Drifting Linear Dynamics

Tapani Raiko^{1,2}

Alexander Ilin^{1,2} Natalia Korsakova^{1,3} Erkki Oja¹ Harri Valpola^{1,2} ¹Aalto University, ²ZenRobotics Ltd, ³University of Eastern Finland

Abstract

We study a model where linear dynamics depend on a continuous valued hidden state as opposed to switching linear dynamics where the hidden state is discrete. We also provide efficient learning rules.

Consider a video sequence where translation can be described with linear dynamics. Different directions and speeds of movement each require a different linear mapping between the pixels of successive images. These linear mappings are not arbitrary, but they form a well-formed subset of all possible linear mappings. We propose a model that can find a subset (or a subspace) of such transformations from data.

1 Model Definition

Let us define a temporal model for a data set of T samples of K-dimensional observed vectors \mathbf{x}_t and such that the linear mapping \mathbf{B}_t is not a constant:

$$\mathbf{x}_{t+1} = \mathbf{B}_t \mathbf{x}_t + \boldsymbol{\epsilon}_t \tag{1}$$

$$p(\epsilon_{kt}) = \mathcal{N}\left(\epsilon_{kt}; 0, \sigma_x^2\right), \qquad (2)$$

where **B** is a $K \times K$ auxiliary matrix and σ_x^2 parameterise the noise variance. Now let us collect the columns of the matrix **B**_t into a K^2 -dimensional vector **b**_t = **B**_t(:) and model it with a PCA-kind of a model:

$$\mathbf{b}_t = \mathbf{A}\mathbf{s}_t,\tag{3}$$

where **A** is a $K^2 \times L$ parameter matrix \mathbf{s}_t are *L*-dimensional latent vectors. Instead of an explicit bias term, we assume that the last component of the state vectors \mathbf{x}_t and the latent variables \mathbf{s}_t are constants 1.

We include a temporal model for \mathbf{s}_t , that is:

$$\mathbf{s}_{t+1} = \mathbf{D}\mathbf{s}_t + \boldsymbol{\delta}_t \tag{4}$$

$$p(\delta_{lt}) = \mathcal{N}\left(\delta_{lt}; 0, \sigma_s^2\right),\tag{5}$$

where **D** is an $L \times L$ parameter matrix.

Since the matrix **A** is so large $(K^2 \times L)$, it is important to regularize it. We include a Gaussian prior for each element of **A** with a zero mean and a variance σ_a^2 .

1.1 Learning

The learning algorithm is such that there is a gradient or conjugate gradient update rule for $\mathbf{S} = (\mathbf{s}_1 \dots \mathbf{s}_T)$, and for each proposed update of \mathbf{S} , we solve \mathbf{A} and \mathbf{D} before checking how good the proposed step was. Preliminary experiments indicate that this is faster than joint optimisation with the conjugate gradient.

Since solving **A** is nontrivial, let us use an index m = 1...M that enumerates all tuples (l, k) and thus M = LK. Now we can define $z_{mt} = s_{lt}x_{kt}$ and rearrange **A'** to be **A** as a $K \times KL$ matrix. The model equation (1) becomes $\mathbf{x}_{t+1} = \mathbf{A'z}_t + \boldsymbol{\epsilon}_t$, which can be solved like linear regression.

2 Related Work

Previous works with changing dynamics are mostly about switching between a discrete number of possible dynamics. Even a paper on drifting dynamics [1] first finds a discrete set and only then models the drift from one state to the other.

The proposed model is closely related to Gated Boltzmann machines [2] where there is also a weight tensor that connects three different vectors. They can also be used to model image transformations.

References

- J. Kohlmorgen, K. R. Mueller, and K. Pawelzik. Analysis of drifting dynamics with neural network hidden Markov models. In *NIPS*, 1998.
- [2] R. Memisevic and G. Hinton. Unsupervised learning of image transformations. Technical report, Department of Computer Science, University of Toronto, Toronto, Canada, 2006.

Appearing in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copyright 2010 by the authors.