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Restricted Boltzmann machines (RBMs) are often used as building blocks
in greedy learning of deep networks. However, training this simple model
can be laborious. Traditional learning algorithms often converge only
with the right choice of metaparameters that specify, for example, learn-
ing rate scheduling and the scale of the initial weights. They are also sen-
sitive to specific data representation. An equivalent RBM can be obtained
by flipping some bits and changing the weights and biases accordingly,
but traditional learning rules are not invariant to such transformations.
Without careful tuning of these training settings, traditional algorithms
can easily get stuck or even diverge. In this letter, we present an enhanced
gradient thatis derived to be invariant to bit-flipping transformations. We
experimentally show that the enhanced gradient yields more stable train-
ing of RBMs both when used with a fixed learning rate and an adaptive
one.

1 Introduction

Deep learning has gained popularity recently as a way for learning com-
plex and large probabilistic models (see, e.g., Bengio, 2009). Especially, deep
neural networks such as the deep belief network and the deep Boltzmann
machine have been applied to various machine learning tasks with impres-
sive improvements over conventional approaches (Hinton & Salakhutdi-
nov, 2006; Salakhutdinov & Hinton, 2009; Salakhutdinov, 2009; Krizhevsky,
2010; Lee, Grosse, Ranganath, & Ng, 2009).

Deep neural networks are characterized by a large number of layers of
neurons and by using layer-wise unsupervised pretraining to learn a prob-
abilistic model for data. A deep neural network is typically constructed by
stacking multiple restricted Boltzmann machines (RBM) so that the hid-
den layer of one RBM becomes the visible layer of another. Layer-wise
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pretraining of RBMs then facilitates finding a more accurate model for the
data. In cases of performing classification tasks using deep neural networks,
various papers (Salakhutdinov & Hinton, 2009; Hinton & Salakhutdinov,
2006; Erhan et al., 2010) have empirically confirmed that such multistage
learning works as good as, or in many cases better than, conventional learn-
ing methods, such as backpropagation with random initialization. This
trend is more apparent when most training samples are unlabeled and only
a small number of labeled training samples are available (see, e.g., Ranzato,
Huang, Boureau, & LeCun, 2007). It is thus important to have an efficient
method for training RBMs.

Unfortunately, training RBMs is known to be difficult. Traditional learn-
ing algorithms often converge only with the right choice of metaparameters
that specify, for example, learning rate scheduling and the scale of the initial
weights.

In this letter, we discuss difficulties of training RBMs using the traditional
algorithm and propose a new training algorithm based on a new, enhanced
gradient estimate. The new gradient is designed to be invariant to data
representation, and it also facilitates learning distinct features by hidden
neurons. We show the efficacy of the proposed gradient in experiments
with either a fixed or an adaptive learning rate. The preliminary results of
this work were presented in our conference paper (Cho, Ilin, & Raiko, 2011)
and a technical report (Raiko, Cho, & Ilin, 2011).

2 Restricted Boltzmann Machines

2.1 Model Definition. The restricted Boltzmann machine is a stochastic
neural network with a bipartite structure such that each visible neuron is
connected to all the hidden neurons and each hidden neuron is connected to
all the visible ones (Smolensky, 1986). The energy and the state probability
are defined as

Ev.,h|0)=—v'Wh—b'v—c'h,

1
P(v,h|6)= 0] exp{—E(v.h | 0)}, @2.1)

where v and h are binary column vectors representing the state of the
Visible and hidden neurons and parameters § = (W, b, ¢) include weights

[w”]n x, and biases b = [b, ]n 1 and ¢ =[c; ]n <1+ 1, and n, are the
numbers of visible and hidden neurons, respectlvely Z(0) denotes the nor-
malizing constant, which is intractable and can be calculated by summing
exponentially many terms.
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A useful property of the RBM is that hidden neurons h are independent
of each other given visible neurons v,

1
Ph;,=1]|v,0) = , (2.2)
I 1+exp(—Ziwi]»vi—c]-)
and the same holds for the visible neurons:
1
P(v;=1|h,0) = 2.3)

1+exp(—zjwijhj—bi)'

This fact allows for efficient parallel implementation of layer-wise Gibbs
sampling when collecting samples from the distribution defined by an RBM.

