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Abstract We study the emergent properties of an artificial neural network which
combines segmentation by oscillations and biased competition for perceptual pro-
cessing. The aim is to progress in image segmentation by mimicking abstractly the
way how the cerebral cortex works. In our model, the neurons associated with fea-
tures belonging to an object start to oscillate synchronously, while competing ob-
jects oscillate with an opposing phase. The emergent properties of the network are
confirmed by experiments with artificial image data.

1 Introduction

The success of animals depends on their ability to extract relevant information from
their environment. Since animals have got very good at this during evolution, engi-
neers have a lot to learn from the computational principles underlying the perceptual
abilities of animals.

In mammals, the cerebral cortex is largely responsible for interpretation and ex-
traction of relevant information. The perceptual abilities of cerebral cortex include
learning to make relevant sensory discriminations,segmentation of objects and at-
tentionalselection of relevant objects.

In this article, we focus on segmentation. However, it is important to recognise
that segmentation cannot be isolated from the other components. For example, when
segmenting objects in a visual scene, one typically has to beable to recognise the
individual objects to know which parts go with which object.On the other hand,
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recognition usually requires one to segment out the object first. It is therefore im-
possible to achieve good performance by neatly separating the process into two
consecutive stages of segmentation and recognition. Nevertheless, this is what is
usually done in machine vision: first segment the object and then recognise it.

The cerebral cortex seems to take a different approach: segmentation and recog-
nition are combined into an iterative, dynamical process. The goal of this article is
to study such a process from an engineering perspective. We combine bottom-up
biological inspiration with top-down demands and restrictions of the engineering
problem of interpreting and extracting useful informationfor the environment.

The rest of the article is structured as follows. Section 2 gives a background on
segmentation by coupled oscillators and on biased competition model for attention
and learning. In Section 3 we list the desired emergent properties that we would
like to have in our model. We start from high-level phenomenaand work our way
towards details. Section 4 gives the definition of a model that has such properties,
which is then experimentally confirmed in Section 5, followed by discussion in Sec-
tion 6.

2 Background

In this section, we will first introduce Gestalt principles which form the basis for
segmentation. Next, we discuss segmentation by coupled oscillators. Finally, we
introduce biased competition model for attention and learning. Our goal in this pa-
per is to apply segmentation with coupled oscillators to models which use biased
competition for perception and learning.

2.1 Gestalt principles

When we humans see a new object, we may not know its identity but we can never-
theless tell what is part of the object and what is not. In other words, we are able to
segment out an object without having seen it before.

In perceptual psychology, the rules of the organisation of perceptual scenes are
called Gestalt principles [9]. Psychologists have identified several principles, such
as proximity, common fate, similarity, continuity, closure, symmetry and convex-
ity. The Gestalt principle of continuity is illustrated in Figure 1a, where the human
visual system groups some of the line segments to form a circle.

What makes the Gestalt principles interesting in the current context is that they
can be learnt from data. In neural terms, the Gestalt principles can be implemented
by giving positive connections between certain neurons in one area and some other
neurons in an adjacent area. Learning the connections can bebased on simple cor-
relations found in the data. For example, features responding to lines of certain
orientation in one part of the visual field are more probably co-activated with fea-
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(a) (b)

Fig. 1 a) Because of the Gestalt principles, a circle is perceived rather than some other grouping
of the lines. b) Gestalt grouping of the neurons. The lines are features coded by different neurons.
The shades of gray illustrate the connection strengths between the neurons on the right and the
neuron on the left, darker meaning stronger. The lateral connections are stronger when the Gestalt
principle is better fulfilled.

tures of similar orientation in some other part of the visualfield. This mechanism is
illustrated in Fig. 1b.

These “neural” Gestalt rules can be learnt from the data and they operate on the
level on individual feature-coding neurons. The principleis therefore applicable to
any modality and also between modalities unlike, for example, many segmentation
procedures that make use of the spatial structure of visual images. Moreover, the
neural Gestalt rules can be learnt locally and in parallel. In the visual domain this
means that the local correlations found in familiar objectsgeneralise to new objects
which have different overall shapes but nevertheless obey the same local correla-
tions.

2.2 Segmentation by coupled oscillators

In the cerebral cortex, the representation of objects is distributed. For instance,
colour and movement are represented in different visual cortical areas in humans
and other primates. Moreover, the brain represents the objects in many levels of ab-
straction. For instance, the cerebral cortex can recogniseand represent the identity
(lion or hammer), category (predator or tool) and emotionalsignificance (dangerous
or useful) of objects.

