel transporaajendesic. For small step
sizes and geometries which are locally close to Euclidean, the approximataingdthave made
still retain many of the benefits of the exact algorithm while greatly simplifying tmepdations.
Edelman et al. (1998) showed that near the solution Riemannian conjugdtergrmethod differs
from the flat space version of conjugate gradient only by third ordengerand therefore both
algorithms converge quadratically near the optimum. This convergencerprégpdemonstrated in
detail for our approximation in Appendix A.

The search direction for the RCG method is given by

Pk = — 0Ok + BPk—1,

wheregyk = i?({) is the Riemannian gradient of Equation (4). The coefficfistevaluated using
the Polak-Ribgre formula (Nocedal, 1992; Smith, 1993; Edelman et al., 1998)

(O, Ok — Ok—1)k
|[S-1lZ_4

B= 5)
where||Gk| |2 = (Gk, Ok)k is the squared Riemannian norm@fin the tangent space whegg is
defined, andx,y)x denotes the Riemannian inner product of Equation (2) in the same tangent
space.

We also apply a Riemannian version of the Powell-Beale restart method [[Pb9&/): the
search direction is reset to the negative gradient direction if

[ (G-, G| = 0.2/|8k][£- (6)

Compared to the traditional conjugate gradient, the Equations (5) ande(8)maitar with just the
dot products of the vectors replaced with Riemannian inner products.

Once the search direction is determined, we use standard line searchtteffimdhl update. Be-
cause the evaluation of the objective function is computationally costly, it igwbile to consider
line search methods that stop earlier rather than wasting many function temaguan fine tuning
the parameters.

An example implementation of the algorithm is summarised in Algorithm 1. The inputsiaclu
the probabilistic modep, the form of used posterior approximatign the initialisations for the
variational parametei&, and the data seX which is implicitly used in the objective functioff .
The algorithm returns the variational paramefetkat solve the learning and inference problem of

q(e[g).

3.1 Computational Considerations

The RCG method is efficient as the geometry is defined by the approxintg@t&) and not the full
model p(X|0) as in typical natural gradient methods. If the approximati@®§) is chosen such
that disjoint groups of variables are independent, that is,

q(6[&) =[] ai(8i&i),
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Algorithm 1 An outline of an example Riemannian conjugate gradient algorithm for figed-f
VB. The presented method of integrating VB EM updates is only one of massilge alternatives.

function VB-RCG(p,q,&o = (§5M,E5°C),X)
Po = 07 gO =1
fork=1,2,... do > Repeat until convergence
for 0 c EEM = (W, ... ™) do
&)« argming, F(q@[8",...& 7. &0 &Y, gl &)

> VB EM for some parameters

G < G (&) Dgpos F (a(BIELM, ERSY)) > Riemannian gradient

B« % > Polak-Ribére formula
—dlk-1

Pk < — Ok + BPk—1 > Update direction

o « argmiry F (q(81EEM,ERCC + apy)) > Line search

ERCC &R+ apk

the computation of the Riemannian gradient is simplified as the Fisher informatio betomes
block-diagonal. The required matrix operations can be performed ffigiently because

diagAg,...,An) L =diag AL, ALY.

The dimensionality of the problem space is often so high that working with then&rix would
not be feasible.

All vector operations needed in the RCG algorithm are of the form

(@, 8)m = (G "0k, G, *a)m = 0L G ' GmG; tai @)

for some iterate indicek, |, m. This is further simplified in casm = kwhereG;TGm =l andin
casem = | whereGme1 = 1. Depending on the structure of the Fisher information matrix, the
operations can be performed as a series of solving linear systems andpnaditcts to exploit the
sparsity. A practical example of this in the case of a Gaussian approximapogsisnted in Section
3.2.1.

Finally, it is worth to note that when updating only a subset of variationa@materg, at a time,
many terms inf are constant and can be disregarded when finding a minimum.

3.2 Gaussian Approximation

Most obvious applications of the Riemannian gradient method are with a i@awaggproximation.
In that case, it is most convenient to use a simple fixed-point update mibg@ovariance and a
Riemannian conjugate gradient update only for the mean.

Let us consider the optimisation of the free energy (1) when the approximadX) is a
multivariate Gaussian. The free energy can be decomposed as

7 (@(88)) = Eqo, {00 205 |~ Eqoe 10ga(0F)) + Eqo - l0apX.))
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The former term is the negative entropy of the approximation, which in the afaa multivariate
Gaussiam(0|p, X) with mean vectop and covariance matriX is

Eq08) {1000(6[E)} = — logdet2res).

Straightforward differentiation yields a fixed point update rule for theadawce (Lappalainen and
Miskin, 2000; Opper and Archambeau, 2009):

2t = —205Eq ) {logp(X,0)}, (8)
wherelJs denotes the gradient with respectolf the covariance matrix is assumed (block) diag-
onal, the same update rule applies for the (block) diagonal terms.

3.2.1 MMPUTING THE RIEMANNIAN METRIC TENSOR

For the univariate Gaussian distribution parametrised by mean and vagdipes) = AL(B|y, V),
we have

10g(Bl1LY) = - (8~ )~ 3log(y) — , log(2m)
Furthermore,
E {_BZIog;EZG]p,V)} _ \’1,> ©)
E{—W}:O, and (10)
E {—W} - 27\1/2 (11)

The vanishing of the cross term between the mean and the variance fsughyorts using the
simpler fixed point rule (8) to update the variances.

(a) (b) (©) (d)

Figure 3: The absolute change in the mean of the Gaussian in figuresi(é&))aand the absolute
change in the variance of the Gaussian in figures (c) and (d) is the saoweever, the
relative effect is much larger when the variance is small as in figures dgranompared
to the case when the variance is high as in figures (b) and (d) (Valp@a).20

In the case of univariate Gaussian distribution, the Riemannian gradieatrather straightfor-
ward intuitive interpretation, which is illustrated in Figure 3. Compared to auimeal gradient,
Riemannian gradient compensates for the fact that changing the pamofet&aussian with small
variance has much more pronounced effects than when the varianageis lar
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In case of multivariate Gaussian distribution parametrised by mean andasweq(0|y,Z) =
A (8], X), the elements of the Fisher information matrix corresponding to the mean are simply

0%1oga(@ln.3)| _ s 1

The Fisher information matrix is thus equal to the precision m&@rix= Ax = Z[l.

