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Abstract
Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential
family using the variational Bayesian expectation maximisation (VB EM) algorithm or one of its
variants. In this paper we present an efficient algorithm forapplying VB to more general models.
The method is based on specifying the functional form of the approximation, such as multivariate
Gaussian. The parameters of the approximation are optimised using a conjugate gradient algorithm
that utilises the Riemannian geometry of the space of the approximations. This leads to a very ef-
ficient algorithm for suitably structured approximations.It is shown empirically that the proposed
method is comparable or superior in efficiency to the VB EM in acase where both are applica-
ble. We also apply the algorithm to learning a nonlinear state-space model and a nonlinear factor
analysis model for which the VB EM is not applicable. For these models, the proposed algorithm
outperforms alternative gradient-based methods by a significant margin.

Keywords: variational inference, approximate Riemannian conjugategradient, fixed-form ap-
proximation, Gaussian approximation

1. Introduction

Bayesian methods have recently gained popularity in machine learning. This isat least partially due
to their robustness against overfitting compared to maximum likelihood and othermethods based
on point estimates. Variational Bayesian (VB) methods provide an efficientand often sufficiently
accurate deterministic approximation to Bayesian learning (Bishop, 2006). Mean field type VB
also has the benefit that its objective function can be used for choosing the model structure or model
order. Most work on variational methods has focused on the class of conjugate exponential models
for which simple EM-like learning algorithms can be derived easily (Ghahramani and Beal, 2001;
Winn and Bishop, 2005). These models and algorithms are computationally convenient but they
rule out many interesting model types.
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Many practically important models are not in the conjugate-exponential family and they have
received far less attention in the VB literature. In this paper we present anefficient general method
for applying VB learning to these more general models. The method could be used to speed up,
for instance, the Gaussian variational approximation method of Opper and Archambeau (2009), or
other previous more specific methods (e.g., Lappalainen and Honkela, 2000; Valpola and Karhunen,
2002).

Our method is based on first selecting the functional form of the approximation. For parts of the
model that are conjugate-exponential, the corresponding factorised exponential family distribution
is often a good choice, while in general we may use something else such as a multivariate Gaussian.

After fixing the functional form, we must be able to evaluate the variational free energy as a
function of the variational parameters. The details of this step depend on themodel—often most
terms can be evaluated analytically while others may require computing some bounds (Jordan et al.,
1999) or applying some linearisation techniques (see, e.g., Honkela and Valpola, 2005) or other
approximations.

Once the free energy is known, we are left with a typically high-dimensionaloptimisation prob-
lem. Here1 we propose using an approximate conjugate gradient algorithm that utilises the Rie-
mannian geometry of the space of the approximations to speed up convergence. One of the main
contributions of this paper is to use the geometry of the approximations. This is incontrast to
more common applications of Riemannian geometry in natural gradient methods using the geome-
try of the predictive model. The geometry of the approximations is the natural choice if the varia-
tional inference is viewed as an optimisation problem in the space of approximating distributions.
Furthermore, the geometry of the approximation is often much simpler, leading to more efficient
computation and generic algorithms. The computational complexity of operationswith the Fisher
information matrix determining the geometry can be linear if the approximation is fully factoris-
ing or if its multivariate Gaussian blocks have a tree-like dependence structure, for instance. The
resulting algorithm can provide dramatic speedups of potentially several orders of magnitude over
state-of-the-art Euclidean conjugate gradient methods.

In previous machine learning algorithms Riemannian geometry is usually invokedthrough the
natural gradient of Amari (1998). There, the aim has been to use maximumlikelihood to directly
update the model parametersθθθ taking into account the geometry imposed by the predictive dis-
tribution of the datap(XXX|θθθ). The resulting geometry is often quite complicated as the effects of
different parameters cannot be separated and the Fisher information matrix is relatively dense. Re-
cently Girolami and Calderhead (2011) have applied this in a Bayesian settingas a method to speed
up Hamiltonian Monte Carlo samplers. In this paper, only the simpler geometry of the VB ap-
proximating distributionsq(θθθ|ξξξ) is used. Because the approximations are often chosen to minimise
dependencies between different parametersθθθ, the resulting Fisher information matrix with respect
to the variational parametersξξξ will be mostly diagonal and hence easy to work with.

The rest of the paper is organised as follows. Section 2 introduces the background in varia-
tional Bayes and information geometry. The proposed approximate Riemannian conjugate gradient
learning algorithm is introduced in Section 3. The method is demonstrated in threecase studies:
a Gaussian mixture model, a nonlinear state-space model and a nonlinear factor analysis model in
Secs. 4, 5 and 6, respectively. We end with discussion in Section 7.

1. This paper is an extended version of the earlier conference paper (Honkela et al., 2008).
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2. Background

The approximate Riemannian conjugate gradient learning algorithm follows very naturally from an
optimisation view of variational Bayes and the Riemannian geometry of probabilitydistributions in
information geometry. We will start with a brief introduction to both of these techniques separately.

2.1 Variational Bayes

Variational Bayesian (VB) learning (Jordan et al., 1999; Ghahramani and Beal, 2001; Bishop, 2006)
is based on approximating the posterior distributionp(θθθ|XXX) with a tractable approximationq(θθθ|ξξξ),
whereXXX is the data,θθθ are the unobserved variables (including both the parameters of the model and
the latent variables), andξξξ are the variational parameters of the approximation (such as the mean
and the variance of a Gaussian approximation). The approximation is fitted byminimising the free
energy

F (q(θθθ|ξξξ)) = Eq(θθθ|ξξξ)

{

log
q(θθθ|ξξξ)
p(XXX,θθθ)

}

= DKL (q(θθθ|ξξξ)‖p(θθθ|XXX))− logp(XXX). (1)

This is equivalent to minimising the Kullback-Leibler (KL) divergenceDKL (q‖p) betweenq and
p (Bishop, 2006). The negative free energy also provides a lower bound on the marginal log-
likelihood, that is, logp(XXX)≥−F (q(θθθ|ξξξ)) due to non-negativity of the KL-divergence.

Typical classes of approximations used in VB include factorising approximations, most often
starting from assuming the latent variables and parameters to be independent and extending to the
fully factorising mean-field approximation, and approximations having a fixedfunctional form, such
as a Gaussian.

In the former case, learning is typically performed using the variational Bayesian expectation
maximisation (VB EM) algorithm which alternates between minimising the free energywith respect
to the distribution of the latent variables (VB-E step) and the distribution of the parameters (VB-M
step) (Bishop, 2006).

In the case of approximation with a fixed functional form, EM-like updates are usually not avail-
able and generic gradient-based optimisation methods have to be used (see,e.g., Opper and Archam-
beau, 2009). This is often very challenging in practice, as the problems are quite high dimensional
and the lack of specific knowledge of interactions of the parameters that define the geometry of
the problem can seriously hinder generic optimisation tools. Such methods have nevertheless been
applied to a number of models that are not in the conjugate exponential family, such as multi-layer
perceptron (MLP) networks (Barber and Bishop, 1998), kernel classifiers (Seeger, 2000), nonlin-
ear factor analysis (Lappalainen and Honkela, 2000; Honkela and Valpola, 2005; Honkela et al.,
2007) and nonlinear dynamical models (Valpola and Karhunen, 2002; Archambeau et al., 2008),
non-conjugate variance models (Valpola et al., 2004; Raiko et al., 2007) as well as Gaussian process
latent variable models (Titsias and Lawrence, 2010). Optimisation methods haveincluded the con-
jugate gradient algorithm and heuristic speed-ups, but the use of a Riemannian conjugate gradient
algorithm for VB as proposed in this paper is novel.

In practice, convergence of conjugate gradient algorithms in latent variable models is often
really slow. To get an intuition of why this is the case, let us consider a generic latent variable
model with latent variables that connect to one observation each and parameters that connect to a
number of observations. As we increase the number of observations, thegradient with respect to the
parameters grows linearly, whereas the gradient with respect to the latentvariables stays constant.

3237



HONKELA , RAIKO , KUUSELA, TORNIO AND KARHUNEN

As a result, with a reasonable number of observations, conjugate gradient algorithms are forced to
take very small steps to avoid overshooting the parameters, and as a resultthe latent variables are
hardly changed at all. The Riemannian gradient provides an automatic remedy to this problem by
properly scaling the gradient.

2.2 Information Geometry and Optimisation on Riemannian Manifolds

When applying a generic optimisation algorithm to a problem such as optimising the free energy
(1), a lot of background information on the geometry of the problem is lost. The parametersξξξ of
q(θθθ|ξξξ) can have different roles as location, shape, and scale parameters, and their effect is influenced
by other parameters. This implies that the geometry of the problem is in most cases not Euclidean.