Since there are typically multiple objects present in the world, the brain needs
to represent which feature belong together. Von der Malsburg [8] suggested that
the brain would achieve this by a temporal code, by synchronising the neural firing
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of the neurons which represent features belonging together. Such object-specific
synchronisation was found experimentally by Gray and Singer [5] and Eckhorn et al
[4].

From an engineering perspective, segmentation by synchronisation of coupled
oscillators seems to be an attractive option because it should be able to work in a
hierarchical neural network. Such networks are used in practice when recognising
objects. It should therefore be possible to combine segmentation and recognition
into an iterative process that solves both problems at the same time.

Modelling work has shown that coupled oscillators are able to synchronise their
firing under suitable conditions (for a review, see e.g. [6]). This property has also
been used for segmentation in many models (e.g., [12, 1]; fora recent review, see
[10]).

2.3 Biased competition model for attention and learning

Based on psychophysical experiments, contextual (predominantly top-down) bias-
ing of local lateral competition had been proposed as a modelof covert attention
in humans [3]. Usher and Niebur [11] then suggested a computational model for
biased competition that has been shown to replicate many attentional phenomena,
for instance both bottom-up and top-down aspects of attention [2].

Deco and Rolls [2] also showed that it is possible to learn theweights for con-
textual biasing by the mechanism outlined in Sec. 2.1. In other words, the neural
Gestalt rules can be applied in a relatively straight-forward manner to implement
selective attention.

Yli-Krekola [13] combined biased competition model with competetive learning.
This model not only supports attention but forms a good basisfor learning hierar-
chical feature representations suitable for categorisingobjects. The model already
includes the lateral connections which can be used for segmentation. However, the
model selects just one object. This makes it difficult to correctly segment objects if
there are features which could belong to more than one object. For segmentation,
it would usually be better that each feature is assigned to the object where it fits
best. Such an assignment is in practice possible only if the model represents several
objects at once or sequentially.

Yli-Krekola et al [14] added a habituation mechanism to the model. The purpose
was to make the model switch between different objects and thus improve the seg-
mentation capability. In this paper we further develop the model by replacing the ha-
bituation mechanism by oscillators. Essentially we are combining coupled-oscillator
models with biased competition model. This development is astep towards models
which would support learning, segmentation and selection of relevant objects in a
hierarchical network.
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3 Design for Emergence

Our goal is to combine the oscillator ideas (Section 2.2) with the biased competition
model (Section 2.3). Both oscillations and competition arefound on cerebral cortex
so they should be compatible.

The overall structure of our network is such that there are socalled areas that
correspond to patches in the image. The areas get bottom-up input from the pixels.
The areas should be connected to each other with local interactions only, that is,
there is no hierarchy or global signals. The different areasshould work in the same
way, using the same algorithms.

We start from four high-level emergent properties and continue with require-
ments for one area that would lead to those properties.

3.1 Expected Emergent Properties

A1 The network should integrate information from local patches. When seeing
an object, the local features belonging to it should start tooscillate. The local
features strengthen each other if the features are compatible, for instance in the
sense that an edge is continuous. These pairwise connections translate into the
gain of the whole population corresponding to the object.

A2 When a scene contains many objects or many different interpretations, the
object with globally highest gain emerges. The attention isthus drawn to the
most obvious object.

A3 The oscillations of an object should synchronise internally and completely.
Not only should pieces of objects synchronise to each other,but the synchrony
should spread to the whole population.

A4 When there are multiple objects in a scene, they should desynchronise be-
tween each other. When using only local connections, this can of course only
happen when the objects overlap. This should not be considered as restrictive as
it might first sound. When building a hierarchical representation of the scene, ob-
jects do “overlap” on high-level representations with large receptive fields, even
if they do not on the pixel level or on the local feature level.

3.2 Requirements for One Area

We hope to accomplish the above emergent high-level properties by incorporating
the following low-level properties in a single area.

B1 Not many neurons (e.g., less than one percent) should be active at the same
time. This is required for attention (A2).
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B2 The activity or oscillation of a single neuron should not grow without limits
regardless of the strength of the bottom-up input or lateralsupport.

B3 Without any lateral support from other areas, the neuron should not start to
oscillate clearly.

B4 With constant lateral support, the oscillation should become clearer.
B5 With oscillating lateral support, the neuron should oscillate with the same

frequency and phase as the lateral input.
B6 The amplitude of the oscillation should describe the bottom-up activation and

the oscillation of the lateral support. The requirements B2–B6 are the basic re-
quirements for the oscillatory system in general (A1).