Typically the covariance matrX is assumed to have a simple structure that makes working with

it very efficient. Possible structures for a covariance matrix include fidgahal, block diagonal,

a Gaussian Markov random field with a specific structure, and a factdysas covarianc& =

D+ K ,w', whereD is a diagonal matrix, oE~* = K~ 4 diag(v) with a fixedK and only

N parameters i for anN-variate Gaussian (Opper and Archambeau, 2009). It is also possible to
derive the geometry for the covariance of a multivariate Gaussian. $bk does, however, depend

on the specific structure of the covariance.

Assuming a structured Gaussian Markov random field approximation witheaotrélocked
tree structure, the precision matrix will be sparse with a simple structure. Toigsaefficient
computation of the operations needed in Equation (Vl).lg| (and correspondingly fok) can be
computed by solving the linear systéfx = g;, which can be done i®(N) time for N variables
using a propagation algorithm in the tree. For a blocked tree forméy/nfblocks of sizen, the
complexity isO(n?N). Examples of such algorithms for chains are given in Golub and Loar6§199
but a general tree can be handled analogously. The complexity of multiphdati is similar.

Examples of Gaussian Markov random fields with this structure can be dasiig in time
series models, where the approximation for the state seq&encs(1),...,s(T)) is typically either
a single “blocked” chain

.
S = t|1Q(S(t) [s(t—1))a(s(1))

or a product of independent chains

qS) = [ |1q Hlst-1 )] (13)

In ad dimensional model of length, the time complexity of the Riemannian vector operations in
RCG isO(d3T) for the former and)(dT) for the latter.

4. Case Study: Mixture of Gaussians

As the first case study, we consider the mixture-of-Gaussians (MoGlrasedvas done by Kuusela
etal. (2009). Inthis case, we applied the RCG also for variables with-&3amssian approximation.
Furthermore, the conjugate-exponential nature of the MoG model alloast dovmparison with VB
EM.

4.1 The Mixture-of-Gaussians M odel
We consider a finite mixture &€ Gaussians (Attias, 2000; Bishop, 2006)

K
PXTLUA) = kz TR (X[ bk, Ak)
=1
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The model P(X|Z, 1 A) = M Mica A (nlbe A
P(ZIT) = Mz M, T8
Key variables Z = (zk) ,0 = (M, Ak, T)

The approximation  q(Z,0) =q(Z)q(0)
The update algorithm Joint RCG updates Zoand means dffi, fixed point updates for varit
ances ofl, VB EM updates for the rest

Table 1. Summary of the mixture-of-Gaussians model

wherex is aD-dimensional random vectamn,= [nl---T[K]T are the mixing coefficients, ang and
N\ are the mean vector and the precision matrix ofkteGaussian component, respectively.

In the case of the MoG model, the binary latent varia@l@&®note which one of thik Gaussian
components has generated a particular observagerith z,x = 1 denoting the component respon-
sible for generating the observed data point Let N denote the total number of observed data
points.

Given the mixing coefficients, the probability distribution over the latent variables is given by

p(Z[m) = e
The mixing coefficients have a conjugate Dirichlet prior

p(m) = Dir (Hao),

wherea = [dy,...,00]".
Similarly, the likelihood can be written as

X|Zvl'la rIII_len“‘lkA

In this case, the conjugate prior for the component parampgtarglA is given by the Gaussian-
Wishart distribution

P(A) = p(HIA)p |'| A (Mo, (BoA) ™) W (A Wo, Vo),
where the Wishart distribution is defined up to a normalising constant by tratieq
WAW,v) O |A|V-P-D/ exp(—;Tr(W‘lA)>.

The joint distribution over all the random variables of the model is then diyen

P(X,Z, T, A) = p(X|Z, i A) p(Z |19 p(T) P(HIA) P(A).

This resulting model can be illustrated with the graphical model shown in Figure
We now make the factorising approximation

Q(Z,T[, MA) = CI(Z)Q(T[, llvA%
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Xn B,

Figure 4: A graphical model representing the MoG model (Attias, 20001dpis2006), where the
hyperparameters have been omitted for clarity. The observeddata marked with a
shaded circle. The rectangular plates denote the repetitidh afservations,, along
with corresponding latent variables, and of the parameters Ef mixture components.

which leads to an update rule fqfZ) (VB-E step) and subsequently an update rulegiat, p,A)
(VB-M step). The resulting approximate posterior distributions are

N K
aZ) =[] (14)
n=1k=1
and <
ampA) = ama@A) = q(m) [ al.Aw),
k=1
where
q(m) = Dir(Ta) (15)
and
Ak, Ak) = N (M M, (BiAk) ™) W (A Wi, Vi) (16)

The derivations of the VB EM and RCG learning algorithms for the MoG modepeesented
in Appendix B.

4.2 Experiments

The hyperparameters are set to the following values for all the experineyitsl, Bo = 1,vo =D,

Wo = %I andmg = 0. These values can be interpreted to describe our prior beliefs of thel mode
when we anticipate having Gaussian components near the origin but &eifaiertain about the
number of the components.

The maximum number of components is seKte= 8 unless otherwise mentioned with each
component having a randomly generated initial megrdrawn from a Gaussian distribution with
zero mean and covariancel@l. Other distribution parameters are initially set to the following
values: ax = 1, Bx = 10, vy = D and Wy = %I for all k. The Powell-Beale restart scheme of
Equation (6) is not used. Instead, the search direction is reset to théveegradient direction
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after /n iterations, wheren is the number of parameters updated with the gradient method. The
optimisation is assumed to have converged when the improvement in freg éfiérg 71| < €
for two consecutive iterations withbeing separately specified for each of the experiments below.