Riemannian geometry studies smooth manifolds{M |ξξξ} that are locally diffeomorphic withRn.
The manifold has an inner product〈·, ·〉k defined at every pointξξξk of the manifold. The inner product
is defined for vectors in tangent spaceTξξξk

of M atξξξk as

〈x,y〉k = xTG(ξξξk)y = ∑
i, j

xiy jgi j (ξξξk), (2)

whereG(ξξξk) is the Riemannian metric tensor atξξξk. Most Riemannian manifolds are curved, with
geodesics as the counterparts of Euclidean straight lines as length-minimisingcurves between two
points (Murray and Rice, 1993).

Information geometry studies the Riemannian geometric structure of the manifold of probability
distributions (Amari, 1985). It has been applied to derive efficient natural gradient learning rules
for maximum likelihood algorithms in independent component analysis (ICA) and multi-layer per-
ceptron (MLP) networks (Amari, 1998). The approach has been usedin several other problems as
well, for example in analysing the properties of an on-line variational Bayesian EM method (Sato,
2001).

For probability distributions, the most natural metric is given by the Fisher information

gi j (ξξξ) = Ii j (ξξξ) = E

{

∂ logq(θθθ|ξξξ)
∂ξi

∂ logq(θθθ|ξξξ)
∂ξ j

}

= E

{

−∂2 logq(θθθ|ξξξ)
∂ξi∂ξ j

}

. (3)

Here the last equality is valid ifq(θθθ|ξξξ) is twice continuously differentiable (Murray and Rice, 1993).
Fisher information is a unique metric for probability distributions in the sense thatit is the only
metric which is invariant with respect to transformations to sufficient statistics (Amari and Nagaoka,
2000).

In a Riemannian space, the direction of steepest ascent of a functionF (ξξξ) is given by the
Riemannian or natural gradient

∇̃F (ξξξ) = G−1(ξξξ)∇F (ξξξ) (4)

instead of the regular gradient∇F (ξξξ). This can be verified by finding the maximum ofF (ξξξ+∆ξξξ)
subject to the constraint||∆ξξξ||2ξξξ = 〈∆ξξξ,∆ξξξ〉ξξξ = ∆ξξξT G(ξξξ)∆ξξξ < ε2. The relation between gradient and
Riemannian gradient is illustrated in Figure 1.

This choice of geometry between Euclidean and Riemannian is, however, independent of the
choice of the optimisation algorithm, and recently several authors have combined conjugate gradient
methods with the Riemannian or natural gradient (Smith, 1993; González and Dorronsoro, 2008;
Honkela et al., 2008). In principle this can be achieved by replacing all vector space operations in
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Figure 1: Gradient and Riemannian gradient directions are shown for themean of distributionq.
VB learning with a diagonal covariance is applied to the posteriorp(x,y) ∝ exp[−9(xy−
1)2− x2− y2]. The Riemannian gradient strengthens the updates in the directions where
the uncertainty is large.

the conjugate gradient algorithm with their Riemannian counterparts: Riemannian inner products
and norms, parallel transport of gradient vectors between differenttangent spaces as well as line
searches and steps along geodesics in the Riemannian space. In practical algorithms some of these
can be approximated by their flat-space counterparts. We shall apply the approximate Riemannian
conjugate gradient (RCG) method which implements Riemannian (natural) gradients, inner products
and norms but uses flat-space approximations of the others as our optimisation algorithm of choice
throughout the paper. As shown in Appendix A, these approximations do not affect the asymptotic
convergence properties of the algorithm. The difference between gradient and conjugate gradient
methods is illustrated in Figure 2.

In this paper we propose using the Riemannian structure of the distributionsq(θθθ|ξξξ) to derive
more efficient algorithms for approximate inference and especially VB usingapproximations with
a fixed functional form. This differs from the traditional natural gradient learning by Amari (1998)
which uses the Riemannian structure of the predictive distributionp(XXX|θθθ). The proposed method
can be used to jointly optimise all the parametersξξξ of the approximationq(θθθ|ξξξ), or in conjunction
with VB EM for some parameters.
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p
gradient
conjugate gradient

Figure 2: Gradient and conjugate gradient updates are applied to findingthe maximum of the pos-
terior p(x,y) ∝ exp[−9(xy−1)2−x2−y2]. The step sizes that maximisep are used. Note
that the first steps are the same, but following gradient updates are orthogonal whereas
conjugate gradient finds a much better direction.

2.3 Information Geometry of VB EM

The optimal VB approximation has an information-geometric interpretation as a specific projection
of the true posterior to a manifold of tractable distributions (Tanaka, 2001).This interpretation is
equally valid for all optimisation methods.

Amari (1995) has also presented the geometric interpretation of the EM algorithm as alternating
projections for E- and M-steps. This asymmetric view does not directly generalise to the VB EM
method when used to infer distributions over all parameters, because VB EMis symmetric with
respect to different parameters.

By embedding the VB-E step update within the VB-M step with point estimates and consid-
ering the resulting update, the VB EM algorithm for conjugate exponential family models can be
interpreted as a natural gradient method (Sato, 2001). It therefore implicitly optimally utilises the
Riemannian geometric structure ofq(θθθ|ξξξ) (Amari, 1998). Nevertheless, the EM-based methods are
prone to slow convergence, especially under low noise, even though moreelaborate optimisation
schemes can speed up their convergence somewhat. It is worth pointing out that this correspon-
dence of VB EM is with the regular natural gradient algorithm, not Riemannian(natural) conjugate
gradients as proposed in this paper.

3. Approximate Riemannian Conjugate Gradient Learning for Fixed-Form VB

Given a fixed-form approximationq(θθθ|ξξξ) and the free energyF (q(θθθ|ξξξ)), it is possible to use stan-
dard gradient-based optimisation techniques to minimise the free energy with respect toξξξ. We will
use VB EM updates for some variational parametersξξξEM and RCG for othersξξξRCG.

Instead of a regular Euclidean gradient algorithm, we optimise the free energy using a conjugate
gradient algorithm that is adapted to Riemannian space by using Riemannian inner products and
norms instead of Euclidean ones. Steps are still taken along Euclidean straight lines and the step
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length is determined using a line search. We call this the (approximate) Riemannian conjugate
gradient (RCG) algorithm.

Our RCG is an approximation of a true Riemannian conjugate gradient algorithm(Smith, 1993),
in which the steps are taken along geodesic curves and tangent vectors evaluated at different points
are transformed to the same tangent space using parallel transport alonga geodesic. For small step
sizes and geometries which are locally close to Euclidean, the approximations that we have made
still retain many of the benefits of the exact algorithm while greatly simplifying the computations.
Edelman et al. (1998) showed that near the solution Riemannian conjugate gradient method differs
from the flat space version of conjugate gradient only by third order terms, and therefore both
algorithms converge quadratically near the optimum. This convergence property is demonstrated in
detail for our approximation in Appendix A.

The search direction for the RCG method is given by

pk =−g̃k+βpk−1,

whereg̃k = ∇̃F (ξξξ) is the Riemannian gradient of Equation (4). The coefficientβ is evaluated using
the Polak-Ribíere formula (Nocedal, 1992; Smith, 1993; Edelman et al., 1998)

β =
〈g̃k, g̃k− g̃k−1〉k
||g̃k−1||2k−1

, (5)

where||g̃k||2k = 〈g̃k, g̃k〉k is the squared Riemannian norm ofg̃k in the tangent space whereg̃k is
defined, and〈x,y〉k denotes the Riemannian inner product of Equation (2) in the same tangent
space.

We also apply a Riemannian version of the Powell-Beale restart method (Powell, 1977): the
search direction is reset to the negative gradient direction if

|〈g̃k−1, g̃k〉k| ≥ 0.2||g̃k||2k. (6)

Compared to the traditional conjugate gradient, the Equations (5) and (6) are similar with just the
dot products of the vectors replaced with Riemannian inner products.

Once the search direction is determined, we use standard line search to findthe final update. Be-
cause the evaluation of the objective function is computationally costly, it is worthwhile to consider
line search methods that stop earlier rather than wasting many function evaluations on fine tuning
the parameters.

An example implementation of the algorithm is summarised in Algorithm 1. The inputs include
the probabilistic modelp, the form of used posterior approximationq, the initialisations for the
variational parametersξξξ, and the data setXXX which is implicitly used in the objective functionF .
The algorithm returns the variational parametersξξξ that solve the learning and inference problem of
q(θθθ|ξξξ).

