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Abstract We study the emergent properties of an artificial neural network which

combines segmentation by oscillations and biased competition for perceptual pro-

cessing. The aim is to progress in image segmentation by mimicking abstractly the

way how the cerebral cortex works. In our model, the neurons associated with fea-

tures belonging to an object start to oscillate synchronously, while competing ob-

jects oscillate with an opposing phase. The emergent properties of the network are

confirmed by experiments with artificial image data.

1 Introduction

The success of animals depends on their ability to extract relevant information from

their environment. Since animals have got very good at this during evolution, engi-

neers have a lot to learn from the computational principles underlying the perceptual

abilities of animals.

In mammals, the cerebral cortex is largely responsible for interpretation and ex-

traction of relevant information. The perceptual abilities of cerebral cortex include

learning to make relevant sensory discriminations, segmentation of objects and at-

tentional selection of relevant objects.

In this article, we focus on segmentation. However, it is important to recognise

that segmentation cannot be isolated from the other components. For example, when

segmenting objects in a visual scene, one typically has to be able to recognise the

individual objects to know which parts go with which object. On the other hand,
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recognition usually requires one to segment out the object first. It is therefore im-

possible to achieve good performance by neatly separating the process into two

consecutive stages of segmentation and recognition. Nevertheless, this is what is

usually done in machine vision: first segment the object and then recognise it.

The cerebral cortex seems to take a different approach: segmentation and recog-

nition are combined into an iterative, dynamical process. The goal of this article is

to study such a process from an engineering perspective. We combine bottom-up

biological inspiration with top-down demands and restrictions of the engineering

problem of interpreting and extracting useful information for the environment.

This article is an extension of a conference paper [10]. In the conference ver-

sion, we only had results on the simplified segmentation problem (see Section 5.1),

where only one feature for each object in each area could be active, which makes

the problem nonrealistic. In the current version, we also include a more realistic

segmentation problem (see Section 5.2) where many features can be active.

The rest of the article is structured as follows. Section 2 gives a background on

segmentation by coupled oscillators and on biased competition model for attention

and learning. In Section 3 we list the desired emergent properties that we would

like to have in our model. We start from high-level phenomena and work our way

towards details. Section 4 gives the definition of a model that has such properties,

which is then experimentally confirmed in Section 5, followed by discussion in Sec-

tion 6.

2 Background

In this section, we will first introduce Gestalt principles which form the basis for

segmentation. Next, we discuss segmentation by coupled oscillators. Finally, we

introduce biased competition model for attention and learning. Our goal in this pa-

per is to apply segmentation with coupled oscillators to models which use biased

competition for perception and learning.

2.1 Gestalt principles

When we humans see a new object, we may not know its identity but we can never-

theless tell what is part of the object and what is not. In other words, we are able to

segment out an object without having seen it before.

In perceptual psychology, the rules of the organisation of perceptual scenes are

called Gestalt principles [12]. Psychologists have identified several principles, such

as proximity, common fate, similarity, continuity, closure, symmetry and convex-

ity. The Gestalt principle of continuity is illustrated in Figure 1a, where the human

visual system groups some of the line segments to form a circle.
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(a) (b)

Fig. 1 a) Because of the Gestalt principles, a circle is perceived rather than some other grouping

of the lines. b) Gestalt grouping of the neurons. The lines are features coded by different neurons.

The shades of gray illustrate the connection strengths between the neurons on the right and the

neuron on the left, darker meaning stronger. The lateral connections are stronger when the Gestalt

principle is better fulfilled.

What makes the Gestalt principles interesting in the current context is that they

can be learnt from data. In neural terms, the Gestalt principles can be implemented

by giving positive connections between certain neurons in one area and some other

neurons in an adjacent area. Learning the connections can be based on simple cor-

relations found in the data. For example, features responding to lines of certain

orientation in one part of the visual field are more probably co-activated with fea-

tures of similar orientation in some other part of the visual field. This mechanism is

illustrated in Fig. 1b.

These “neural” Gestalt rules can be learnt from the data and they operate on the

level on individual feature-coding neurons. The principle is therefore applicable to

any modality and also between modalities unlike, for example, many segmentation

procedures that make use of the spatial structure of visual images. Moreover, the

neural Gestalt rules can be learnt locally and in parallel. In the visual domain this

means that the local correlations found in familiar objects generalise to new objects

which have different overall shapes but nevertheless obey the same local correla-

tions.