It should be noted that this convergence criterion favours methodsasu¢B EM which typi-
cally takes more of cheaper and smaller steps, while the Riemannian grddaithan takes fewer
larger steps that are computationally more demanding and take longer tadhmegueset improve-
ment threshold.

Because different initial means can produce significantly differentltsegh terms of the re-
quired CPU time and achieved final free energy, all the experiments peatszl 30 times with
different initialisations.

The artificial data set used to compare the different algorithms in learningd®&model was
drawn from a mixture of 5 spherical two-dimensional Gaussians with egem@hts. The mean
of the first component is at the origin while the means of the other§faRe+R). The constant
R = 0.3 unless otherwise mentioned and the covariance of all the componer@8lis 0

When different gradient-based algorithms are compared using the artifatia containing
N = 500 data points, the results shown in Figure 5 are obtained. It can belsdete stan-
dard gradient descent and conjugate gradient (CG) algorithms halvieprs locating even a decent
optimum within a reasonable time. Clearly the convergence criterion, whiclsetdse = 10N,
is too lax for these algorithms as the simulations are terminated before comvergea good so-
lution. Using the Riemannian gradient (RG) and further RCG radically imgrtve performance.
Based on the curves, even the standard CG algorithm is more than 10 timesthlawRCG. This
experiment was conducted using a fairly small number of observations caf&ergence criterion
and the maximum number of componeHts- 5 in order to allow the standard gradient to finish in
a reasonable time.

We also considered the L-BFGS algorithm (Byrd et al., 1995; Carbor€iiy,) as a higher or-
der Euclidean algorithm. L-BFGS is a limited-memory version of the popular-dNeston BFGS
algorithm. It can be seen as a compromise between the fast convergmeimatry-intensive quasi-
Newton methods and the less efficient conjugate gradient methods better feuitmedium- to
large-scale problems. The degree of this compromise is controlled by the snkmgth parameter
mwhich was set tan = 20 in Figure 5. It was found out that, regardless of the valum,dhe per-
formance of L-BFGS was very similar to CG with the small deviations explaingtdédifferences
in the line search methods employed by the algorithms. It also turned out tHatelsmarch sub-
routine of the L-BFGS implementation had a tendency to converge prematumelydor solution.
In order to circumvent this, the convergence criterion of the L-BFGStae tightened by a factor
of 10~° compared to the gradient-based algorithms.

We next compare RCG, RG and VB EM using different value®.ofhe number of observations
was increased thl = 1000 and the convergence criterion was settal0~ 12N in order to maximise
the quality of the optima found. Figure 6 shows the median CPU time requiredrisegence for
the different algorithms in 30 repeated experiments. It can be seen thamathvalues oR, RCG
outperforms VB EM, while with large values & VB EM performs slightly better. This means
that, at least in terms of this experiment, RCG performs better than VB EM whdattnt variables
are difficult to infer from the data.

Given the discussion of Section 2.3, it is not surprising to note that bothMBRid RG perform
qualitatively in a fairly similar manner in the experiment of Figure 6. It shoufzkewlly be noted
that both methods suffer from significant slowdowns near the valuBs=00.2 andR = 0.325. On
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Figure 5: Convergence curves of gradient-based algorithms usingd@envbdel for artificial data
with R= 0.3. The algorithms compared are the standard gradient descent, theatenjug
gradient (CG), the Riemannian gradient (RG) and the Riemannian conjggati&nt
(RCG) methods as well as the limited-memory BFGS (L-BFGS) algorithm. Thessurv
shown are medians of 30 simulations drawn up to the median termination time. The
smaller marks denote 25% and 75% quantiles of the termination time in the horizontal
direction and the corresponding quantiles of the free energy at the meedmimation
time in the vertical direction. Note that the time scale is logarithmic.

the other hand, the use of conjugate directions in the Riemannian spacetsaesdt in a fairly
uniform performance across all valueshof

There is some variation in the quality of the optima the different methods canterd his is
illustrated in Figure 7 for RCG and VB EM. There is no evidence for eithesritlgm consistently
producing better results than the other. The only outlier in this data isRwt9.225 where VB EM
is the only algorithm to discover the global optimum. This is by no means typicalwihdther
data sets we have seen RCG sometimes consistently finding better optima. Béabedfigure,
RCG seems slightly more sensitive to local optima, but the result is not qualyadifferent from
VB EM which, to some extent, also suffers from the same problem.

Although the time complexity of one step of each of the compared algorithms is liméae
number of samples, the algorithms nevertheless perform differently asithiben of samples in-
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Figure 6: Comparison of VB EM with the Riemannian gradient (RG) and the Rieiaa conjugate
gradient (RCG) methods using the MoG model with the artificial data. Theesigfvow
the median CPU time required for convergence as a functidt &fB EM slows down
significantly at the critical overlap &~ 0.2, while RCG is almost unaffected. A similar
slowdown also affects RG implying that the use of conjugate directions cotgsitho the
nearly uniform running time of RCG.

creases. To see this, we set 108N and probed a wide range of valuesMf The results are
illustrated in Figure 8 which shows that VB EM slows down faster than lineaglyha number
of samples increases. The most likely reason for this behaviour is thabgterior will be more
peaked when the number of observations is large and this slows down tirvatittg VB EM it-
eration. The same phenomenon also affects RCG, but the effect is maobestin VB EM. The
results suggest that especially for large data sets, it can be worthwhiasider alternatives to
basic batch VB EM, such as on-line algorithms (Sato, 2001) or gradissdhaethods.
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Figure 7: Final free energy value as a function of running time in the crip@edmeter range in the
MoG experiment with varyingR. Both RCG and VB EM sometimes fail to converge to
the global optimum. Interestingly, there usually is no correlation between diléyoof
the solution and convergence time.
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function of the number of observatiohs with VB EM and the Riemannian conjugate
gradient (RCG) algorithms. The smaller marks indicate 25% and 75% quantiles.