3.1 Computational Considerations

The RCG method is efficient as the geometry is defined by the approximationq(θθθ|ξξξ) and not the full
model p(XXX|θθθ) as in typical natural gradient methods. If the approximationq(θθθ|ξξξ) is chosen such
that disjoint groups of variables are independent, that is,

q(θθθ|ξξξ) = ∏
i

qi(θθθi |ξξξi),
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Algorithm 1 An outline of an example Riemannian conjugate gradient algorithm for fixed-form
VB. The presented method of integrating VB EM updates is only one of many possible alternatives.

function VB-RCG(p,q,ξξξ0 = (ξξξEM
0 ,ξξξRCG

0 ),XXX)
p0 = 0, g̃0 = 1
for k= 1,2, . . . do ⊲ Repeat until convergence

for ξξξ(i) ∈ ξξξEM = (ξξξ(1), . . . ,ξξξ(N)) do
ξξξ(i)k ← argminξξξ(i) F (q(θθθ|ξξξ(1)k , . . . ,ξξξ(i−1)

k ,ξξξ(i),ξξξ(i+1)
k−1 , . . . ,ξξξ(N)

k−1,ξξξ
RCG
k−1 ))

⊲ VB EM for some parameters

g̃k←G−1(ξξξRCG
k−1 )∇ξξξRCG

k−1
F (q(θθθ|ξξξEM

k ,ξξξRCG
k−1 )) ⊲ Riemannian gradient

β← 〈g̃k,g̃k−g̃k−1〉k
||g̃k−1||2k−1

⊲ Polak-Ribíere formula

pk←−g̃k+βpk−1 ⊲ Update direction
α← argminαF (q(θθθ|ξξξEM

k ,ξξξRCG
k−1 +αpk)) ⊲ Line search

ξξξRCG
k ← ξξξRCG

k−1 +αpk

the computation of the Riemannian gradient is simplified as the Fisher information matrix becomes
block-diagonal. The required matrix operations can be performed very efficiently because

diag(A1, . . . ,An)
−1 = diag(A−1

1 , . . . ,A−1
n ).

The dimensionality of the problem space is often so high that working with the full matrix would
not be feasible.

All vector operations needed in the RCG algorithm are of the form

〈g̃k, g̃l 〉m = 〈G−1
k gk,G−1

l gl 〉m = gT
k G−T

k GmG−1
l gl (7)

for some iterate indicesk, l ,m. This is further simplified in casem= k whereG−T
k Gm = I and in

casem= l whereGmG−1
l = I. Depending on the structure of the Fisher information matrix, the

operations can be performed as a series of solving linear systems and matrixproducts to exploit the
sparsity. A practical example of this in the case of a Gaussian approximation ispresented in Section
3.2.1.

Finally, it is worth to note that when updating only a subset of variational parametersξξξ at a time,
many terms inF are constant and can be disregarded when finding a minimum.

3.2 Gaussian Approximation

Most obvious applications of the Riemannian gradient method are with a Gaussian approximation.
In that case, it is most convenient to use a simple fixed-point update rule for the covariance and a
Riemannian conjugate gradient update only for the mean.

Let us consider the optimisation of the free energy (1) when the approximation q(θθθ|ξξξ) is a
multivariate Gaussian. The free energy can be decomposed as

F (q(θθθ|ξξξ)) = Eq(θθθ|ξξξ)

{

log
q(θθθ|ξξξ)
p(XXX,θθθ)

}

= Eq(θθθ|ξξξ) {logq(θθθ|ξξξ)}+Eq(θθθ|ξξξ) {− logp(XXX,θθθ)} .
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The former term is the negative entropy of the approximation, which in the case of a multivariate
Gaussianq(θθθ|µµµ,ΣΣΣ) with mean vectorµµµ and covariance matrixΣΣΣ is

Eq(θθθ|ξξξ) {logq(θθθ|ξξξ)}=−1
2

logdet(2πeΣΣΣ).

Straightforward differentiation yields a fixed point update rule for the covariance (Lappalainen and
Miskin, 2000; Opper and Archambeau, 2009):

ΣΣΣ−1 =−2∇ΣΣΣEq(θθθ|ξξξ) {logp(XXX,θθθ)} , (8)

where∇ΣΣΣ denotes the gradient with respect toΣΣΣ. If the covariance matrix is assumed (block) diag-
onal, the same update rule applies for the (block) diagonal terms.

3.2.1 COMPUTING THE RIEMANNIAN METRIC TENSOR

For the univariate Gaussian distribution parametrised by mean and varianceq(θ|µ,v) = N (θ|µ,v),
we have

logq(θ|µ,v) =− 1
2v

(θ−µ)2− 1
2

log(v)− 1
2

log(2π).

Furthermore,

E

{

−∂2 logq(θ|µ,v)
∂µ2

}

=
1
v
, (9)

E

{

−∂2 logq(θ|µ,v)
∂v∂µ

}

= 0, and (10)

E

{

−∂2 logq(θ|µ,v)
∂v2

}

=
1

2v2 . (11)

The vanishing of the cross term between the mean and the variance furthersupports using the
simpler fixed point rule (8) to update the variances.

(a) (b) (c) (d)

Figure 3: The absolute change in the mean of the Gaussian in figures (a) and (b) and the absolute
change in the variance of the Gaussian in figures (c) and (d) is the same. However, the
relative effect is much larger when the variance is small as in figures (a) and (c) compared
to the case when the variance is high as in figures (b) and (d) (Valpola, 2000).

In the case of univariate Gaussian distribution, the Riemannian gradient has a rather straightfor-
ward intuitive interpretation, which is illustrated in Figure 3. Compared to conventional gradient,
Riemannian gradient compensates for the fact that changing the parameters of a Gaussian with small
variance has much more pronounced effects than when the variance is large.
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In case of multivariate Gaussian distribution parametrised by mean and covarianceq(θθθ|µµµ,ΣΣΣ) =
N (θθθ|µµµ,ΣΣΣ), the elements of the Fisher information matrix corresponding to the mean are simply

E

{

−∂2 logq(θθθ|µµµ,ΣΣΣ)
∂µµµT∂µµµ

}

=ΣΣΣ−1. (12)

The Fisher information matrix is thus equal to the precision matrixGk =ΛΛΛk = ΣΣΣ−1
k .

Typically the covariance matrixΣΣΣ is assumed to have a simple structure that makes working with
it very efficient. Possible structures for a covariance matrix include full, diagonal, block diagonal,
a Gaussian Markov random field with a specific structure, and a factor analysis covarianceΣΣΣ =
D + ∑k

i=1 vvT , whereD is a diagonal matrix, orΣΣΣ−1 = K−1 + diag(v) with a fixed K and only
N parameters inv for anN-variate Gaussian (Opper and Archambeau, 2009). It is also possible to
derive the geometry for the covariance of a multivariate Gaussian. The result does, however, depend
on the specific structure of the covariance.

Assuming a structured Gaussian Markov random field approximation with a tree or blocked
tree structure, the precision matrix will be sparse with a simple structure. This allows efficient
computation of the operations needed in Equation (7).ΛΛΛ−1

l gl (and correspondingly fork) can be
computed by solving the linear systemΛΛΛl x = gl , which can be done inO(N) time for N variables
using a propagation algorithm in the tree. For a blocked tree formed ofN/n blocks of sizen, the
complexity isO(n2N). Examples of such algorithms for chains are given in Golub and Loan (1996),
but a general tree can be handled analogously. The complexity of multiplication byΛΛΛ is similar.

Examples of Gaussian Markov random fields with this structure can be easilyfound in time
series models, where the approximation for the state sequenceSSS= (s(1), . . . ,s(T)) is typically either
a single “blocked” chain

q(SSS) =
T

∏
t=2

q(s(t)|s(t−1))q(s(1))

or a product of independent chains

q(SSS) = ∏
i

[

q(si(1))
T

∏
t=2

q(si(t)|si(t−1))

]

. (13)

In a d dimensional model of lengthT, the time complexity of the Riemannian vector operations in
RCG isO(d3T) for the former andO(dT) for the latter.

4. Case Study: Mixture of Gaussians

As the first case study, we consider the mixture-of-Gaussians (MoG) model as was done by Kuusela
et al. (2009). In this case, we applied the RCG also for variables with a non-Gaussian approximation.
Furthermore, the conjugate-exponential nature of the MoG model allows direct comparison with VB
EM.

4.1 The Mixture-of-Gaussians Model

We consider a finite mixture ofK Gaussians (Attias, 2000; Bishop, 2006)

p(x|πππ,µµµ,ΛΛΛ) =
K

∑
k=1

πkN (x|µµµk,ΛΛΛk),
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The model p(X|Z,µµµ,ΛΛΛ) = ∏N
n=1 ∏K

k=1N (xn|µµµk,ΛΛΛ−1
k )znk

p(Z|πππ) = ∏N
n=1 ∏K

k=1 πznk
k

Key variables Z = (znk) ,θθθ = (µµµk,ΛΛΛk,πππ)
The approximation q(Z,θθθ) = q(Z)q(θθθ)
The update algorithm Joint RCG updates forZ and means ofµµµk, fixed point updates for vari-

ances ofµµµk, VB EM updates for the rest

Table 1: Summary of the mixture-of-Gaussians model

wherex is aD-dimensional random vector,πππ = [π1 · · ·πK ]
T are the mixing coefficients, andµµµk and

ΛΛΛk are the mean vector and the precision matrix of thekth Gaussian component, respectively.
In the case of the MoG model, the binary latent variablesZ denote which one of theK Gaussian

components has generated a particular observationxn with znk = 1 denoting the component respon-
sible for generating the observed data pointxn. Let N denote the total number of observed data
points.