2.2 Training Algorithms. The parameters of an RBM can be learned
from data using the standard maximum likelihood estimation. Given a
data set {v)}N_, the log likelihood of the parameters is

N N
£@) = logPv?(8) = log > P(v" . h|6),
t=1 h

t=1

where the samples v()s are assumed to be independent of each other and
the states h of the hidden neurons are marginalized out.
The gradient ascent update rules are

w; < w;; + nwVw,-]-, Vwij = (vih]-)m1 - (vihj)m, (2.4)
b; < b; +n,Vb;, Vb; = (v;)q — (V) > (2.5)
¢;j<cj+n.Ve,, Ve, = (hj)d— (hj)m, (2.6)

where a shorthand notation (-),, denotes the expectation computed over
probability distribution P(-). (-)4 denotes expectation computed over con-
ditional distribution P(h | v, §)D(v) where D(v) is a data distribution and
(*)p is expectation computed over the model distribution P(v, h | ).

The well-known difficulty of using equations 2.4 to 2.6 is that while the
expectations (-)4 can easily be calculated using equation 2.2, the exact com-
putation of expectations (-),, is intractable because of the need to compute
the normalizing constant.
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Conventional learning procedures employ the stochastic gradient ascent
method, which uses only a small subset of training data samples, called a
minibatch, to compute the gradients at each update.

2.2.1 Contrastive Divergence. An efficient method for training RBMs is
based on minimizing contrastive divergence (CD; Hinton, 2002). In this
approach, the true gradients in equation 2.4 to 2.6 are approximated by
replacing expectations (-),, with expectations (-) P evaluated over the dis-

tribution P, obtained by running n steps of the layer-wise Gibbs sampling,
starting from the empirical distribution defined by the training samples.
This yields the following update rule for the weights:

wij < wij + 1, [y — (xR ],

where P, denotes distribution P(h | v, #) with v fixed to the training data. In
practice, using a short Gibbs sampling chain (e.g., n = 1) often yields good
performance.

2.2.2 Approximate Maximum Likelihood. Minimizing CD is known to be
biased for finite n and to provide the maximum likelihood solution only
whenn — oo (Carreira-Perpifidn & Hinton, 2005; Bengio & Delalleau, 2009).
This problem is fixed in methods that use the stochastic approximation
to the likelihood gradient (Younes, 1989), which yields a different proce-
dure for collecting samples from the model distribution: The main differ-
ence in implementation compared to CD is that sampling is not started at
the training samples for each minibatch. Existing approaches include per-
sistent contrastive divergence (PCD; Tieleman, 2008), tempered transition
(Salakhutdinov, 2009), and parallel tempering (PT; Desjardins, Courville,
Bengio, Vincent, & Delalleau, 2010; Cho, Raiko, & Ilin, 2010).

In this letter, we use PCD and PT as representative methods of this kind.
PCD is based on plain Gibbs sampling. The basic idea of PT is that multiple
chains of Gibbs sampling are run for models with different “temperatures.”
Chains with higher temperatures correspond to more diffuse distributions
and therefore can produce a greater variety of samples. Every now and
then, the samples are swapped between the chains, which facilitates better
exploration of the state space.

2.3 Difficulties in Training RBM. Training RBMs can be difficult in
practice. Due to the intractability of the objective function, it is difficult to
compare the quality of found solutions or even to know when learning has
converged. It has been observed that the training procedure can diverge
especially when Gibbs sampling is used to obtain samples from the model
distribution (Desjardins, Courville, Bengio, Vincent et al., 2010; Schulz,
Miiller, & Behnke, 2010; Fischer & Igel, 2010). This diverging behavior
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Figure 1: Visualization of the filters learned by RBMs on MNIST with various
learning rates 5 and initial weight scaling . Learning was performed for five
epochs, each using the traditional gradient with a fixed learning rate.

can be suppressed by using more sophisticated sampling methods, but
the likelihood can still fluctuate highly during training unless one uses
appropriate learning rate scheduling or adapts the sampler to maintain
a certain level of mixing property (Desjardins, Courville, & Bengio, 2010;
Desjardins, Courville, Bengio, Vincent et al., 2010; Desjardins, Courville,
Bengio, Vincent, & Delalleau, 2009).

2.3.1 Sensitivity to Metaparameters. In Figure 1, we demonstrate the sen-
sitivity of the training procedure based on the traditional gradient in equa-
tions 2.4 to 2.6 to the scale of weight initialization and the learning rate. In
this experiment, RBMs with 36 hidden neurons were trained on the MNIST
data set (LeCun, Bottou, Bengio, & Haffner, 1998) with fixed learning rates
n and PT as the sampling strategy to obtain samples from the model dis-
tribution. Weights w;; were initialized with random values drawn from the
normal distribution with zero mean and standard deviation A. Each visible
bias b; was initialized to log %, where m; is the sample mean of the ith

pixel in the training data, and all hidden biases ¢; were initially set to —4.