2.2 Segmentation by coupled oscillators

In the cerebral cortex, the representation of objects is distributed. For instance,

colour and movement are represented in different visual cortical areas in humans

and other primates. Moreover, the brain represents the objects in many levels of ab-
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straction. For instance, the cerebral cortex can recognise and represent the identity

(lion or hammer), category (predator or tool) and emotional significance (dangerous

or useful) of objects.

Since there are typically multiple objects present in the world, the brain needs

to represent which feature belong together. Von der Malsburg [9] suggested that

the brain would achieve this by a temporal code, by synchronising the neural firing

of the neurons which represent features belonging together. Such object-specific

synchronisation was found experimentally by Gray and Singer [6] and Eckhorn et al

[5].

From an engineering perspective, segmentation by synchronisation of coupled

oscillators seems to be an attractive option because it should be able to work in a

hierarchical neural network. Such networks are used in practice when recognising

objects. It should therefore be possible to combine segmentation and recognition

into an iterative process that solves both problems at the same time.

Modelling work has shown that coupled oscillators are able to synchronise their

firing under suitable conditions (for a review, see e.g. [7]). This property has also

been used for segmentation in many models (e.g., [15, 2]; for a recent review, see

[13]).

2.3 Biased competition model for attention and learning

Based on psychophysical experiments, contextual (predominantly top-down) bias-

ing of local lateral competition had been proposed as a model of covert attention

in humans [4]. Usher and Niebur [14] then suggested a computational model for

biased competition that has been shown to replicate many attentional phenomena,

for instance both bottom-up and top-down aspects of attention [3].

Deco and Rolls [3] also showed that it is possible to learn the weights for con-

textual biasing by the mechanism outlined in Section 2.1. In other words, the neural

Gestalt rules can be applied in a relatively straight-forward manner to implement

selective attention.

Yli-Krekola [17] combined biased competition model with competetive learning.

This model not only supports attention but forms a good basis for learning hierar-

chical feature representations suitable for categorising objects. The model already

includes the lateral connections which can be used for segmentation. However, the

model selects just one object. This makes it difficult to correctly segment objects if

there are features which could belong to more than one object. For segmentation,

it would usually be better that each feature is assigned to the object where it fits

best. Such an assignment is in practice possible only if the model represents several

objects at once or sequentially.

Yli-Krekola et al [18] added a habituation mechanism to the model. The purpose

was to make the model switch between different objects and thus improve the seg-

mentation capability. In this paper we further develop the model by replacing the ha-

bituationmechanism by oscillators. Essentially we are combining coupled-oscillator
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models with biased competition model. This development is a step towards models

which would support learning, segmentation and selection of relevant objects in a

hierarchical network.

3 Design for Emergence

Our goal is to combine the oscillator ideas (Section 2.2) with the biased competition

model (Section 2.3). Both oscillations and competition are found on cerebral cortex

so they should be compatible.

The overall structure of our network is such that there are so called areas that

correspond to patches in the image. The areas get bottom-up input from the pixels.

The areas should be connected to each other with local interactions only, that is,

there is no hierarchy or global signals. The different areas should work in the same

way, using the same algorithms.

We start from four high-level emergent properties and continue with require-

ments for one area that would lead to those properties.

3.1 Expected Emergent Properties

A1 The network should integrate information from local patches. When seeing

an object, the local features belonging to it should start to oscillate. The local

features strengthen each other if the features are compatible, for instance in the

sense that an edge is continuous. These pairwise connections translate into the

gain of the whole population corresponding to the object.

A2 When a scene contains many objects or many different interpretations, the

object with globally highest gain emerges. The attention is thus drawn to the

most obvious object.

A3 The oscillations of an object should synchronise internally and completely.

Not only should pieces of objects synchronise to each other, but the synchrony

should spread to the whole population.

A4 When there are multiple objects in a scene, they should desynchronise be-

tween each other. When using only local connections, this can of course only

happen when the objects overlap. This should not be considered as restrictive as

it might first sound.When building a hierarchical representation of the scene, ob-

jects do “overlap” on high-level representations with large receptive fields, even

if they do not on the pixel level or on the local feature level.
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3.2 Requirements for One Area

We hope to accomplish the above emergent high-level properties by incorporating

the following low-level properties in a single area.