Given the mixing coefficientsπππ, the probability distribution over the latent variables is given by

p(Z|πππ) =
N

∏
n=1

K

∏
k=1

πznk
k .

The mixing coefficients have a conjugate Dirichlet prior

p(πππ) = Dir(πππ|ααα0),

whereααα0 = [α0, . . . ,α0]
T .

Similarly, the likelihood can be written as

p(X|Z,µµµ,ΛΛΛ) =
N

∏
n=1

K

∏
k=1

N (xn|µµµk,ΛΛΛ−1
k )znk.

In this case, the conjugate prior for the component parametersµµµ andΛΛΛ is given by the Gaussian-
Wishart distribution

p(µµµ,ΛΛΛ) = p(µµµ|ΛΛΛ)p(ΛΛΛ) =
K

∏
k=1

N (µµµk|m0,(β0ΛΛΛk)
−1)W (ΛΛΛk|W0,ν0),

where the Wishart distribution is defined up to a normalising constant by the equation

W (ΛΛΛ|W,ν) ∝ |ΛΛΛ|(ν−D−1)/2exp

(

−1
2

Tr(W−1ΛΛΛ)
)

.

The joint distribution over all the random variables of the model is then givenby

p(X,Z,πππ,µµµ,ΛΛΛ) = p(X|Z,µµµ,ΛΛΛ)p(Z|πππ)p(πππ)p(µµµ|ΛΛΛ)p(ΛΛΛ).

This resulting model can be illustrated with the graphical model shown in Figure4.
We now make the factorising approximation

q(Z,πππ,µµµ,ΛΛΛ) = q(Z)q(πππ,µµµ,ΛΛΛ),
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Figure 4: A graphical model representing the MoG model (Attias, 2000; Bishop, 2006), where the
hyperparameters have been omitted for clarity. The observed dataX are marked with a
shaded circle. The rectangular plates denote the repetition ofN observationsxn along
with corresponding latent variableszn, and of the parameters ofK mixture components.

which leads to an update rule forq(Z) (VB-E step) and subsequently an update rule forq(πππ,µµµ,ΛΛΛ)
(VB-M step). The resulting approximate posterior distributions are

q(Z) =
N

∏
n=1

K

∏
k=1

rznk
nk (14)

and

q(πππ,µµµ,ΛΛΛ) = q(πππ)q(µµµ,ΛΛΛ) = q(πππ)
K

∏
k=1

q(µµµk,ΛΛΛk),

where
q(πππ) = Dir(πππ|ααα) (15)

and
q(µµµk,ΛΛΛk) =N (µµµk|mk,(βkΛΛΛk)

−1)W (ΛΛΛk|Wk,νk). (16)

The derivations of the VB EM and RCG learning algorithms for the MoG model are presented
in Appendix B.

4.2 Experiments

The hyperparameters are set to the following values for all the experiments: α0 = 1, β0 = 1,ν0 = D,
W0 =

4
DI andm0 = 0. These values can be interpreted to describe our prior beliefs of the model

when we anticipate having Gaussian components near the origin but are fairly uncertain about the
number of the components.

The maximum number of components is set toK = 8 unless otherwise mentioned with each
component having a randomly generated initial meanmk drawn from a Gaussian distribution with
zero mean and covariance 0.16I. Other distribution parameters are initially set to the following
values: αk = 1, βk = 10, νk = D and Wk = 4

DI for all k. The Powell-Beale restart scheme of
Equation (6) is not used. Instead, the search direction is reset to the negative gradient direction
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after
√

n iterations, wheren is the number of parameters updated with the gradient method. The
optimisation is assumed to have converged when the improvement in free energy |F t −F t−1| < ε
for two consecutive iterations withε being separately specified for each of the experiments below.

It should be noted that this convergence criterion favours methods suchas VB EM which typi-
cally takes more of cheaper and smaller steps, while the Riemannian gradient algorithm takes fewer
larger steps that are computationally more demanding and take longer to reachthe preset improve-
ment threshold.

Because different initial means can produce significantly different results in terms of the re-
quired CPU time and achieved final free energy, all the experiments are repeated 30 times with
different initialisations.

The artificial data set used to compare the different algorithms in learning theMoG model was
drawn from a mixture of 5 spherical two-dimensional Gaussians with equalweights. The mean
of the first component is at the origin while the means of the others are(±R,±R). The constant
R= 0.3 unless otherwise mentioned and the covariance of all the components is 0.03I.

When different gradient-based algorithms are compared using the artificial data containing
N = 500 data points, the results shown in Figure 5 are obtained. It can be seenthat the stan-
dard gradient descent and conjugate gradient (CG) algorithms have problems locating even a decent
optimum within a reasonable time. Clearly the convergence criterion, which wasset toε = 10−7N,
is too lax for these algorithms as the simulations are terminated before convergence to a good so-
lution. Using the Riemannian gradient (RG) and further RCG radically improves the performance.
Based on the curves, even the standard CG algorithm is more than 10 times slower than RCG. This
experiment was conducted using a fairly small number of observations, a lax convergence criterion
and the maximum number of componentsK = 5 in order to allow the standard gradient to finish in
a reasonable time.

We also considered the L-BFGS algorithm (Byrd et al., 1995; Carbonetto,2007) as a higher or-
der Euclidean algorithm. L-BFGS is a limited-memory version of the popular quasi-Newton BFGS
algorithm. It can be seen as a compromise between the fast converging butmemory-intensive quasi-
Newton methods and the less efficient conjugate gradient methods better suited for medium- to
large-scale problems. The degree of this compromise is controlled by the memory length parameter
m which was set tom= 20 in Figure 5. It was found out that, regardless of the value ofm, the per-
formance of L-BFGS was very similar to CG with the small deviations explained bythe differences
in the line search methods employed by the algorithms. It also turned out that theline search sub-
routine of the L-BFGS implementation had a tendency to converge prematurely toa poor solution.
In order to circumvent this, the convergence criterion of the L-BFGS hadto be tightened by a factor
of 10−9 compared to the gradient-based algorithms.

We next compare RCG, RG and VB EM using different values ofR. The number of observations
was increased toN= 1000 and the convergence criterion was set toε= 10−12N in order to maximise
the quality of the optima found. Figure 6 shows the median CPU time required for convergence for
the different algorithms in 30 repeated experiments. It can be seen that withsmall values ofR, RCG
outperforms VB EM, while with large values ofR, VB EM performs slightly better. This means
that, at least in terms of this experiment, RCG performs better than VB EM when the latent variables
are difficult to infer from the data.

Given the discussion of Section 2.3, it is not surprising to note that both VB EM and RG perform
qualitatively in a fairly similar manner in the experiment of Figure 6. It should especially be noted
that both methods suffer from significant slowdowns near the values ofR= 0.2 andR= 0.325. On
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Figure 5: Convergence curves of gradient-based algorithms using the MoG model for artificial data
with R= 0.3. The algorithms compared are the standard gradient descent, the conjugate
gradient (CG), the Riemannian gradient (RG) and the Riemannian conjugategradient
(RCG) methods as well as the limited-memory BFGS (L-BFGS) algorithm. The curves
shown are medians of 30 simulations drawn up to the median termination time. The
smaller marks denote 25% and 75% quantiles of the termination time in the horizontal
direction and the corresponding quantiles of the free energy at the mediantermination
time in the vertical direction. Note that the time scale is logarithmic.

the other hand, the use of conjugate directions in the Riemannian space seemsto result in a fairly
uniform performance across all values ofR.

There is some variation in the quality of the optima the different methods converge to. This is
illustrated in Figure 7 for RCG and VB EM. There is no evidence for either algorithm consistently
producing better results than the other. The only outlier in this data is withR= 0.225 where VB EM
is the only algorithm to discover the global optimum. This is by no means typical, andwith other
data sets we have seen RCG sometimes consistently finding better optima. Based on the figure,
RCG seems slightly more sensitive to local optima, but the result is not qualitatively different from
VB EM which, to some extent, also suffers from the same problem.