The figure presents the filters learned by RBMs for different combinations
of & and 7.
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It is clear that the results after a relatively short training period are
highly dependent on the choice of metaparameters. Reasonable features
are learned by most of the hidden neurons only with a careful selection
of the initial weight scale and the learning rate, which was n = 0.1 and
A = 1for thereported experiments. Inlonger runs, training results generally
improve, and the difference between different training scenarios may be
less dramatic. Nevertheless, this result suggests that careful selection of the
metaparameters is very important for RBMs. The optimal combination of
metaparameters is usually found by cross-validation, which may become
time-consuming when there are many metaparameters to tune (see, e.g.,
Bergstra & Bengio, 2012). Hence, it is preferable to have a learning algorithm
that is less sensitive to metaparameters.

The results obtained with n = 0.01 illustrate a typical problem in training
RBMs when several hidden neurons try to learn global filters that resemble
the visible bias term b (see, e.g., Hinton, 2010). Such hidden neurons are
activated for most of the input objects, but they are meaningless because
the corresponding weights can be incorporated into biases b;. One can also
observe noisy global filters that do not seem to capture any meaningful
features, especially in the results obtained with large n. Such hidden neurons
are always inactive and can be removed without affecting the modeling
capacity of the RBM. The existence of such hidden neurons is an indicator
of poorly trained RBMs.

2.3.2 Sensitivity to Data Representation. In Figure 2, we demonstrate that
the training procedure based on the traditional gradient in equations 2.4
to 2.6 is also sensitive to data representation. For example, flipping all the
bits in the MNIST data set (such that zeros become ones and vice versa)
produces an equivalent data set, which we call 1-MNIST. However, training
results obtained on MNIST and 1-MNIST can be very different. The RBM
trained on 1-MNIST after a relatively short training period does not contain
any meaningful features: two hidden neurons model something similar to
the visible bias, and the remaining ones are always inactive. In contrast, the
RBM trained on MNIST has learned several reasonable features. It suggests
that the learning algorithm based on the traditional gradient update is
highly sensitive to the data representation.

3 Enhanced Gradient

3.1 Derivation of the Enhanced Gradient. In this section, we propose
a new gradient to modify the update rules 2.4 to 2.6. We first define the
covariance between two variables under distribution P as

Covp (v, hj) = (vih]-)P — (vi)P(hj)p.
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(a) MNIST (b) 1-MNIST

Figure 2: Visualization of the filters learned by RBMs with 36 hidden neurons
on MNIST and 1-MNIST using PT sampling after five epochs. Both RBMs were
trained with the traditional learning rate and a fixed learning rate 0.1. The
initial weights were sampled from the normal distribution with zero mean and
standard deviation 0.1.

Then the standard gradient in equation 2.4 can be rewritten as

Vw;; = Covy(v;, b)) — Covy, (v, h) + (v;)gm V) + (1) 4 VD

i

(3.1)

where Vc; and Vb; are the gradients that appear in equations 2.5 and 2.6
and (-) gy, = 2(-)q + 3{")n is the average activity of a neuron under the data
and model distributions.

One potential problem with the gradient 3.1 is that it contains terms
Ve;, Vb; that point in the same direction as the gradient with respect to
the bias terms. This effect is prominent when there are many neurons that
are mainly active, that is, for which (x;)4,, & 1, where x; can be either a
visible or a hidden neuron. These terms can distract learning of meaningful
weights by making many neurons learn features resembling the bias terms,
the effect that is visible in Figures 1 and 2. When (x;) 4., ~ 0 for most of the
neurons, this effect can be negligible, which might explain why learning
1-MNIST is more difficult than MNIST and partially explain why sparse
Boltzmann machines (Lee, Ekanadham, & Ng, 2008) have been successful.

Another problem of using gradient 3.1 is that the updated parameter
values are different depending on the data representation. This can be
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shown by using transformations where some of the binary units are flipped
such that zeros become ones and vice versa:

fo=x "a-x)f,  fe(01).
The parameters can then be transformed accordingly to :

(3.2)

Z)i=(—1)f"(bi + ijwi])’ (33)

&= (-1 (c]. + Zfiwi]), (3.4)

such that the resulting RBM has an equivalent energy function, that is,
E(X | 0) = E(x | 8) + const for all x (see the proof in appendix A).