B1 Not many neurons (e.g., less than one percent) should be active at the same

time. This is required for attention (A2).

B2 The activity or oscillation of a single neuron should not grow without limits

regardless of the strength of the bottom-up input or lateral support.

B3 Without any lateral support from other areas, the neuron should not start to

oscillate clearly.

B4 With constant lateral support, the oscillation should become clearer.

B5 With oscillating lateral support, the neuron should oscillate with the same

frequency and phase as the lateral input.

B6 The amplitude of the oscillation should describe the bottom-up activation and

the oscillation of the lateral support. The requirements B2–B6 are the basic re-

quirements for the oscillatory system in general (A1).

B7 As the different neurons in an area compete for their time to become active

(as required in B1), their oscillations should become antisynchronised, that is, the

phase differences in lateral inputs should become even stronger in the activations.

This should lead into global desynchronisation (A4).

B8 The change from one neuron being active to another being active, should hap-

pen quickly and completely. This should help in finding a clear separation be-

tween the segments (A3).

4 Implementation

We propose a model that has the above properties. Since the full model is rather

complicated, we start by defining a single oscillator and show how it works, and

only then expand it to the full model with several areas each consisting of several

neurons.

4.1 Single Oscillator Model

We start by introducing a single oscillator (or neuron) consisting of a pair of sig-

nals, called activity x(t) and inhibition y(t). The pair works a bit like cos and sin

functions that are each other’s derivatives with one minus sign: cos′(t) = −sin(t)
and sin′(t) = cos(t). The system is activated by a bottom-up input u(t) and it has

intrinsic Gaussian noise nk(t).



Oscillatory Neural Network for Image Segmentation 7

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Fig. 2 An experiment with a single neuron. The time series of the activity x(t) is shown in black,

and the inhibition y(t) in green. The bottom-up input u(t) is one until t=100 and zero after that.

x(t+ 1) =
[

(1−α1)x(t)−β1y(t)+ γu(t)+ ε1n1(t)
]

+
/δ (1)

y(t+ 1) =
[

(1−α2)y(t)+β2x(t)+ ε2n2(t)
]

+
(2)

nk(t)∼ N(0,1) (3)

[x]+ =max(0,x) =
x+ |x|

2
(4)

We use a nonlinearity [·]+ to keep all the signals positive. This is important to ensure

that the negative terms such as the inhibition −β1y(t) cannot activate the system.

Parameters α,β , . . . are positive numbers whose values are given in Table 4.2.

Figure 2 shows how the system responds to a bottom-up input that first activates

the oscillator at time after t = 0, and then shuts it down after t = 100. As required

in B3, the oscillation does not have a constant frequency, but it is heavily affected

by noise instead. This will help the system to adapt to other signals when the model

is enriched below. Note also that the response is true to the bottom-up input in the

sense that when the input disappears, the activity x(t) diminishes very quickly.

4.2 Full Model Definition

In the full model, each neuron i= 1 . . .n has five non-negative signals at time t, the

bottom-up input ui(t), the output activity xi(t), the inhibition yi(t), the gain control

gi(t), and the lateral support vi(t). The neurons are organised in areas a = 1 . . .A
such that each neuron i belongs to exactly one area a(i).W is an n×n non-negative 1

weight matrix that has been learned separately. The weights are assumed symmetric

(Wi j =Wji) and the diagonal elements are zero (Wii = 0).

The discrete time dynamics of the signals are as follows:

1 Negative coupling strengths were found harmful for synchronisation in [1] in a slightly different

context.
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xi(t+ 1) =
[

(1−α1)xi(t)−β1yi(t)+ (ζ1vi(t)+ γ)ui(t) (5)

−η1 ∑
j∈a(i)

x j(t)+ ε1n1i(t)
]

+
/[gi(t+ 1)+ δ ]

yi(t+ 1) =
[

(1−α2)yi(t)+β2xi(t)+ ζ2vi(t)ui(t) (6)

−η2 ∑
j∈a(i)

y j(t)−θ ∑
j∈a(i)

x j(t)+ ε2n2i(t)
]