Although the time complexity of one step of each of the compared algorithms is linearin the
number of samples, the algorithms nevertheless perform differently as the number of samples in-
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Figure 6: Comparison of VB EM with the Riemannian gradient (RG) and the Riemannian conjugate
gradient (RCG) methods using the MoG model with the artificial data. The curves show
the median CPU time required for convergence as a function ofR. VB EM slows down
significantly at the critical overlap ofR≈ 0.2, while RCG is almost unaffected. A similar
slowdown also affects RG implying that the use of conjugate directions contributes to the
nearly uniform running time of RCG.

creases. To see this, we setε = 10−8N and probed a wide range of values ofN. The results are
illustrated in Figure 8 which shows that VB EM slows down faster than linearly as the number
of samples increases. The most likely reason for this behaviour is that the posterior will be more
peaked when the number of observations is large and this slows down the alternating VB EM it-
eration. The same phenomenon also affects RCG, but the effect is much stronger in VB EM. The
results suggest that especially for large data sets, it can be worthwhile to consider alternatives to
basic batch VB EM, such as on-line algorithms (Sato, 2001) or gradient-based methods.
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Figure 7: Final free energy value as a function of running time in the criticalparameter range in the
MoG experiment with varyingR. Both RCG and VB EM sometimes fail to converge to
the global optimum. Interestingly, there usually is no correlation between the quality of
the solution and convergence time.
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Figure 8: Median convergence times of 30 simulations of the MoG model on artificial data as a
function of the number of observationsN with VB EM and the Riemannian conjugate
gradient (RCG) algorithms. The smaller marks indicate 25% and 75% quantiles.

The model x(t) = f(s(t),θθθf)+n(t)
s(t) = s(t−1)+g(s(t−1),θθθg)+m(t)

Key variables θθθSSS= (s(t)) ,θθθθθθ = (θθθf,θθθg,vm,vn)
The approximation q(θθθSSS,θθθθθθ) = q(θθθSSS)q(θθθθθθ), whereq(θθθθθθ) is Gaussian with diagonal covari-

ance andq(θθθSSS) Gaussian with tridiagonal precision (see text)
The update algorithm Joint RCG updates for the means ofθθθSSS,θθθf,θθθg, fixed point updates for

their covariances, VB EM updates for the rest

Table 2: Summary of the nonlinear state-space model

5. Case Study: Nonlinear State-Space Models

As the second case study, we consider the nonlinear state-space model (NSSM) introduced by
Valpola and Karhunen (2002). The model is specified by the generativemodel

x(t) = f(s(t),θθθf)+n(t), (17)

s(t) = s(t−1)+g(s(t−1),θθθg)+m(t), (18)
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wheret is time,x(t) are the observations, ands(t) are the hidden states. The observation mapping
f and the dynamical mappingg are nonlinear and they are modelled with multi-layer perceptron
(MLP) networks whose weight matrices are included inθθθf andθθθg. The observation noise vectorn
and process noise vectorm are assumed Gaussian with zero mean and covariances diag(exp(2vn))
and diag(exp(2vm)). The latent statess(t) are commonly denoted byθθθSSS. The model parameters
include both the weights of the MLP networks and a number of hyperparameters. The posterior
approximation of these parameters is a Gaussian with a diagonal covariancematrix. The posterior
approximation of the statesq(θθθSSS|ξξξSSS) is a Gaussian Markov random field with a correlation between
the corresponding components of subsequent state vectorssj(t) andsj(t−1), as in Equation (13).
This is a realistic minimum assumption for modelling the dependence of the state vectors s(t) and
s(t−1) (Valpola and Karhunen, 2002). Omitted details of the model are presented inAppendix C
and a summary is given in Table 2.

Because of the nonlinearities the model is not in the conjugate exponential family, and the
standard VB learning methods are only applicable to hyperparameters but not to the latent states
or weights of the MLPs. The free energy (1) can nevertheless be evaluated by linearising the MLP
networksf andg (Honkela and Valpola, 2005; Honkela et al., 2007). This allows evaluatingthe
gradient with respect toξξξSSS, ξξξf, andξξξg and using a gradient based optimiser to adapt the parameters.
Combining Equations (4) and (12), the Riemannian gradient for the mean elements is given by

∇̃µµµqF (ξξξ) = ΣΣΣq∇µµµqF (ξξξ),

whereµµµq is the mean of the variational approximationq(θθθ|ξξξ) andΣΣΣq is the corresponding covariance.
The covariance matrix of the model parameters is diagonal while the inverse covariance matrix of
the latent statess(t) is block-diagonal with tridiagonal blocks. This implies that all computations
with these can be done in linear time with respect to the number of the parameters.The covariances
are updated separately using a fixed-point update rule similar to (8) as described by Valpola and
Karhunen (2002). A complete derivation of the free energy of the modelis presented in Appendix C.

5.1 Experiments

We applied the method for learning nonlinear state-space models presented above to real world
speech data. Experiments were conducted with different data sizes to study the performance dif-
ferences between the algorithms. The data consisted of 21 dimensional mel-frequency log power
speech spectra of continuous human speech. This is a detailed representation of speech signals
similar to those often used in speech recognition. A segment of 100 samples corresponds to approx-
imately 0.8 seconds of speech. The task is to learn a nonlinear dynamical model for this data.

To study the performance differences between the Riemannian conjugate gradient (RCG) method,
standard Riemannian gradient (RG) method, standard conjugate gradient(CG) method and the
heuristic algorithm from Valpola and Karhunen (2002), the algorithms wereapplied to different
sized parts of the speech data set. Unfortunately a reasonable comparison with a VB EM algo-
rithm was impossible because an extended-Kalman-filter-based VB EM algorithm failed with the
nonlinear model.

The size of the data subsets varied between 200 and 500 samples. A five-dimensional state-space
was used. The MLP networks for the observation and dynamical mappingshad 20 hidden nodes.
Four different initialisations and two different segments of data of each size were used, resulting
in eight repetitions for each algorithm and data size. The results for different data segments of the
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same size were pooled together as the convergence times were in general very similar. An algorithm
was assumed to have converged when|F t −F t−1|< ε = (10−5N/80) for 5 consecutive iterations,
whereF t is the free energy at iterationt andN is the size of the data set. Alternatively, the iteration
was stopped after 24 hours even if it had not converged.

The MLP network is notoriously prone to local optima. Practically all our simulations converged
to local optima with different parameter estimates, but there were no statistically significant differ-
ences in the free energies corresponding to these optima attained by different algorithms (Wilcoxon
rank-sum test, 5 % significance level). In practice, the free energy values tend to have a very strong
correlation with predictive performance of the model (Honkela et al., 2007). There were still some
differences, and especially the RG algorithm with smaller data sizes often appeared to converge very
early to an extremely poor solution. These were filtered by removing results where the attained free
energy that was more than two RCG standard deviations worse than RCG average for the particular
data set. Thus all the used results are from runs converging to a roughlyequally good solution. The
results of one run where the heuristic algorithm diverged were also discarded from the analysis.

The results can be seen in Figure 9. The plain CG and RG methods were clearly slower than
others and the maximum runtime was reached by most CG and some RG runs. RCGwas clearly the
fastest algorithm with the heuristic method of Valpola and Karhunen (2002) between these extremes.
The observed differences are, save for a few exceptions mostly with smaller data sets, statistically
significant (Wilcoxon rank-sum test, 5 % significance level).

As a more realistic example, a larger data set of 1000 samples was used to traina seven-
dimensional state-space model. In this experiment both MLP networks of the NSSM had 30 hidden
nodes. The convergence criterion wasε = 10−6 and the maximum runtime was 72 hours. The per-
formances of the RCG, RG, CG methods and the heuristic algorithm were compared. The results
can be seen in Figure 10. The results show the convergence for five different initialisations with
markers at the end showing when the convergence was reached. It should be noted that the scale of
the CPU time axis is logarithmic.

RCG clearly outperformed the other algorithms in this experiment as well. In particular, both
RG and CG hit the maximum runtime in every run, and especially CG was nowherenear conver-
gence at this time. RCG also outperformed the heuristic algorithm (Valpola and Karhunen, 2002)
by a factor of more than 10.

6. Case Study: Nonlinear Factor Analysis

The model x(t) = f(s(t),θθθf)+n(t)
s(t) =N (0,diag(exp(2vs)))

Key variables SSS= (s(t)) ,θθθ = (θθθf,vs,vn)
The approximation q(SSS,θθθ)= q(SSS)q(θθθ), where bothq(θθθ) andq(SSS) are Gaussian with diagonal

covariances
The update algorithm Joint RCG updates for means ofSSS,θθθf, fixed point update for their covari-

ances, VB EM updates for the rest

Table 3: Summary of the nonlinear factor analysis model

As the final case study, the RCG and RG methods were implemented as extensions to the VB
nonlinear factor analysis (NFA) method (Lappalainen and Honkela, 2000; Honkela and Valpola,
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Figure 9: Convergence speed of the Riemannian conjugate gradient (RCG), the Riemannian gradi-
ent (RG) and the conjugate gradient (CG) methods as well as the heuristic algorithm (Old)
with different data sizes of the speech data set and the nonlinear state-space model. The
lines show median times with 25 % and 75 % quantiles shown by the smaller marks. The
times were limited to at most 24 hours, which was reached by a number of simulations.