The model

Key variables
The approximation  q(8s,0g) = q(8s)q(6g), whereq(0g) is Gaussian with diagonal covarij

The update algorithm  Joint RCG updates for the mearBs@;, 0, fixed point updates for

X(t) = f(s(t),
S(t) = s(t -
B8s = (s(t)),0

6r) +n(t)
) g(s(t—1),8g) +m(t)
o = (ef,eg,VmaVn)

ance andj(8s) Gaussian with tridiagonal precision (see text)

their covariances, VB EM updates for the rest

Table 2: Summary of the nonlinear state-space model

5. Case Study: Nonlinear State-Space Models

As the second case study, we consider the nonlinear state-space MN&&MY introduced by
Valpola and Karhunen (2002). The model is specified by the generatidel

X(t) = f(s(t),8r) +n(t), (17)
S(t) = s(t —1) +g(s(t — 1),8g) +m(t), (18)
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wheret is time,X(t) are the observations, as(t) are the hidden states. The observation mapping
f and the dynamical mapping are nonlinear and they are modelled with multi-layer perceptron
(MLP) networks whose weight matrices are include®imnd@y. The observation noise vector
and process noise vector are assumed Gaussian with zero mean and covarianceexjie?y,,))

and diagexp(2vm)). The latent states(t) are commonly denoted Hs. The model parameters
include both the weights of the MLP networks and a number of hyperparesnéelae posterior
approximation of these parameters is a Gaussian with a diagonal covaniatre The posterior
approximation of the stategBs|&s) is a Gaussian Markov random field with a correlation between
the corresponding components of subsequent state vegtorainds;(t — 1), as in Equation (13).
This is a realistic minimum assumption for modelling the dependence of the states\&tt@nd

s(t — 1) (Valpola and Karhunen, 2002). Omitted details of the model are presenfgzbendix C
and a summary is given in Table 2.

Because of the nonlinearities the model is not in the conjugate exponemtigy,fand the
standard VB learning methods are only applicable to hyperparameterstout the latent states
or weights of the MLPs. The free energy (1) can nevertheless beatgdlby linearising the MLP
networksf andg (Honkela and Valpola, 2005; Honkela et al., 2007). This allows evaluatiag
gradient with respect tgs, &, and€y and using a gradient based optimiser to adapt the parameters.
Combining Equations (4) and (12), the Riemannian gradient for the meanrgkeimgiven by

Ow F () = Zq0, 7 (§),

wherejy is the mean of the variational approximatig(®|§ ) andZ, is the corresponding covariance.
The covariance matrix of the model parameters is diagonal while the invevagance matrix of
the latent states(t) is block-diagonal with tridiagonal blocks. This implies that all computations
with these can be done in linear time with respect to the number of the paraniétersovariances
are updated separately using a fixed-point update rule similar to (8) esbdesby Valpola and
Karhunen (2002). A complete derivation of the free energy of the nisgeésented in Appendix C.

5.1 Experiments

We applied the method for learning nonlinear state-space models preseotedta real world
speech data. Experiments were conducted with different data sizes yotstugerformance dif-
ferences between the algorithms. The data consisted of 21 dimensionakemeiicy log power
speech spectra of continuous human speech. This is a detailed reégtieseaf speech signals
similar to those often used in speech recognition. A segment of 100 samplespnds to approx-
imately 0.8 seconds of speech. The task is to learn a nonlinear dynamicdlforaties data.

To study the performance differences between the Riemannian conjugdierg (RCG) method,
standard Riemannian gradient (RG) method, standard conjugate grédi@htmethod and the
heuristic algorithm from Valpola and Karhunen (2002), the algorithms \appied to different
sized parts of the speech data set. Unfortunately a reasonable compaitisa VB EM algo-
rithm was impossible because an extended-Kalman-filter-based VB EMthlgdriled with the
nonlinear model.

The size of the data subsets varied between 200 and 500 samples. &femsobnal state-space
was used. The MLP networks for the observation and dynamical mappay20 hidden nodes.
Four different initialisations and two different segments of data of eaghvs&re used, resulting
in eight repetitions for each algorithm and data size. The results for eliffelata segments of the
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same size were pooled together as the convergence times were in gengsiinilar. An algorithm
was assumed to have converged whgh— #'=1| < € = (10~°N/80) for 5 consecutive iterations,
where 7! is the free energy at iteratigrandN is the size of the data set. Alternatively, the iteration
was stopped after 24 hours even if it had not converged.

The MLP network is notoriously prone to local optima. Practically all our simutataonverged
to local optima with different parameter estimates, but there were no statistiicallficant differ-
ences in the free energies corresponding to these optima attained bgrditiegorithms (Wilcoxon
rank-sum test, 5 % significance level). In practice, the free energesatund to have a very strong
correlation with predictive performance of the model (Honkela et al., ROlfere were still some
differences, and especially the RG algorithm with smaller data sizes ofteawgaito converge very
early to an extremely poor solution. These were filtered by removing reshiéisevthe attained free
energy that was more than two RCG standard deviations worse than R€igaver the particular
data set. Thus all the used results are from runs converging to a rcemieyly good solution. The
results of one run where the heuristic algorithm diverged were alsordestérom the analysis.

The results can be seen in Figure 9. The plain CG and RG methods welg sleater than
others and the maximum runtime was reached by most CG and some RG runsvd3C{@arly the
fastest algorithm with the heuristic method of Valpola and Karhunen (2Gfi#)den these extremes.
The observed differences are, save for a few exceptions mostly withesmiata sets, statistically
significant (Wilcoxon rank-sum test, 5 % significance level).

As a more realistic example, a larger data set of 1000 samples was used ta tewen-
dimensional state-space model. In this experiment both MLP networks of38&MNhad 30 hidden
nodes. The convergence criterion veas 10-¢ and the maximum runtime was 72 hours. The per-
formances of the RCG, RG, CG methods and the heuristic algorithm were oenpehe results
can be seen in Figure 10. The results show the convergence for figeadif initialisations with
markers at the end showing when the convergence was reacheduld &le noted that the scale of
the CPU time axis is logarithmic.