When a model is transformed, updated, and transformed back, the re-
sulting model depends on the transformations f;:

w;j < wy; + 0l g — (0l — fillh)g — (1)) = f(()g — (V) m)]
= w; + n[COVd(vi, h) — COVm(U,‘v h)
(V) am — fIVE; + (1)) gm — VD]

j

by <b;+n |:Vb,- - Zf]'(vwi]‘ - fl-VCj - ijbi):|

cjci+n [ch - Zfi(Vwij — f;Ve; - ijb,.)} :

where V@ are the gradients used in equations 2.4 to 2.6 and we assume
that the learning rates for weights are biases are same. This is shown in
appendix B.

Thus, there are 21" different update rules defined by different combina-
tions of binary f,, k=1, ..., n, + n,. All the update rules are well-founded
maximum likelihood updates to the original model.

The new gradient is, then, proposed to be a weighted sum of the 2".*"
gradients with the following weights:

nv+n

TT ok, (1= oam) ' (3.5)

k=1
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By using these weights, the new gradient prefers sparse data representa-
tions for which (x;)4,, & 0 because the corresponding models get larger
weights.

The proposed weighted sum yields the enhanced gradient (see appen-
dix C),

dm

V, w;;=Covy(v;, ;) — Covpy (v, hy), (3.6)

Vb= (vg = (W)m = D) am Vs Wy, 3.7)
j

V=g = B = D (0)am Ve Wi (3.8)

in which, by the choice of the weights 3.5, the effect of the bias gradient
terms in the representation 3.1 is canceled out. Thus, the new update rules
are

b; < b, +nV, b, (3.10)
cj<ci+nvc; (3.11)

3.2 Analysis of the Enhanced Gradient. In appendix D, we show that
the new update rules are invariant to the bit-flipping transformations. It
is also easy to see that the enhanced gradient shares all zeros with the
traditional gradient.

We compare the enhanced gradient to the traditional one on an RBM
with 361 hidden neurons trained on MNIST. Figure 3 represents the angles
between the update directions for the hidden neurons. Each element of the
visualized matrices is the absolute value of the cosine of the angle between
the update directions for two neurons. The gradients obtained with the
traditional rule are highly correlated with each other. On the contrary, the
new gradient yields update directions that are close to orthogonal, which
allows the neurons to learn distinct features.

More details on how to obtain the bit-flipping transformation, the
transformation-dependent update rules, and the enhanced gradient up-
date rules for general Boltzmann machines are presented in our technical
report (Raiko et al., 2011).

4 Experiments

In this section, we experimentally compare the proposed enhanced gradient
with the traditional one.
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After 26 updates After 364 updates

Enhanced grad. :

Figure 3: The angles between the update directions for the weights of the RBM
with 361 hidden neurons. White pixels correspond to small angles, and black
pixels correspond to orthogonal directions.

4.1 Experiments with MNIST and 1-MNIST

4.1.1 Experiments with a Relatively Small Model. We start by running the
same experiment as in section 2.3.1 to test the sensitivity of the training
procedure based on the enhanced gradient to the scale initialization and the
learning rate. As can be seen from Figure 4, the results obtained with the
enhanced gradient look better than the ones obtained with the traditional
gradient (compare to Figure 1). After a relatively short training period, there
are generally more filters that represent some meaningful features, which
suggests that using the enhanced gradient can speed up learning.

In the next experiment, we compare the quality of resulting RBMs in
longer training sessions. In order to be able to test different training settings
in a reasonable amount of time, we train a relatively small RBM with only
361 hidden neurons. We trained RBMs on binarized MNIST and 1-MNIST
data sets, in which the original grayscale pixels were rounded. RBMs were
initialized according to the practical guide by Hinton (2010): The weights
were randomly sampled from the normal distribution with zero mean and

standard deviation m Each visible bias b; was initialized to log = m ,

h
where m; is the sample mean of the ith pixel in the training data. All hidden

biases ¢; were initially set to —4.
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n=0.01 §

Figure 4: Visualization of the filters learned by RBMs with 36 hidden neurons
on MNIST with various initial learning rates n and initial weight scaling A.
Learning was performed for five epochs each using the enhanced gradient with
a fixed learning rate.

We ran a set of training sessions for 20 epochs each, varying the learning
rate and the strategy for collecting samples from the model distribution.
We used PT with 11 equally spaced temperatures and PCD and CD with a
single Gibbs update (1 = 1). The learning rate was initialized with values
2!, where | was randomly sampled from a uniform distribution [-9, 3]. We
tried both fixing the learning rate and using the adaptation scheme based on
maximizing a local approximation of the likelihood (Cho, Ilin et al., 2011).