2005; Honkela et al., 2007). NFA models the mapping between latent factorss(t) and observations
x(t) with an MLP as in Equation (17):

x(t) = f(s(t),θθθf)+n(t).

Instead of the dynamical model of Equation (18),s(t) has independent Gaussian priors with a unit
covariance. As NFA can be seen as a special case of NSSM with no dynamic mapping, the im-
plementation is straightforward. The model is summarised in Table 3. Complete derivation of the
model and a learning algorithm based on conjugate gradients is presented by Honkela et al. (2007).
The generalisation for Riemannian gradient is straightforward as the Fisher information matrix is
diagonal.

The RCG, RG and CG methods were applied for learning an NFA model for parts of the speech
data set, a different part of which was also used in the NSSM experiments.As the NFA model
cannot capture the dynamics of speech, the experiment aimed at finding a nonlinear embedding of
speech on a lower dimensional manifold. To stimulate this, we drew a suitable subset of samples
randomly from the full data set of 7860 samples, excluding any dynamical relations in the data.
Silent segments were excluded from the data.

We tested each algorithm for data sets ranging in size from 300 to 1000 samples, running 10
simulations with different random initialisations for every setting. The results are shown in Figure
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Figure 10: Comparison of the performance of the Riemannian conjugate gradient (RCG), the Rie-
mannian gradient (RG), the conjugate gradient (CG) methods and the heuristic algorithm
with the full speech data set of 1000 samples using the nonlinear state-space model. The
free energyF is plotted against computation time using a logarithmic time scale. The
tick marks show when simulations either converged or were terminated after 72hours.

11. RCG is again clearly superior to both RG and CG, but CG is now faster than RG. The observed
differences are statistically significant (Wilcoxon rank-sum test, 5 % significance level), except
between CG and RG for 300 samples.

7. Discussion

The proposed RCG algorithm combines two improvements over plain gradient optimisation: use
of Riemannian gradient and conjugate gradients. One interesting feature inthe experimental re-
sults is the relative performance of the conjugate gradient and Riemannian gradient algorithms that
implement only one of these. Conjugate gradient is faster than Riemannian gradient for NFA, but
the opposite is true for NSSM and MoG. Especially the latter differences arequite significant and
consistent across several different data sets. One obvious difference between the models is that
for NFA the Fisher information matrix is diagonal while for NSSM and MoG this is not the case.
This suggests that the Riemannian gradient approach may be the most useful when the metric is
more complex, although more careful analysis would be needed to properlyunderstand the effects
of different improvements.
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Figure 11: Convergence speed of the Riemannian conjugate gradient (RCG), the Riemannian gra-
dient (RG) and the conjugate gradient (CG) methods with different data sizes of the
speech dimensionality reduction data set with the nonlinear factor analysis model. The
lines show median times with 25 % and 75 % quantiles shown by the smaller marks.

As illustrated by the MoG example, the RCG algorithm can also be applied to conjugate-
exponential models to replace the more common VB EM algorithm. In practice, simpler and more
straightforward EM acceleration methods based on, for example, pattern search or adaptive over-
relaxation (see, e.g., Honkela et al., 2003; Salakhutdinov and Roweis, 2003) may still provide com-
parable or better results with less human effort. These methods are only applicable when EM itself
is applicable, though.

The experiments in this paper show that using even a greatly simplified variantof the Rieman-
nian conjugate gradient method for some variables is enough to acquire a large speedup. Consid-
ering univariate Gaussian distributions, the regular gradient is prone to overemphasise changes to
model variables with small posterior variance and underemphasise variables with large posterior
variance, as seen from Equations (9)–(11). The posterior varianceof latent variables is often much
larger than the posterior variance of model parameters and the Riemannian gradient takes this into
account in a very natural manner.

The Riemannian conjugate gradient method differs from Euclidean superlinear optimisation
methods such as quasi-Newton methods in that it uses higher-order information of the geometry of
the parameter space, but not of the function being optimised. These are essentially two independent
avenues for improvement: it would be possible, although complicated, to derive a Riemannian
quasi-Newton method. Our experiments clearly show that in these problems, aproper model of the
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geometry appears significantly more important than using higher-order information of the objective
function.

In this paper, we have presented a Riemannian conjugate gradient learning algorithm for fixed-
form variational Bayes. The RCG algorithm provides an efficient method for VB learning in models
that do not belong to the conjugate-exponential family as required by the standard variational EM
algorithm. For suitably structured approximations, the computational overhead from using Rieman-
nian gradients instead of conventional gradients is negligible. In practicalexamples, the Riemannian
gradient approach provided several orders of magnitude speedupsover conventional gradient algo-
rithms, thus making VB learning of these models practical on a much larger scale.

MATLAB code for all the models used in the case studies is available athttp://www.cis.
hut.fi/projects/bayes/software/ncg/ .
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Appendix A. Convergence of the Riemannian Conjugate Gradient Algorithm

The Riemannian conjugate gradient algorithm has similar superlinear convergence properties to the
Euclidean space conjugate gradient algorithm. Assuming the objectiveF (ξξξ) has continuous third
order derivatives and that there existm> 0,M such that the HessianH(ξξξ) satisfies

mxTx≤ xTH(ξξξ)x≤MxTx

for all ξξξ andx, the error decreases quadratically overN steps in anN-dimensional problem. Thus,
denoting the optimum byααα and the iterates byξξξi , we have (Edelman et al., 1998; Cohen, 1972)

||ααα−ξξξi+N|| ≤C||ααα−ξξξi ||2 (19)

in some neighbourhood ofααα.
We now show that the approximations in the RCG algorithm, namely ignoring the parallel trans-

ports and performing line searches along straight lines instead of geodesics, do not effect the con-
vergence rate of Equation (19).

Theorem 1 Assuming the objectiveF (ξξξ) has bounded derivatives for up to third order and that
the Fisher informationG(ξξξ) is smooth in a neighbourhood of the solution, the RCG algorithm
performing a line search along a straight line in the direction

pk =−g̃k+βpk−1,

whereg̃k is the Riemannian gradient and

β =
〈g̃k, g̃k− g̃k−1〉k
||g̃k−1||2k−1
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to find the sequence of iteratesξξξk shares the same convergence property of Equation (19) in some
ε-neighbourhood of the solution as the Riemannian conjugate gradient algorithm performing a line
search along a geodesic in the direction

p∗k =−g̃∗k +β∗τp∗k−1,

whereg̃k is the Riemannian gradient,τp∗k−1 is the vectorp∗k−1 after parallel transport to the starting
point of the new search and

β∗ =
〈g̃∗k, g̃∗k− τg̃∗k−1〉k∗
||g̃∗k−1||2(k−1)∗

,

where〈·, ·〉k∗ is the inner product atξξξ∗k, to find the sequence of iteratesξξξ∗k.

Proof Let us assume that the two algorithms are started atξξξk = ξξξ∗k and||ξξξk−ααα||< ε for someε > 0.
We show by induction oni thatpi−1 = p∗i−1+O(ε2) andξξξi = ξξξ∗i +O(ε2) for i ≥ k which is sufficient
to prove the theorem.

The base case is trivial asξξξk = ξξξ∗k andpk−1 = p∗k−1 = 0 at the start of the algorithm.
Assume now that the claim is valid fori = k, . . . ,K, and let us prove it fori = K + 1. From

Edelman et al. (1998) we know that

ξξξ(ε) = ξξξ(0)+ ε∆/||∆||+O(ε3),

τg̃(ε) = g̃+O(ε2),

whereξξξ(ε) is a geodesic in direction∆, τg̃(ε) is the parallel transport of̃g to ξξξ(ε). The norms of̃g
andp are also of the orderO(ε).

The assumptionξξξK = ξξξ∗K +O(ε2) implies that the gradients evaluated at these points satisfy
g̃K = g̃∗K +O(ε2). Furthermore,

〈x,y〉K∗ = xTG(ξξξ∗K)y = xT(G(ξξξK) + O(ε2))y = 〈x,y〉K + O(ε2||x||K||y||K).

Using the above asymptotics,

β∗ =
〈g̃∗K , g̃∗K− τg̃∗K−1〉K∗
||g̃∗K−1||2(K−1)∗

=
〈g̃K +O(ε2), g̃K− g̃K−1+O(ε2)〉K∗

||g̃K−1+O(ε2)||2(K−1)∗

= (1+O(ε))
〈g̃K, g̃K− g̃K−1〉K∗+O(ε3)

||g̃K−1||2(K−1)∗
= (1+O(ε))

〈g̃K, g̃K− g̃K−1〉K +O(ε3)

||g̃K−1||2(K−1)+O(ε3)

= (1+O(ε))

(

〈g̃K , g̃K− g̃K−1〉K
||g̃K−1||2(K−1)

+O(ε)

)

= β+O(ε).