RCG clearly outperformed the other algorithms in this experiment as well. ticplar, both
RG and CG hit the maximum runtime in every run, and especially CG was nowbkareconver-
gence at this time. RCG also outperformed the heuristic algorithm (Valpola arttuien, 2002)
by a factor of more than 10.

6. Case Study: Nonlinear Factor Analysis

The model X(t) = f(s(t),0) +n(t)
( )= (0 diagexp(2vs)))
Key variables = (s(t)),0 = (8,Vs,Vp)

The approximation (S 0) =q(S)q(0), where bothg(8) andq(S) are Gaussian with diagona
covariances

The update algorithm Joint RCG updates for mear& @, fixed point update for their covari
ances, VB EM updates for the rest

Table 3: Summary of the nonlinear factor analysis model

As the final case study, the RCG and RG methods were implemented as exddnsioa VB
nonlinear factor analysis (NFA) method (Lappalainen and Honkela, ;2060kela and Valpola,
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Figure 9: Convergence speed of the Riemannian conjugate gradie@)(R@ Riemannian gradi-
ent (RG) and the conjugate gradient (CG) methods as well as the heugstittan (Old)
with different data sizes of the speech data set and the nonlinear state+spdel. The
lines show median times with 25 % and 75 % quantiles shown by the smaller marks. The
times were limited to at most 24 hours, which was reached by a number of simalation

2005; Honkela et al., 2007). NFA models the mapping between latent fattpemnd observations
X(t) with an MLP as in Equation (17):

X(t) =f(s(t),0) +n(t).

Instead of the dynamical model of Equation (18}, has independent Gaussian priors with a unit
covariance. As NFA can be seen as a special case of NSSM with nondynzapping, the im-
plementation is straightforward. The model is summarised in Table 3. Complétater of the
model and a learning algorithm based on conjugate gradients is presgritekela et al. (2007).
The generalisation for Riemannian gradient is straightforward as therkigbemation matrix is
diagonal.

The RCG, RG and CG methods were applied for learning an NFA model ftwr glethe speech
data set, a different part of which was also used in the NSSM experimAstshe NFA model
cannot capture the dynamics of speech, the experiment aimed at findondieeiar embedding of
speech on a lower dimensional manifold. To stimulate this, we drew a suitaldetsaftsamples
randomly from the full data set of 7860 samples, excluding any dynangtaions in the data.
Silent segments were excluded from the data.

We tested each algorithm for data sets ranging in size from 300 to 1000 sampiaing 10
simulations with different random initialisations for every setting. The resuitshown in Figure
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Figure 10: Comparison of the performance of the Riemannian conjugategréRCG), the Rie-
mannian gradient (RG), the conjugate gradient (CG) methods and thistlealgorithm
with the full speech data set of 1000 samples using the nonlinear staterapdel. The
free energy¥ is plotted against computation time using a logarithmic time scale. The
tick marks show when simulations either converged or were terminated aftenirg.

11. RCG is again clearly superior to both RG and CG, but CG is now fasteR@a The observed
differences are statistically significant (Wilcoxon rank-sum test, 5 % sogmifie level), except
between CG and RG for 300 samples.

7. Discussion

The proposed RCG algorithm combines two improvements over plain gragéntigation: use
of Riemannian gradient and conjugate gradients. One interesting feattive @xperimental re-
sults is the relative performance of the conjugate gradient and Riemamaidiergt algorithms that
implement only one of these. Conjugate gradient is faster than Riemanniiargrior NFA, but
the opposite is true for NSSM and MoG. Especially the latter differenceguate significant and
consistent across several different data sets. One obvious diffeteetween the models is that
for NFA the Fisher information matrix is diagonal while for NSSM and MoG thisasthe case.
This suggests that the Riemannian gradient approach may be the mostwisafuthe metric is
more complex, although more careful analysis would be needed to prapetlystand the effects
of different improvements.
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Figure 11: Convergence speed of the Riemannian conjugate gradie@))(fhe Riemannian gra-
dient (RG) and the conjugate gradient (CG) methods with different dag¢a sizthe
speech dimensionality reduction data set with the nonlinear factor analysed.
lines show median times with 25 % and 75 % quantiles shown by the smaller marks.

As illustrated by the MoG example, the RCG algorithm can also be applied to @iejug
exponential models to replace the more common VB EM algorithm. In practice, siayplenore
straightforward EM acceleration methods based on, for example, pagarchsor adaptive over-
relaxation (see, e.g., Honkela et al., 2003; Salakhutdinov and Rowei3) &y still provide com-
parable or better results with less human effort. These methods are ofibabfgpwhen EM itself
is applicable, though.

The experiments in this paper show that using even a greatly simplified vafitr@ Rieman-
nian conjugate gradient method for some variables is enough to acquigeasfa@edup. Consid-
ering univariate Gaussian distributions, the regular gradient is proneetemphasise changes to
model variables with small posterior variance and underemphasise variaibhelarge posterior
variance, as seen from Equations (9)—(11). The posterior var@natent variables is often much
larger than the posterior variance of model parameters and the Riemanaiteng takes this into
account in a very natural manner.

The Riemannian conjugate gradient method differs from Euclidean sugarloptimisation
methods such as quasi-Newton methods in that it uses higher-order itiforrofithe geometry of
the parameter space, but not of the function being optimised. Thesesargially two independent
avenues for improvement: it would be possible, although complicated, teedarRiemannian
guasi-Newton method. Our experiments clearly show that in these problgreger model of the
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geometry appears significantly more important than using higher-ordemafimn of the objective
function.