The quality of the trained models is assessed using the following
quantities:

1. Log probability of test data under the trained model. The computation
of this quantity requires the knowledge of the normalizing constant,
which was estimated using annealed importance sampling (AIS), sim-
ilarly to previous work (Salakhutdinov, 2009). The estimates of the
normalizing constant were obtained by averaging 100 independent
runs of AIS with different initializations. Each AIS run used 10,001
equally spaced temperatures.

2. Classification accuracy obtained with a logistic regression classi-
fier trained on the activation probabilities of the hidden neurons



816

K. Cho, T. Raiko, and A. Ilin

98
® ®
6%° ¢ $ Wnhe 0%%
o AR Thoint < cpmasr oy
- ® ) x x5 M X x
& R K e ®
¥ * 95 & gt # *®
pe P ooe © & Gge"Go , DS @ T+ £ .
> ® e ° ] A
£ -120 ® 2 f’“’@: ° PR e *g oo e wef T
2 X “ . - g o0t & ¥ R T
2 _140 +* N £ | * N
g- Fa— 8 8
& ' 2 ¢
on Y + +++
< -160| - ®
- 4 o 70 i
L* + ) ‘s
-180f Lt ) 50, T Trad.grad.
sl L op ¢ o Ao
- -8 -6 -4 -2 0 2 -8 -6 -4 -2
Learning rate log, n Learning rate log, 1
(a) MNIST
-80 98
?®
ﬁ@ @% *?:@”‘&QWEQ ®e % o0 97
® x
-100t e - @ -y 95 e @g@ LI ga,; e s S %\f@
2 120 x " x ® & *e,
= x 1 > o x
< x Q 90} ®
< x ® E
S _140f F * =} .
£ g
g0 x < x
& -160p . 70
-180 50 T Tadamd
200 ) x ?g [} Aga'patfan'
- 8 6 -4 -2 0 2 i D S (| 0 2
Learning rate log, n (b) 1-MNIST Learning rate log, n

Figure 5: Log probabilities and classification accuracies of test data for different
initializations of the learning rate. The models were trained using the stochastic

approximation with PT sampling.

conditioned on the original grayscale pixels. Additionally, we fine-
tuned the network using stochastic backpropagation. Note that these
are indirect measures of the RBM quality because they are not opti-

mized during learning.

Figure 5 shows the comparison of the training results obtained with PT.
Each marker represents a value of a performance index against the initial
value of the learning rate. A cross corresponds to the traditional gradient,
while an x corresponds to the enhanced gradient. Markers surrounded by
circles represent the results obtained with the adaptive learning rate.

The main observation from Figure 5 is that in the case of PT, training
with the enhanced gradient generally results in higher log probabilities and
better classification accuracies. The variation of the results is much higher
for the traditional approach, while most of the runs with the enhanced
gradient provided relatively good RBMs. The improvement of the RBM
quality is significant for MNIST and radical for 1-MNIST, where we were
not able to train any reasonable model with the traditional gradient. Note
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Figure 6: Log probabilities and classification accuracies of test data for different
initializations of the learning rate. The models were trained using the stochastic
approximation with Gibbs sampling. Note the difference in the y-axis scaling
from Figures 5 and 7.

also that using the adaptive learning rate led in most cases to a relatively
good model regardless of the learning rate initialization when it was used
with the enhanced gradient. However, the adaptation mechanism did not
find the optimal learning rate in the case of the traditional gradient, and the
best results were obtained with a learning rate fixed to a proper value.

In spite of the fact that the enhanced gradient is invariant to data repre-
sentation, note that the classification accuracies obtained on 1-MNIST are
slightly worse than those on MNIST. This is due to different initial spar-
sity of the hidden units /;. Approximately equivalent results for 1-MNIST
and MNIST could be obtained when the hidden biases were initialized to
¢; < —4 -3 w;(v;);. However, for consistency, we present only the results
obtained with the initialization procedure proposed by Hinton (2010).

The results obtained using PCD with Gibbs sampling are shown in
Figure 6. They indicate that the enhanced gradient is again superior to
the traditional gradient. It is especially apparent in the case of 1-MNIST,
where the enhanced gradient shows more robustness to changes in the
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Figure 7: Log probabilities and classification accuracies of test data for different
initializations of the learning rate. The models were trained by minimizing CD.

learning rate. In a few cases, we can observe that the adaptive learning rate
was not able to adapt the learning rate appropriately. However, the results
suggest that the enhanced gradient, together with the adaptive learning
rate, performs better compared to the traditional gradient with or without
the adaptive learning rate.