Similarly we can find the difference in the search direction,

p∗K =−g̃∗K +β∗τp∗K−1 =−g̃K +β∗p∗K−1+O(ε2) =−g̃K +βpK−1+O(ε2)

= pK +O(ε2),

which completes the first part of the induction step.
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The corresponding step lengths,t∗ andt, also differ byO(ε). To show this, let us use the Taylor
expansion off about the optimumααα:

F (ξξξ) = F (ααα)+
1
2
(ξξξ−ααα)TH(ααα)(ξξξ−ααα)+O(ε3),

∇F (ξξξ) = H(ααα)(ξξξ−ααα)+O(ε2).

The line search finds the zero ofpK ·∇F (ξξξ) along the lineξξξ = ξξξK−1+ tpK , which yields

pT
KH(ααα)

[

(ξξξK−1+ tpK−ααα)+O(ε2)
]

= 0,

which can be solved to obtain

t =−pT
KH(ααα)(ξξξK−1−ααα)

pT
KH(ααα)pK

+O(ε),

where we have used the fact thatpT
KH(ααα)pK ≥m||pK ||2.

Correspondingly, the exact algorithm finds the zero along the geodesic fromξξξ∗K−1 in the direc-
tion p∗K of (τp∗K)

T∇F (ξξξ)

(τp∗K(t
∗||p∗K ||))TH(ααα)[ξξξ∗K−1(t

∗||p∗K ||)−ααα+O(ε2)] =

(p∗K +O(ε2))TH(ααα)[ξξξ∗K−1+ t∗p∗K−ααα+O(ε2)]+O(ε3) = 0,

whereξξξK−1(t∗||p∗K ||) is the geodesic starting fromξξξ∗K−1 in the directionp∗K , andτp∗K(t
∗||p∗K ||) is the

parallel transport ofp∗K along this geodesic. The solution of this equation yields

t∗ =−(p∗K +O(ε2))TH(ααα)[ξξξ∗K−1−ααα+O(ε3)]

(p∗K +O(ε2))TH(ααα)p∗K
+O(ε)

=−(pK +O(ε2))TH(ααα)[ξξξK−1−ααα+O(ε2)]

(pK +O(ε2))TH(ααα)[pK +O(ε2)]
+O(ε)

=−(1+O(ε))
pT

KH(ααα)[ξξξK−1−ααα]+O(ε3)

pT
KH(ααα)pK

+O(ε) = t +O(ε).

Now

ξξξ∗K = ξξξ∗K−1(t
∗||p∗K ||) = ξξξ∗K−1+ t∗p∗K +O(ε3)

= ξξξK−1+O(ε2)+ [t +O(ε)][pK +O(ε2)]+O(ε3) = ξξξK +O(ε2),

which completes the proof.

Appendix B. Derivations of the Mixture-of-Gaussians Model

In this section we present details of the variational MoG model, including necessary EM updates,
the free energy and the metric tensor for the RCG algorithm.
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B.1 VB EM for the Mixture-of-Gaussians Model

This section is completely based on the variational treatment of the MoG model ofAttias (2000)
and Bishop (2006). Because of this, some details of the derivation of the VB EM algorithm for the
MoG model will be omitted here and we will concentrate only on the most important results.

In expressing the update rules for the distribution parameters in Equations (14), (15) and (16),
we will find the following definitions useful:

Nk =
N

∑
n=1

rnk,

xk =
1
Nk

N

∑
n=1

rnkxn,

Sk =
1
Nk

N

∑
n=1

rnk(xn−xk)(xn−xk)
T ,

logΛ̃k =
D

∑
i=1

ψ
(

νk+1− i
2

)

+D log2+ log|Wk|,

logπ̃k = ψ(αk)−ψ

(

K

∑
k′=1

αk′

)

,

whereD is the dimensionality of the data andψ(·) is the digamma function which is defined as the
derivative of the logarithmic gamma function, that is

ψ(x) =
d
dx

logΓ(x).

Using these definitions, the parametersrnk of the approximate posterior over latent variables
q(Z) which are updated in the E-step are given by

rnk =
ρnk

∑K
l=1 ρnl

,

where

ρnk = π̃kΛ̃1/2
k exp

(

− D
2βk
− νk

2
(xn−mk)

TWk(xn−mk)

)

.

The parametersrnk are calledresponsibilitiesbecause they represent the responsibility thekth com-
ponent takes in explaining thenth observation. The responsibilities can be arranged into a matrix
R = (rnk) and will have to satisfy the following conditions

0≤ rnk≤ 1, (20)
K

∑
k=1

rnk = 1. (21)
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The parameter update equations for the M-step are then given by

αk = α0+Nk, (22)

βk = β0+Nk, (23)

νk = ν0+Nk+1, (24)

mk =
1

β0+Nk
(β0m0+Nkxk),

W−1
k = W−1

0 +NkSk+
β0Nk

β0+Nk
(xk−m0)(xk−m0)

T . (25)

B.2 The Free Energy

The free energy of Equation (1) is

F = ∑
Z

∫
πππ

∫
µµµ

∫
ΛΛΛ

q(Z,πππ,µµµ,ΛΛΛ) log
q(Z,πππ,µµµ,ΛΛΛ)

p(X,Z,πππ,µµµ,ΛΛΛ)
dπππdµµµdΛΛΛ

= Eq{logq(Z,πππ,µµµ,ΛΛΛ)}−Eq{logp(X,Z,πππ,µµµ,ΛΛΛ)}
= Eq{logq(Z)}+Eq{logq(πππ)}+Eq{logq(µµµ,ΛΛΛ)}
−Eq{logp(X|Z,µµµ,ΛΛΛ)}−Eq{logp(Z|πππ)}
−Eq{logp(πππ)}−Eq{logp(µµµ,ΛΛΛ)} . (26)

These expectations can be evaluated to give (Bishop, 2006)

Eq{logq(Z)}=
N

∑
n=1

K

∑
k=1

rnk logrnk,

Eq{logq(πππ)}=
K

∑
k=1

(αk−1) logπ̃k+ logC(ααα),

Eq{logq(µµµ,ΛΛΛ)}=
K

∑
k=1

{

1
2

logΛ̃k+
D
2

log
βk

2π
− D

2
−Hq{ΛΛΛk}

}

,

Eq{logp(Z|πππ)}=
N

∑
n=1

K

∑
k=1

rnk logπ̃k,

Eq{logp(πππ)}= logC(ααα0)+(α0−1)
K

∑
k=1

logπ̃k,

Eq{logp(X|Z,µµµ,ΛΛΛ)}=
1
2

K

∑
k=1

Nk

{

logΛ̃k−
D
βk
−νk Tr(SkWk)−νk(xk−mk)

TWk(xk−mk)−D log2π
}

,

Eq{logp(µµµ,ΛΛΛ)}= 1
2

K

∑
k=1

{

D log
β0

2π
+ logΛ̃k−

Dβ0

βk
−β0νk(mk−m0)

TWk(mk−m0)

}

+K logB(W0,ν0)+
ν0−D−1

2

K

∑
k=1

logΛ̃k−
1
2

K

∑
k=1

νk Tr(W−1
0 Wk),
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where Tr(A) denotes the trace of matrixA andHq{ΛΛΛk} is the entropy of the distributionq(ΛΛΛk). The
functionsC andB are defined by the following two equations:

C(ααα) = Γ

(

K

∑
k=1

αk

)(

K

∏
k=1

Γ(αk)

)−1

,

B(W,ν) = |W|−ν/2

(

2νD/2πD(D−1)/4
D

∏
i=1

Γ
(

ν+1− i
2

)

)−1

.

B.3 Riemannian Conjugate Gradient for the Mixture-of-Gaussians Model

To be able to compare the VB EM and RCG algorithms, we assume that the approximate posterior
distributionq(Z,πππ,µµµ,ΛΛΛ) takes the same functional form as in the case of the VB EM algorithm.
Thus, the fixed form posterior distributions are given by Equations (14), (15) and (16) and the free
energy which is to be minimised by the RCG algorithm is given Equation (26). In this work, we
will only be optimising the responsibilitiesrnk and the meansmk using gradient-based methods.
All other model parameters, namely the parametersαk of the Dirichlet distribution, the parameters
βk controlling the covariance of the component means as well as the parametersWk andνk of the
Wishart distribution, are updated using the VB EM update Equations (22), (23), (24) and (25).