In this paper, we have presented a Riemannian conjugate gradient ¢ealgrmithm for fixed-
form variational Bayes. The RCG algorithm provides an efficient metbodB learning in models
that do not belong to the conjugate-exponential family as required by thdasthvariational EM
algorithm. For suitably structured approximations, the computational owfiea using Rieman-
nian gradients instead of conventional gradients is negligible. In praetieatples, the Riemannian
gradient approach provided several orders of magnitude speedepsonventional gradient algo-
rithms, thus making VB learning of these models practical on a much larger scale

MATLAB code for all the models used in the case studies is availabletatiwww.cis.
hut.fi/projects/bayes/software/ncg/

Acknowledgments

This work was supported in part by the Academy of Finland under its Ceofr&xcellence in
Research Program, and the IST Program of the European Commungy,thadPASCAL2 Network
of Excellence, IST-2007-216886. AH and TR were supported bydeotoral Researchers’ projects
of the Academy of Finland (No 121179, 133145). TR was also suppdtugeithe Academy of
Finland project “Unsupervised machine learning in latent variable models”(@&L802). This
publication only reflects the authors’ views.

Appendix A. Convergence of the Riemannian Conjugate Gradient Algorithm

The Riemannian conjugate gradient algorithm has similar superlinear gemaer properties to the
Euclidean space conjugate gradient algorithm. Assuming the objeE(i&e has continuous third
order derivatives and that there exist- 0, M such that the Hessidr(§) satisfies

mxTx < xTH(&)x < Mx'x
for all & andx, the error decreases quadratically oMesteps in arN-dimensional problem. Thus,
denoting the optimum bgt and the iterates b§;, we have (Edelman et al., 1998; Cohen, 1972)
o —&in|| < Clla —&|? (19)

in some neighbourhood of.

We now show that the approximations in the RCG algorithm, namely ignoring thégddrans-
ports and performing line searches along straight lines instead of desd#s not effect the con-
vergence rate of Equation (19).

Theorem 1 Assuming the objectivg (§) has bounded derivatives for up to third order and that
the Fisher informationG(§) is smooth in a neighbourhood of the solution, the RCG algorithm
performing a line search along a straight line in the direction
Pk = —8k + BPk-1,
wheregy is the Riemannian gradient and
(O, Ok — Gk—1)k
[[Ok-1/12_4
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to find the sequence of iteratég shares the same convergence property of Equation (19) in some
€-neighbourhood of the solution as the Riemannian conjugate gradienti@goperforming a line
search along a geodesic in the direction

Pk = — 8k + B TPk-1,

wheregy is the Riemannian gradientp;_, is the vectop;;_, after parallel transport to the starting
point of the new search and
(G Ok — 101

[,

B=

i

where(-, )+ is the inner product a}, to find the sequence of iteratgs

Proof Letus assume that the two algorithms are starté&d-at§; and||x —a|| < € for somee > 0.
We show by induction onthatp;_; = p;/_; + O(€?) and§; =& + O(e?) for i > k which is sufficient
to prove the theorem.

The base case is trivial & = §; andpx_1 = p;_, = 0 at the start of the algorithm.

Assume now that the claim is valid for=k,...,K, and let us prove it for = K+ 1. From
Edelman et al. (1998) we know that

&(e) =&(0)+eA/[|A]|+ O(€®),
§(e) = §+ O(€?),

whereg (¢) is a geodesic in directiof, 1g(¢) is the parallel transport dj to &(¢). The norms ofy
andp are also of the ordep(g).

The assumptio&k = &j; + O(€?) implies that the gradients evaluated at these points satisfy
Ok = G + O(€?). Furthermore,

Xy = X'GEY = X (GE) + OE))y = Yk + OEXk/Yllk)-
Using the above asymptotics,

(G, Ok — Tk 1)k _ (G + O(€%), 8k — Gx—1+ O(e?))k-

B = _
||QK 1||(K 1)* ||gK 1+O(52)||(K 1)*
(O, Ok — Ok 1)K+ + O(€3) (O, Ok — Ok 1)K + O(£3)
=(1+0(¢ —~ =(1+0(¢
S T )

=u+0@»<@9@‘@K”K+ma>zﬁ+0@»

HgK—1| ’(ZKfl)

Similarly we can find the difference in the search direction,

Pk = —0k +BTPk_1 = —Ok + B*Pk_1 + O(€?) = Bk + Bpk—1+ O(e?)
=Pk + 0(82)7

which completes the first part of the induction step.

3258



RIEMANNIAN CONJUGATEGRADIENT FORVB

The corresponding step lengthsandt, also differ byO(g). To show this, let us use the Taylor
expansion off about the optimuna:

F(8) = (@) + 5(E o) TH@)E )+ 0,
OF (&) =H(@) (& —a)+ O(e?).

The line search finds the zeropf - 07 (§) along the line, = &k _1 + tpk, which yields
prH (@) [(k-1+tpk — @)+ O(e%)] =0,

which can be solved to obtain

 PLH(@) (&1 —q)

prcH (@)pk +0(®),

where we have used the fact thitH (a)px > m||pk||?.
Correspondingly, the exact algorithm finds the zero along the geodesi&f _, in the direc-
tion py of (tpi) " OF (§)

(i (P | ) TH (a) € _1 (t*[ | |) — a0 + O(€2)] =
(Pk + O(€%)) TH(a)[Ex_1 +t*pi —a+ O(e?)] + O(e®) =0,

where€x _1(t*||pk||) is the geodesic starting frogj _, in the directionpy, andtpy (t*||pk||) is the
parallel transport opy along this geodesic. The solution of this equation yields

(P + O(€2)TH(@)[Ex_, — @ + O(e?)]
(P + O(e2))TH(@)pi
(P + O(e) TH(@) 1 —a + O(€?)

t=— +0(e)

P ORI O] o)
— (11 0(e))Px <H(a )LEKHE_)DL+ o) +0(g) =t+O(e).
Now
&k = &k 1(t"|Ipk) = &k 1 + 1Pk + O(e®)
= &1+ O(e%) + [t + O(e)][px + O(e?)] + O(e®) = &k + O(&?),
which completes the proof. |

Appendix B. Derivations of the Mixture-of-Gaussians M odel

In this section we present details of the variational MoG model, includingssacg EM updates,
the free energy and the metric tensor for the RCG algorithm.
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B.1 VB EM for the Mixture-of-Gaussians M odel

This section is completely based on the variational treatment of the MoG modélia$ (2000)
and Bishop (2006). Because of this, some details of the derivation of BHEN algorithm for the
MoG model will be omitted here and we will concentrate only on the most importaatts.