Figure 7 shows the results of the same experiment with CD. Again,
learning from 1-MNIST is much easier with the enhanced gradient; note
that learning with the traditional gradient often failed completely. The best
classification accuracies obtained with the two gradients were quite sim-
ilar. However, using the traditional gradient resulted in better generative
models for MNIST. A possible explanation is that learning by minimizing
CD does not maximize the log likelihood directly, and therefore one should
not regard log likelihood as the ultimate performance indicator. Especially
using a small number of Gibbs steps introduces a large bias in favor of
minimizing the one-step reconstruction error (Bengio & Delalleau, 2009).

In Figure 8, we show the average mean-squared reconstruction error of
the test samples. It is clear that in most cases, the models trained with the
enhanced gradient achieved lower reconstruction errors. Together with the
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Figure 8: Mean-squared one-step reconstruction errors of test samples for the
models trained by minimizing CD. Note that smaller reconstruction error values
represent better models, unlike log probabilities.

adaptive learning, those models were consistently better than the models
trained with the traditional gradient for a broad range of initial learning
rates.

4.1.2 Experiments with Larger Models. Additionally, in order to get higher
classification accuracies on MNIST, we trained larger RBMs having 500,
1000, 2000, and 4000 hidden neurons. In this experiment, we used PT with
11 temperatures and CD with a single Gibbs step. All the models were
trained for 1000 epochs, with the adaptive learning rate initialized to 0.0001
and upper-bounded by 0.1. In the second half of training, the learning rate
was annealed inverse proportionally to the number of updates. In the case
of PT, we also varied the number of model samples collected to compute
the expectation over the model distribution. We used 128 and 1024 samples,
which is marked by PT-128 and PT-1024 in the experimental results.

The achieved classification accuracies are shown in Table 1. The best
result of 98.49% was obtained with an RBM having 4000 hidden neurons,
which was trained with the enhanced gradient by minimizing CD after
fine-tuning the model. In the case of using PT, we observed that the mod-
els trained with the enhanced gradient outperformed those trained with
the traditional gradient. However, the accuracies were lower than those
obtained by the models trained by minimizing CD.

The RBM having 4000 hidden neurons, trained by computing the ex-
pectation over the model distribution with 1024 samples collected by PT
sampling, achieved the highest log probability, —64.06. However, the mod-
els trained with 128 model samples were not able to perform as well as
those with 1024 model samples. Furthermore, the RBM trained by mini-
mizing CD with the enhanced gradient systematically had lower one-step
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reconstruction errors of the test samples compared to those trained with the
traditional gradient.

One noticeable phenomenon observed when the RBMs having a large
number of hidden neurons, such as 2000 or 4000, were trained, was that the
enhanced gradient used more hidden neurons than the traditional gradient
did. It can be investigated by computing Var[p(h il v)], where v comes
from test data. Those unused hidden neurons will have a variance close to
0, indicating that they are not dependent on whatever samples are clamped
to the visible neurons. In Figure 9, it is clear that the models trained with
the enhanced gradient have more hidden neurons with nonzero variances
of the conditional probabilities.

4.2 Experiments with Caltech 101 Silhouettes. In this section, we test
the proposed enhanced gradient on the Caltech 101 Silhouettes data (Marlin,
Swersky, Chen, & de Freitas, 2010; random samples from this data set are
shown in Figure 10). We ran four experiments with RBMs with 500, 1000,
2000, and 4000 hidden neurons. In order to avoid tuning the learning rate,
we used the adaptive learning rate. Training was performed for 1000 epochs
with PT and the minibatch size 128. The learning rate was initialized to
0.0001, and the upper bound was set to 0.1. After 500 epochs, the learning
rate was decreased inverse proportionally to the number of updates.

The obtained results are presented in Tables 2 to 5, where we used the
same performance indexes as in section 4.1 to assess the quality of the
results. Figure 10b shows samples drawn from the trained model. Remark-
ably, the classification accuracy improved by more than 5% over the best
result reported by Marlin et al. (2010), with higher log probabilities when
the enhanced gradient was used. The trend is more evident when PT was
used to sample from the model distributions. However, we were not able
to improve the accuracies with the discriminative fine-tuning.

We emphasize that we used the enhanced gradient with the adaptive
learning rate without laborious tuning. In contrast, Marlin et al. (2010)
used an extensive validation to choose the right learning rate and other
metaparameters and also applied an advanced optimization method as a
fine-tuning method to the initial stochastic gradient descent optimization.