There are a few things that have to be taken into account when deriving gradient-based algo-
rithms for the MoG model. Firstly, the responsibilities have to satisfy the constraints given by
Equations (20) and (21). This can be enforced by using thesoftmaxparametrisation

rnk =
eγnk

∑K
l=1eγnl

. (27)

It can be easily seen that by using this parametrisation the responsibilities arealways positive and
∑K

k=1 rnk = 1. As a results it holds that 0≤ rnk≤ 1 and we can conduct unconstrained optimisation
in theγγγ space.

Secondly, if we set the responsibilitiesrnk,n= 1. . .N,k= 1. . .K−1 to some values, the values
of rnK,n= 1. . .N are given by condition (21), that isrnK = 1−∑K−1

k=1 rnk. As a result, the number
of degrees of freedom in the responsibilities of the model is not the number of responsibilities
NK but insteadN(K− 1). When we are using the parametrisation (27), this means that we can
regard the parametersγnK as constants and only optimise the free energy with respect to parameters
γnk,n= 1. . .N,k= 1. . .K−1. This is especially important when using the Riemannian gradient.

The gradient of the free energy (26) with respect tomk is given by

∇mk F = νkWk(Nk(mk−xk)+β0(mk−m0))

and the derivative with respect toγnk is given by

∂F
∂γnk

= Enk− rnkFn,

where

Enk = rnk

(

logrnk− logπ̃k−
1
2

(

logΛ̃k−
D
βk
−D log2π−νk(xn−mk)

TWk(xn−mk)

))

3262



RIEMANNIAN CONJUGATEGRADIENT FOR VB

and

Fn =
K

∑
k=1

Enk.

We can update the responsibilitiesrnk without having to evaluate and store the parametersγnk

by noting that

r ′nk =
eγnk+∆γnk

∑K
l=1eγnl+∆γnl

=
∑K

l=1eγnl

∑K
l=1eγnl+∆γnl

eγnk

∑K
l=1eγnl

e∆γnk = cnrnke
∆γnk,

wherer ′nk is the new responsibility,∆γnk is the change in parameterγnk determined by a line search
in the search direction andcn is a normalising constant which makes sure that∑K

k=1 r ′nk = 1. Thus
cn can also be expressed in the formcn = (∑K

k=1 rnke∆γnk)−1 and we can update the responsibilities
using the formula

r ′nk =
rnke∆γnk

∑K
l=1 rnle∆γnl

.

In order to use the Riemannian gradient, we need to know the Riemannian metric tensor G
of the parameter space(m,γγγ) which is given by Equation (3). The resulting matrix is a block
diagonal matrix with blocksAk = βkνkWk for eachmk and blocksBn = −rT

n rn + diag(rn) for
each sample, wherern is thenth row of the responsibility matrixR except for elementrnK, that
is rn = [rn1 · · · rnK−1]. diag(a) is used here to denote a square matrix which has the elements of
vectora on its main diagonal. This block-diagonal structure of the matrix makes the Riemannian
vector operations easy and efficient to implement.

Since the EM updates of parameters are computationally efficient compared tothe evaluation of
the objective function, it is more efficient to do them also within the line search of the RCG update
rather than as a separate step as in Algorithm 1.

Appendix C. Derivation of the Nonlinear State-Space Model

In this section we review the details of the nonlinear state-space model of Valpola and Karhunen
(2002).

C.1 Probability Model and Priors

The nonlinear state-space model of Valpola and Karhunen (2002) can be described with these two
equations:

s(t)∼N (s(t−1)+g(s(t−1),θθθg),diag(exp(2vm))), (28)

x(t)∼N (f(s(t),θθθf),diag(exp(2vn))), (29)

whereN (µµµ,ΣΣΣ) denotes a multivariate Gaussian distribution with meanµµµ and covarianceΣΣΣ. The
nonlinear mappings are modelled with MLP networks:

g(s(t−1),θθθg) = D tanh[Cs(t−1)+ c]+d,

f(s(t),θθθf) = B tanh[As(t)+a]+b.
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The model for dataX is thus described using unobserved variables

θθθ = (s(t),A,a,B,b,C,c,D,d,vm,vn) .

The priors of the variables are specified to fix the scaling ambiguity betweens andA and to
have a hierarchical prior allowing automatic relevance determination (ARD) (Bishop, 2006) like
decisions to inactivate parts of the model:

Ai j ∼N (0,1),

Φi j ∼N (0,exp(2vΦ j )),

φi ∼N (mφ,exp(2vφ)),

vνi ∼N (mvν ,exp(2vvν)),

vΦ j ∼N (mvΦ ,exp(2vvΦ)),

whereν ∈ {m,n}, φ ∈ {a,b,c,d} andΦ ∈ {B,C,D}. All the hyperparameters have vague priors
N (0,1002).

C.2 Posterior Approximation

In order to allow efficient learning, the posterior approximationq(θθθ) = N (θθθ|µµµθθθ,ΛΛΛ−1
θθθ ) is restricted

to be Gaussian with meanµµµθθθ and precision (inverse covariance)ΛΛΛθθθ. Furthermore, the precision
of the approximation is restricted to be almost diagonal. The only allowed off-diagonal terms are
in the approximation ofs(t) which includes a correlation betweensi(t) and si(t + 1). Different
components of the state vectors(t) are still assumed independent, and the posterior approximation
of the states is a product of independent chains.

Following the theory of Gaussian Markov random fields, this assumption translates to a tridiag-
onal precision (inverse covariance) matrix with non-zero elements only onthe main diagonal and
on the diagonal corresponding to the assumed links. The correspondingcovariance matrix has full
blocks for each component of the state.

C.3 The Free Energy

In order to derive the value of the free energy (1), we note that

F (q(θθθ)) = Eq(θθθ) {logq(θθθ)}+Eq(θθθ) {− logp(X,θθθ)} .

The first term is the negative entropy of a Gaussian

Eq(θθθ) {logq(θθθ)}=−N
2

log(2πe)− 1
2

logdetΛΛΛθθθ,

whereN is the dimensionality ofθθθ. The second term splits to a sum of a number of terms according
to Equations (28)–(29).

Eq(θθθ) {− logp(X,θθθ)}= ∑
t,i

Eq(θθθ) {− logp(xi(t)|θθθ)} +∑
γ∈θθθ

Eq(θθθ)
{

− logp(γ|θθθ\γ)
}

,

whereθθθ\γ denotes the parametersγ depends on.
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The terms in the sum are expectations for parametersγ following a normal modelN (m,e2v).
The negative logarithm of the pdf is

− logp(γ|θθθ\γ) =
1
2

log(2π)+v+
1
2
(γ−m)2exp(−2v).

Assuming independent Gaussian approximations2 for γ, m andv with means̄γ,m̄, v̄ and variances
γ̃,m̃, ṽ, respectively, the expectation is

Eq(θθθ)
{

− logp(γ|θθθ\γ)
}

=
1
2

log(2π)+ v̄+
1
2
[(γ̄− m̄)2+ γ̃+ m̃]exp(2ṽ−2v̄).

For the observationsxi(t) we obtain similarly

Eq(θθθ) {− logp(xi(t)|θθθ)}=
1
2

log(2π)+ v̄ni +
1
2
[(x− f̄i(t))

2+ f̃i(t)]exp(2ṽni −2v̄ni ),

where the means̄fi(t) and variancesf̃i(t) of f(s(t)) are evaluated as explained in Honkela and
Valpola (2005); Honkela et al. (2007).

For the statessi(t) we can similarly derive (Valpola and Karhunen, 2002)

Eq(θθθ)
{

− logp(si(t)|θθθ\s(t))
}

=
1
2

log(2π)+ v̄mi

+
1
2

[

(s̄i(t)− ḡi(t))
2+ s̃i(t)+ g̃i(t)−2s̆i(t, t−1)

gi(t)
si(t−1)

s̃i(t−1)

]

exp(2ṽmi −2v̄mi ),

whereḡi(t) andg̃i(t) are the mean and variance ofg(s(t−1)) evaluated similarly as those off(s(t)),
and s̆i(t, t − 1) is the linear correlation betweensi(t − 1) and si(t) as explained in Valpola and
Karhunen (2002). The partial derivativegi(t)

si(t−1) is evaluated naturally as a by-product of evalua-
tion of g̃i(t) as explained previously (Honkela and Valpola, 2005; Honkela et al., 2007).

C.4 Update Rules

The hyperparametersvΦ j ,mφ,vφ,vνi ,mvν ,vvν ,vΦ j ,mvΦ ,vvΦ are updated using a VB EM type scheme
to find a global optimum, given current values of the other parameters (Lappalainen and Miskin,
2000). The variances of the states and the weights of the MLP networks are updated using the
fixed-point rule and the means by the RCG algorithm, as described in Section 5.
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