+

gi(t+ 1) = (1−α3)gi(t)+α3

[

(1−κ)xi(t)+κ
∑ j∈a(i) x j(t)

|a(i)|

]

(7)

vi(t) = ∑
j

Wi jxi(t) (8)

nki(t)∼ N(0,1) (9)

The nonlinearity [·]+ picks the positive part of the input. The bottom-up in-

put feeds the activity especially if it has lateral support, see the term (ζ1vi(t) +
γ)ui(t). A competition of activities within an area (B1) is produced by the term

−η1 ∑ j∈a(i) x j(t). The activities are saturated (B2) by dividing by the gain control

signal plus constant, gi(t)+δ . The inhibition signal yi(t) has many similar terms as

the activity itself. The gain control signal gi(t) is a running average of the activity

of the single neuron and the average activity in the area. The lateral support signal

vi(t) is only an auxiliary variable that collects the activities of other neurons mapped

through the weight matrixW.

We used the parameter values given in Table 4.2. The parameters were found by

tuning them by hand in order to achieve the desired properties described in the previ-

ous section. The signals were initialized to zeroes, that is, xi(1) = yi(1) = gi(1) = 0.

α1 α2 α3 β1 β2 γ δ ε1 ε2 ζ1 ζ2 η1 η2 θ κ

0.4 0.05 0.01 0.2 0.2 0.05 0.3 0.01 0.01 0.4 0.12 0.09 0.09 0.02 0.7

Table 1 Values of parameters used in the experiments.

4.3 Example with a Single Area

As a simple experiment, we used only a single area a = 1 and three neurons i =
1,2,3. The bottom-up input ui(t) = 1 is a constant 1 for each neuron the whole

time. Instead of modelling the lateral support with Equation (8), we used the signals

vi(t) shown in the top-most subfigure of Figure 3, where two neurons get oscillating

lateral support, but the third one does not.
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Fig. 3 An experiment with a single area. Each subplot shows the signals as a function of time t ,

from top to bottom, lateral support vi(t), output activity xi(t), inhibition yi(t), and the gain control

gi(t). Each colour corresponds to one neuron i. Note that the bottom-up input ui(t) is a constant 1
for all neurons.

The resulting signals are shown in Figure 3. The two neurons with oscillating

lateral support start to oscillate strongly, whereas the third neuron only very mildly

(see requirements B3–B6). Note that the active phases in xi(t) are better separated
than in the lateral support vi(t) (B7). This is a good property that will help to separate
the oscillations of separate object to have separate phases (A4).

5 Experiments in Image Segmentation

We generated artificial data for the image segmentation problem. Grey scale images

of 30×30 pixels that each contain one object as shown in Figure 4. The images were

divided into 5×5 areas of 10×10 pixels each with 5 pixel overlap in each direction.

Because of overlapping areas, the grey scale values were multiplied with a kernel
√

(1+ cos(φ))/2 in both horizontal and vertical directions where φ goes from −π
to π within the 10 pixel segment. The patches from each area of 10000 examples

were pooled into one and 64 features were learned with k-means clustering. The

features looked like 63 different curve segments and one empty feature.
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Fig. 4 Left: Example images from the training data. Right: Some of the learned weights. Each

subfigure shows the sum of all the weights corresponding to the feature in the middle patch.

5.1 Simplified Segmentation

We transformed the data into binary activations of the features such that exactly one

of the 64 features i got ui(t) = 1 for all t (the nearest prototype vector in k-means),

and the others have ui(t) = 0 for all t. The empty feature was then dropped out.

Weights were learned by computing the correlation coefficient ρi j for each feature

over the data set and setting Wi j = ρ0.7
i j when ρi j ≥ 0.06 and Wi j = 0 otherwise.

Using sparse connectivity is important for computational efficiency. Some of the

weights are visualized in Figure 4. Note that all the weights within each area are

zero, because there can be no correlations when only one unit in an area could be

active at a time.

For testing the segmentation, we introduced two objects into the same image, as

shown in Figure 5. We simplified the problem such that we found (at most) one ac-

tive feature for each object in each area, and combine the activations only afterwards

(see middle row in Figure 5). This way we ensured that similar features activated by

just one contour do not start to compete with each other.