5 Conclusion

In this letter, we discussed several potential problems with training RBMs
and proposed new update rules, based on the enhanced gradient. Unlike the
traditional learning rules, which are dependent on data representation, the
enhanced gradient was derived to be invariant to it. This allowed learning
the flipped version of the MNIST data set without any difficulty.

The proposed gradient was compared against the traditional one using
contrastive divergence, parallel tempering, and persistent contrastive diver-
gence with plain Gibbs sampling. For MNIST, the classification accuracies
obtained with the enhanced gradient were similar to the traditional one
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Figure 10: (a) One hundred randomly chosen training samples of Caltech 101
silhouettes. (b) Samples generated from the RBM with 2000 hidden neurons
trained on Caltech 101 silhouettes.

Table 2: Log Probabilities of the Test Data of Caltech 101 Silhouettes by the
RBMs Trained Using PT.

PT
Hidden Neurons Enhanced Traditional M)
500 —114.75 —179.09 ~—120
1000 —111.72 —184.42
2000 —108.98 —171.03
4000 —107.78 —129.04

Note: (M): Results reported by Marlin et al. (2010) using PCD.

Table 3: Log Probabilities and Reconstruction Errors of the Test Data of Caltech
101 Silhouettes by the RBMs Trained by Minimizing CD.

Log Probability Reconstruction Error
Hidden Neurons Enhanced Traditional M) Enhanced Traditional
500 —241.46 —270.63 <—450 0.0166 0.2447
1000 —228.86 —252.54 0.0117 0.2362
2000 —220.30 -132.15 0.0544 0.2481
4000 —196.36 —176.28 0.0588 0.2489

Note: (M): Result reported by Marlin et al. (2010) using CD.
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Table 4: Classification Accuracy of the Test Data of Caltech 101 Silhouettes.

PT CD
Hidden Neurons  Enhanced  Traditional (M) Enhanced Traditional (M)

500 70.91 67.92 65.4 69.14 70.22 64.9
1000 72.22 67.10 70.61 70.83
2000 7217 69.57 72.52 71.04
4000 73.00 71.26 72.35 69.09

Note: (M): Results reported by Marlin et al. (2010) using PCD (left) and CD (right).

Table 5: Classification Accuracy of the Test Data of Caltech 101 Silhouettes After
Discriminative Fine-Tuning.

PT CD
Hidden Neurons  Enhanced  Traditional (M) Enhanced Traditional (M)

500 70.83 67.75 65.4 68.96 70.05 64.9
1000 7217 67.45 70.57 70.74
2000 7217 69.14 72.61 71.11
4000 72.82 71.26 72.39 69.09

Note: (M): Results reported by Marlin et al. (2010) using PCD (left) and CD (right).

in the case of CD and significantly better in the case of PT and PCD. For
1-MNIST, the enhanced gradient clearly outperformed the traditional one.
Our experiments also showed that the enhanced gradient is less sensitive to
the choice of metaparameters than the traditional one, which makes training
RBMs easier.

Finally, we note that the idea of the enhanced gradient can be applied
to other types of Boltzmann machines. For example, we showed some pre-
liminary experimental results on applying this idea to Boltzmann machines
with gaussian visible neurons (Cho, Ilin et al., 2011; Cho, Raiko, & Ilin,
2011). Using the enhanced gradient for training other types of Boltzmann
machines is a subject for future research.

Appendix A: Bit-Flip Transformations

In this section, we present and prove two properties of the transformations
3.2to 3.4.

Theorem 1. The transformed machine is equivalent to the original one, that is,
P(x | 6) = P(x | 0) for all states x.
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Since the energy functions are the same up to a constant, the probability

distributions P are the same.

Appendix B: Transformation-Dependent Update Rules

Here we derive and show that the traditional gradient update rules are

dependent on the bit-flipping transformation.
We define
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and note that

to help get the form in equation B.1. The three-step update for the weights
obtained by transforming, updating, and transforming back is
wy; < (DD w4 n(#8)g — EF)m)]

. 1— 1—f. )
=y =D = ] -,

—(xg_f”(l — xi)ﬁx;_f’(l — xj)f/)m]

= w;; + [0 — f O = fi)dg — (O = f) (= [l
= wy; + n[(xx;)q — (%) — fiVD; — ijbz’]

X)) + (X)) gm — f)VD;

(X ) am — FVBL. (B.1)