In expressing the update rules for the distribution parameters in Equatiénq15) and (16),
we will find the following definitions useful:

Ne = ok,
n=1
1 N
Xe=— S rpX
k Nk Z nkAn,
1 X -
S‘:W Fk(Xn — Xk) (Xn —Xk) ',
I<n—1

1-
log/Ay = le (Vk+ ) +Dlog 2+ log|Wyl,

K
1097k = W(aw) — ( 3 ak/) ,

k=1

whereD is the dimensionality of the data agd-) is the digamma function which is defined as the
derivative of the logarithmic gamma function, that is

w00 = S logr(x).

Using these definitions, the parameteys of the approximate posterior over latent variables
g(Z) which are updated in the E-step are given by

o = Pnk
nk =
ZIK:1F)nI
where
~1/2 D w T
Prk = TEA “exp| — - — = (Xn — M) Wi (Xp —my) |.
Bk 2

The parametens are calledesponsibilitiedbecause they represent the responsibilitykthecom-
ponent takes in explaining thh observation. The responsibilities can be arranged into a matrix
R = (rnk) and will have to satisfy the following conditions

0

| A

1, (20)

<fn
K
Z - (21)
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The parameter update equations for the M-step are then given by
Ok = ag+ N,
Bk = Bo + Nk,
Vk =Vo+ Nk + 1,

(Bomo + NkXk ),

BoNk
Bo + Nk

me= ———
“™ Bo+ N

Wit = Wot+ NS+

(Xk — mo) (Xk — mo)T.

B.2 TheFree Energy
The free energy of Equation (1) is

F = Z///qZTLu, |ogp?>((’ #L,))dm“d’\

= Eq{logq(Z, muA)} — Eq{logp(X,Z, Tt p,A)}
= Eq{logq(Z)} + Eq{logq(m)} + Eq {loga(n,A) }
—Eq{logp(X|Z,w,A)} — Eq{logp(Z|m)}

(22)
(23)
(24)

(25)

—Eq{logp(m)} — Eq{logp(W.A)}. (26)

These expectations can be evaluated to give (Bishop, 2006)

N K

Eq{loga(2)} = 5 > raklogrnk,
n=1k=1

Eq{loga(m} = 5 (ak—1)logfi +logC(a),

K

> rklog,
k=1

K

2,

S {Liogh+ Diog: 0
Eq{loga(u,A)} = kzl{ log/Ay + Iog > Hq{/\k}},
N
Eq{logp(Z|m)} = Zl

~

Eq{logp(m)} = logC(ao) + (ao—1) } log,
k=1

Eq{log p(X’Z7u7A)} =

1X ~ D
> z Ny {Iog/\k — — — W Tr(S\Wy) — Vk(Xk — mk)TWk(Xk —my)—Dlog 2T[} ,
k=1

B
gilogp(LA Z D |09§[+ log/A\x — o Bovk(mk —mg) ' Wi (my —mp)
Vo — D -1 XK

+KlogB(Wo,Vvo) + Z logAk— = Z vk Tr(Wq W),
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where TfA) denotes the trace of matriandHq{A} is the entropy of the distributiog(Ax). The
functionsC andB are defined by the following two equations:

K K -1
=TI [
c@ <kzlak> <k=1 (ak)> 7

-1
D ,
B(W,v) = |w| /2 <2VD/2T[D(D1)/4 I_lr <v +;__|>> |
i=

B.3 Riemannian Conjugate Gradient for the Mixture-of-Gaussians M odel

To be able to compare the VB EM and RCG algorithms, we assume that the epat@yosterior
distributionq(Z,,w,A) takes the same functional form as in the case of the VB EM algorithm.
Thus, the fixed form posterior distributions are given by Equations (18) and (16) and the free
energy which is to be minimised by the RCG algorithm is given Equation (26).isnatbrk, we
will only be optimising the responsibilities,k and the meanmy using gradient-based methods.
All other model parameters, namely the parametgref the Dirichlet distribution, the parameters
Bk controlling the covariance of the component means as well as the paramgtersdvy of the
Wishart distribution, are updated using the VB EM update Equations 22), (24) and (25).

There are a few things that have to be taken into account when deriéwlipgt-based algo-
rithms for the MoG model. Firstly, the responsibilities have to satisfy the contrgiven by
Equations (20) and (21). This can be enforced by usingdifienaxparametrisation

¥k

= TKZI o (27)

Mk

It can be easily seen that by using this parametrisation the responsibilitiabvangs positive and
zﬁzlrnk = 1. As aresults it holds that@ rx < 1 and we can conduct unconstrained optimisation
in they space.

Secondly, if we set the responsibilitigg,n=1...N,k=1...K —1 to some values, the values
of rnk,n=1...N are given by condition (21), that igx = 1 — ZE:‘llrnk. As a result, the number
of degrees of freedom in the responsibilities of the model is not the nunib@sponsibilities
NK but instead\N(K — 1). When we are using the parametrisation (27), this means that we can
regard the parameteysk as constants and only optimise the free energy with respect to parameters
Vi, N=1...N,k=1... K —1. This is especially important when using the Riemannian gradient.