The results are shown in Figure 6. The activities caused by the two object start to

oscillate with opposite phases (A1–A4) and the segmentation happens in just a few

wavelengths of the system. The activities xi(t) at times t = 101 . . .300 were fed into
non-negative matrix factorisation [8] (NMF) in order to represent them compactly

as a product of two time series and two sets of features. The two sets of features are

shown in the result figure and they show the two objects well separated.

5.2 Real Segmentation

The previous experiment was unrealistic in the sense that we had at most one feature

active for each object. Next, we made the combination of the objects on the pixel
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Fig. 5 Two objects are inserted into the same image as a test case for segmentation. The top row

shows the generated and combined images, the middle row shows the activated features without

the overlap, and the bottom row shows the activated features with overlap which is also the recon-

struction of the images based on the feature activations.
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225 230 235 240 245 250 255
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Fig. 6 Simplified segmentation. Left: The activities xi(t) corresponding to the middle patch (top)

and the patch below it (bottom) plotted as a function of t . Note that the largeness of the first peaks

could be easily avoided with a reasonable non-zero initialisation for the gain control gi(1). Top
right: The reconstruction of images based on the activities xi(t) at different times t . Bottom right:

The segmentation result obtained from non-negative matrix factorisation of the signals xi(t).

level (see top right patch in Figure 5 for an example). With using the same features

learned by k-means, we still give have activity ui(t)= 1 for the best matching feature

i, but we also gave activities u j(t) between 0 and 1 depending on how well they

match the data.2 The empty feature was dropped out again. Lateral weights (see

right side of Figure 4) were relearned with these new activations. The most notable

2 ui(t) = exp[−8‖p− fi‖
2/(0.3+ ‖p‖2)]/max j exp[−8‖p− f j‖

2/(0.3+ ‖p‖2)], where p is the

patch of data and fi is the feature i.
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Fig. 7 Real segmentation. Left: The activities xi(t) corresponding to the middle patch (top) and

the patch below it (bottom) plotted as a function of t . The activities are given for the top-most data

sample (same as in Figure 6). Top right: The segmentation result obtained from NMF analysis of

the signals xi(t). First column from the left is the data, second column is the reconstruction from

the feature activities, third and fourth columns are segmented objects.
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Fig. 8 Real segmentation. Horizontal rows show the signals xi(t) as a function of t for neurons

whose (constant) input activity ui(t) is greater than 0.2. The neurons are sorted based on the NMF

results such that the neurons corresponding more to the first segmented object (third column in the

right subfigure of Fig. 7) are on the top. Left subfigure is for the first sample (top row on the right

subfigure of Fig. 7), and the right subfigure is for the second sample.

difference of the lateral weights to the simplified case, is that now the connections

within a single area have non-zero weights.

Figure 7 shows the results. The shown activities are not quite as clear and regular

as in the simplified segmentation problem. This can be explained by the fact that

when one object activates more than one feature in an area, the neurons activations

start to compete a little. On the other hand, the features that are correlated in data

support each other with lateral weights, which seems to overcome the disturbing

competition. The segmentation is succesful in most cases, but fails with difficult

cases like the bottom example. Figure 8 reveals some more details about the oscil-
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lations. Synchronisation of activities within an object are almost perfect, but in the

second case, the different objects are not in complete antisynchrony; actually they

have different frequencies.

6 Conclusion and Discussion

We have shown preliminary but promising results of a system that combines os-

cillations for segmentation and biased competition for attention. The problem of

finding the subset of features that best support each other to form objects is a very

difficult one. Instead of making an exhaustive (exponentially difficult) search for

such subsets, our approach solves it by using the emergent properties of oscillators.

Experiments confirm that it takes only a few wave-lengths before the oscillations

synchronise to find the objects.

The authors are not aware of any previous work on using oscillating neural net-

works for image segmentation being able to use the continuity of edges. Most work

seems to consider pixel intensities directly. Also, many works seem to have some

global signals, whereas the current work is completely based on local computations.

Our current implementation may be excessively complex, for instance, it is very

likely that some of the terms in the system dynamics described in Equations (5–9)

could be left out by changing the other parameters. In the future, we hope to make it

as simple as possible. We would also like to set the parameter values automatically

in order to achieve as fast and accurate segmentation as possible. A non-zero initial

value for the gain control signal gi(1) would diminish the large first peaks seen in

Figures 6–8.