= w; +77[COVd(xl, X)) — Cov,, (x;, x

We use a shorthand Viw;; = (x;x;)q — (x;x;), — f;Vb; — f;Vb; for the
resulting gradient when using the transformatlon f.
The three-step update for the bias is

b« (— 1)f|b + (%) g — (%) )+Zf][w +n((EF))g — (TF)) )]}

= (- 1)f{( D/ (b +Zf] ,])+n[< - xpf),

i (1—x)f bl + 2 fi(— 1)f+ff[w,]+anw1]]}
j

:bi+ijwij+n((xi)d )+Zf]( w;; — nVew;;)
j

=b;+1 (Vbi -y f].vfw,.j) . (B.2)

j

From equations B.1 and B.2, we note that the transformation vectors f
do not cancel out, and thus we end up with different parameters after the
update depending on the transformation.
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Appendix C: Enhanced Gradient

This appendix presents the derivation of the enhanced gradient update rules
3.6 t0 3.8, starting from the transformation-dependent gradient update rules
derived in the previous section.

The enhanced gradient is a weighted average of all possible
transformation-dependent updates with different transformation vectors
f. We choose the weights for the different updates inspired by equation B.1
to be

[T = dam)

i

which sum up to one when considering all the exponentially many alterna-
tive transformation vectors f.
The enhanced gradient for the weights is derived as follows:

V= > [ﬂ(xk)j}ma— (xk)dm)l_f{|[Covd(xi,xj)—Covm(xl-,x]-)

fe{0,1}" L k

(X am — FOVE; + () g — FV]

Z 1_[ [<xk)dm + (1 - <xk>dm)]

fio 01 kiih#

x)h (11— <xi>dm>1*ff<x.>ff (1- <x»>dm>1‘fr[<:ovd<x,-, x)

— Covyy, (x;, X)) + (X)) gm — fIVD; + (X)) gm — VD]
= Y )l ) ) - >dm)l Ji
fofe01)
[Covd(x,, ]) Cov,, (x;, ])—i—( ﬁ)Vb
+ (X )gm — ) VD]

_Covd(x,, x;) — Covp, (%, x;)
+ (1 = () gm) 1 = () gD [ gm VO + (X)) g VO]
+ () am (1 = (¥ am) [ gm — DVD; + (X)) 4, VO]
+ (1 = () am) ¢ ) am[ (X)) am VO + (X)) g — DVE]
+ () dm X D am [ (X gm — DV, 4+ (X)) g — DVE]

=Covy(x;, x;) — Covp, (. X5).
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For the bias term, it would be possible to derive similarly. However,
rather than using a different weight update VW for each bias update, we
use the enhanced gradient for the weights when doing each bias update,
that is, replacing equation B.2 by b; < b; + n(Vb; — }_; f;V,w;;). Now we

e l]
get the final formulation of the enhanced gradient, which was presented in
equations 3.7 and 3.8, for the bias:

Vb= )" [l’[<xk>£§n<l—<xk>dm>1‘fk} (Vbi—ijVewu)
) .

fe{0,1}

—V, -3 Y (= ) ) (= () f Ve

i fifelo

:Vbl—z(x])dm[(l_( ) )Vew1]+( dl’n e l]]
j

=Vb; = Y X)) g VoW
j

Appendix D: Invariance of the Enhanced Gradient

Theorem D.1. The enhanced gradient

Vow;; =Cov,(x;, x;) — Cov,, (x;, X;)

Vb =Vb; = Y (x7)4, Vo w;;
j
is invariant to the bit-flipping transformations as described in appendix A.
Proof. We again compose a three-step update consisting of a transforma-
tion, update by enhanced gradient, and transformation back. If the resulting

model is the same regardless of the transformation vector f, we have proven
the claim. The combined update for the weights is

Wy < (—1)fz+ff[ﬂ)ij + n(Covy(X;, JE) — Cov,, (%, J?/))]
= w; +( 1)f f/T][COVd( (1—x)f x ](1 X])f/)

—Cov,, (v A —x)fx “ia- )]

w;; + n[Covy (x;, xj) - Covm(xi, xj)].



Enhanced Gradient for Training Restricted Boltzmann Machines 829

The combined update for the bias is

b < (=1)/; [b +1V, bl+Zf](w +nvgw,j)]

- i 1>f<b + X fpe uy ) 41| G =

—Zf am (F ) g — (B — (F)am () a + (% Dam (Fdm

= bi—i—n{(xl-—fi)d— (= fidm— Z[(x]'_fj)dm(<(xi—ﬂ)(xj—fj)>d
j

_<(x1_fi)(xj_fj))m_ x'_fj dm X f1d+ f] dm i f1>m
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+ fj((xixj)d - <xl'xj>m - <xi>d(x]'>d + (xi>m<xj>m)]}
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j
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+ fiVw;; — filx; j_fj(xj>dibi)j|
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j
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