The gradient of the free energy (26) with respeatipis given by

Om, F = VWi (Nk(Mk — Xx) + Bo(mk — Mo))
and the derivative with respect ¥rx is given by

0F
OYnk

= Enk — I'nkFn,
where

. 1 ~ D
Enk = I'nk <Iogrnk— logT — > (Iog/\k — —k —Dlog 2rm— vy (xn — mk)TWk(Xn — mk)>>
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and
K
Fn == Z Enk
k=1

We can update the responsibilitigg without having to evaluate and store the parameggrs
by noting that

' eynk+Aynk

frwy —=———""——
nk Z|K:l eVl +Avni

Z |K: 1 Nl e¥nk

— eAVnk = Cnhl eAynk
ZIK:leVm-%AVm lezlean nnk ’

wherer/, is the new responsibilitydynk is the change in parametgfi determined by a line search
in the search direction ang} is a normalising constant which makes sure $t,r’, = 1. Thus
Cn can also be expressed in the foom= (zﬁzlrnkeAVnk)*l and we can update the responsibilities

using the formula
r’ B rnkeAVnk

SR e

In order to use the Riemannian gradient, we need to know the Riemannian mesdc G
of the parameter spaden,y) which is given by Equation (3). The resulting matrix is a block
diagonal matrix with blocksAk = BkvkWy for eachmy and blocksB,, = —rﬁrn + diag(rn) for
each sample, wheng, is thenth row of the responsibility matrilR except for element,k, that
iSTnh=[rm---rk-1]. diaga) is used here to denote a square matrix which has the elements of
vectora on its main diagonal. This block-diagonal structure of the matrix makes the Rigaman
vector operations easy and efficient to implement.

Since the EM updates of parameters are computationally efficient compahedeealuation of
the objective function, it is more efficient to do them also within the line sedrtiedRCG update
rather than as a separate step as in Algorithm 1.

Appendix C. Derivation of the Nonlinear State-Space M odel
In this section we review the details of the nonlinear state-space model ajl&¥apd Karhunen
(2002).

C.1 Probability Model and Priors

The nonlinear state-space model of Valpola and Karhunen (2002)ecdaderibed with these two
equations:

S(t) ~ AL(s(t—1) +9(s(t — 1),08q), diagexp(2vm))), (28)
X(t) ~ N(F(s(1), 8), diag(exp(2vi))), (29)

where Al(W,Z) denotes a multivariate Gaussian distribution with mpeand covarianc&. The
nonlinear mappings are modelled with MLP networks:

g(s(t —1),04) = DtanHCs(t — 1) +c| +d,
f(s(t),08¢) = BtanhAs(t) +a] + b.
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The model for datX is thus described using unobserved variables
e = (S(t)’Avaa Ba ba C7C7 Du danaVn) .

The priors of the variables are specified to fix the scaling ambiguity betwead A and to
have a hierarchical prior allowing automatic relevance determination (ARBh¢p, 2006) like
decisions to inactivate parts of the model:

~ N(0,1),
~ N(0, exp(2vo; ),
cn ~ 9\[(% exp(2vy)),
N(my,, exp(2vy, ),
(m/mexlo(ZVVq)))v

wherev € {mn}, 9 € {a,b,c,d} and® € {B,C,D}. All the hyperparameters have vague priors
A((0,100%).

C.2 Posterior Approximation

In order to allow efficient learning, the posterior approximatig@) = N(e\pe,Agl) is restricted
to be Gaussian with megg and precision (inverse covariancky. Furthermore, the precision
of the approximation is restricted to be almost diagonal. The only allowediafedal terms are
in the approximation o&(t) which includes a correlation betwest) ands(t +1). Different
components of the state vectgt) are still assumed independent, and the posterior approximation
of the states is a product of independent chains.

Following the theory of Gaussian Markov random fields, this assumptiosl&igs to a tridiag-
onal precision (inverse covariance) matrix with non-zero elements ontii@main diagonal and
on the diagonal corresponding to the assumed links. The corresparwiagance matrix has full
blocks for each component of the state.

C.3 TheFreeEnergy

In order to derive the value of the free energy (1), we note that
7(d(8)) = Eqe) {10gq(8)} + Eqe) { —logp(X,0)}.
The first term is the negative entropy of a Gaussian
N 1
Eqe) {l0ga(0)} = — 109(2re) — 5 log deths,

whereN is the dimensionality 0. The second term splits to a sum of a number of terms according
to Equations (28)—(29).

Eqe) {—109p(X,0)} = Eqe) {—logp(x(1)[8)} + ZeEq —logp(vle\y)},
T
where@,, denotes the parametegrslepends on.
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The terms in the sum are expectations for parametésiowing a normal mode\(m, e?").
The negative logarithm of the pdf is

1 1
—logp(y|8\y) = > log(2m) + v+ Q(V_ m)Zexp(—2v).

Assuming independent Gaussian approximafidasy, m andv with meansy,m,v and variances
y, M, V, respectively, the expectation is

Eqo) {~100P(Y0.,)} = 2100(210 + T+ 2 (7~ )2+ §-+ M exp29 - 2]

For the observationg(t) we obtain similarly

1 -1 ~ - —
Eqe) {—10gp(x(1)|8)} = 5109(2m) +Vn, + S [(x— fi ()% + fi(t)] exp(20, — 2V,
where the means;(t) and variances;(t) of f(s(t)) are evaluated as explained in Honkela and
Valpola (2005); Honkela et al. (2007).
For the states;(t) we can similarly derive (Valpola and Karhunen, 2002)

1 _
Eqe) {—10gp(si(t)[Bs1) } = > log(211) + Vi

3|60 -0+ +a0 - 2801 2

§(t—1)| exp(2Vim — 2Vm),

whereg;(t) anddj(t) are the mean and variancegi(t — 1)) evaluated similarly as those fif(t)),
ands(t,t — 1) is the linear correlation betweesi(t — 1) and s(t) as explained in Valpola and

Karhunen (2002). The partial derivati\g% is evaluated naturally as a by-product of evalua-
tion of §i(t) as explained previously (Honkela and Valpola, 2005; Honkela et al7)200

C.4 Update Rules

The hyperparametexg,; , My, Vg, W;, My, ; Wy, , Voo, , My, W, @re updated using a VB EM type scheme
to find a global optimum, given current values of the other parameterp@élapen and Miskin,
2000). The variances of the states and the weights of the MLP netwarkspaiated using the
fixed-point rule and the means by the RCG algorithm, as described in Section 5
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