The computational complexity of the proposed system is very high even though

we already use a sparse connection matrix W. There are many ways to make the

system faster. Firstly, we could skip modelling the activations of neurons that do

not get enough bottom-up input. This way, we would miss the phenomenon of false

contours, though. Secondly, we could change the time-scale of the system such that

one would need fewer time points to see the oscillations settle down. Thirdly, a

parallel implementation of the system would be very efficient due to the design of

local computations only. Fourthly, instead of modelling the oscillation explicitly,

one could model variables such as the amplitude and the phase of a neurons activity,

just like in the Kuramoto model [11, 16]. This way would lose some of the expres-

siveness of the model. For instance, in Figure 7, one of the neurons has two different

sized peaks within one period.

Experimentation with real (or at least more realistic) data would reveal more

properties about the proposed model. The fact that the image segmentation exper-

iment concentrated on continuity of edges, was an outcome of the used ring-like

data. The Gestalt principle was not imposed on the model but it was learned from

the regularities in the data. Simply by changing the data for instance such that each

object is filled with a particular colour, the same model would have worked quite

differently: We would expect it to segment objects based on the colour.
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A natural extension of the current work is to further bias the competition with

connections from other parts of a larger network. For instance, if the system is look-

ing for food, the food-like objects should draw the attention more easily than others.

We hypothesise that oscillations would synchronise also hierarchically and not just

laterally as in the current model, but testing this is left as future work.

References

[1] Breve FA, Zhao L, Quiles MG, Macau EEN (2009) Chaotic phase synchro-

nization and desynchronization in an oscillator network for object selection.

Neural Networks 22(5–6):728–737

[2] Choe Y, Miikkulainen R (1998) Self-organization and segmentation in a lat-

erally connected orientation map of spiking neurons. Neurocomputing 21(1–

3):139–158

[3] Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention

and invariant object recognition. Vision Research 44:621–642

[4] Desimone R, Duncan J (1995) Neural mechanisms of selective visual atten-

tion. Annual Review of Neuroscience 18:193–222

[5] Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck

HJ (1989) Coherent oscillations: A mechanism of feature linking in the vi-

sual cortex? Multiple electrode and correlation analyses in the cat. Biological

Cybernetics 60:121–130

[6] Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orien-

tation columns of cat visual cortex. Proceedings of the National Academy of

Sciences 86:1698–1702

[7] Hoppensteadt FC, Izhikevich EM (1997)Weakly Connected Neural Networks.

Springer

[8] Hoyer PO (2004) Non-negative matrix factorization with sparseness con-

straints. Journal of Machine Learning Research 5:1457–1469

[9] von der Malsburg C (1981) The correlation theory of brain function. Tech.

Rep. Internal Report 81-2, MPI Biophysical Chemistry, Gttingen, Germany

[10] Raiko T, Valpola H (2010) Oscillatory neural network for image segmentation

with biased competition for attention. In: Proceedings of the Brain Inspired

Cognitive Systems (BICS 2010) symposium, Madrid, Spain

[11] Strogatz S (2000) From Kuramoto to Crawford: Exploring the onset of syn-

chronization in populations of coupled oscillators. Physica D(143):1–20

[12] Todorovic D (2008) Gestalt principles. Scholarpedia 3(12):5345

[13] Ursino M, Magosso E, Cuppini C (2009) Recognition of abstract objects

via neural oscillators: Interaction among topological organization, associative

memory and gamma band synchronization. IEEE Transactions on Neural Net-

works 20(2):316–335



Oscillatory Neural Network for Image Segmentation 15

[14] Usher M, Niebur E (1996) Modeling the temporal dynamics of it neurons in

visual search: A mechanism for top-down selective attention. Journal of Cog-

nitive Neuroscience 8:311–327

[15] Wang DL, Terman D (1995) Locally excitatory globally inhibitory oscillator

networks. IEEE Transactions on Neural Networks 6:283–286

[16] Y Kuramoto HA (1984) Chemical Oscillations, Waves and Turbulence.

Springer, Berlin

[17] Yli-Krekola A (2007) A bio-inspired computational model of covert attention

and learning. Master’s thesis, Helsinki University of Technology, Finland
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