B7 As the different neurons in an area compete for their time to become active
(as required in B1), their oscillations should become antisynchronised, that is, the
phase differences in lateral inputs should become even stronger in the activations.
This should lead into global desynchronisation (A4).

B8 The change from one neuron being active to another being active, should hap-
pen quickly and completely. This should help in finding a clear separation be-
tween the segments (A3).

4 Implementation

We propose a model that has the above properties. Since the full model is rather
complicated, we start by defining a single oscillator and show how it works, and
only then expand it to the full model with several areas each consisting of several
neurons.

4.1 Single Oscillator Model

We start by introducing a single oscillator (or neuron) consisting of a pair of sig-
nals, called activityx(t) and inhibitiony(t). The pair works a bit like cos and sin
functions that are each other’s derivatives with one minus sign: cos′(t) = −sin(t)
and sin′(t) = cos(t). The system is activated by a bottom-up inputu(t) and it has
intrinsic Gaussian noisenk(t).

x(t +1) =
[

(1−α1)x(t)−β1y(t)+ γu(t)+ ε1n1(t)
]

+
/δ (1)

y(t +1) =
[

(1−α2)y(t)+ β2x(t)+ ε2n2(t)
]

+
(2)

nk(t) ∼ N(0,1) (3)

[x]+ = max(0,x) =
x + |x|

2
(4)
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Fig. 2 An experiment with a single neuron. The time series of the activity x(t) is shown in black,
and the inhibitiony(t) in green. The bottom-up inputu(t) is one until t=100 and zero after that.

We use a nonlinearity[·]+ to keep all the signals positive. This is important to ensure
that the negative terms such as the inhibition−β1y(t) cannot activate the system.
Parametersα,β , . . . are positive numbers whose values are given in Table 4.2.

Figure 2 shows how the system responds to a bottom-up input that first activates
the oscillator at time aftert = 0, and then shuts it down aftert = 100. As required
in B3, the oscillation does not have a constant frequency, but it is heavily affected
by noise instead. This will help the system to adapt to other signals when the model
is enriched below. Note also that the response is true to the bottom-up input in the
sense that when the input disappears, the activityx(t) diminishes very quickly.

4.2 Full Model Definition

In the full model, each neuroni = 1. . .n has five non-negative signals at timet, the
bottom-up inputui(t), the output activityxi(t), the inhibitionyi(t), the gain control
gi(t), and the lateral supportvi(t). The neurons are organised in areasa = 1. . .A
such that each neuroni belongs to exactly one areaa(i). W is ann×n non-negative
weight matrix that has been learned separately.

The discrete time dynamics of the signals are as follows:

xi(t +1) =
[

(1−α1)xi(t)−β1yi(t)+ (ζ1vi(t)+ γ)ui(t) (5)

−η1 ∑
j∈a(i)

x j(t)+ ε1n1i(t)
]

+
/[gi(t +1)+ δ ]

yi(t +1) =
[

(1−α2)yi(t)+ β2xi(t)+ ζ2vi(t)ui(t) (6)

−η2 ∑
j∈a(i)

y j(t)−θ ∑
j∈a(i)

x j(t)+ ε2n2i(t)
]

+

gi(t +1) = (1−α3)gi(t)+ α3

[

(1−κ)xi(t)+ κ
∑ j∈a(i) x j(t)

|a(i)|

]

(7)
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vi(t) = ∑
j

Wi jxi(t) (8)

nki(t) ∼ N(0,1) (9)

The nonlinearity[·]+ picks the positive part of the input. The bottom-up in-
put feeds the activity especially if it has lateral support,see the term(ζ1vi(t) +
γ)ui(t). A competition of activities within an area (B1) is producedby the term
−η1 ∑ j∈a(i) x j(t). The activities are saturated (B2) by dividing by the gain control
signal plus constant,gi(t)+δ . The inhibition signalyi(t) has many similar terms as
the activity itself. The gain control signalgi(t) is a running average of the activity
of the single neuron and the average activity in the area. Thelateral support signal
vi(t) is only an auxiliary variable that collects the activities of other neurons mapped
through the weight matrixW. WeightsWi j = 0 whenever neuronsi and j are in the
same area.

We used the parameter values given in Table 4.2. The parameters were found by
tuning them by hand in order to achieve the desired properties described in the previ-
ous section. The signals were initialized to zeroes, that is, xi(1) = yi(1) = gi(1) = 0.

α1 α2 α3 β1 β2 γ δ ε1 ε2 ζ1 ζ2 η1 η2 θ κ
0.4 0.05 0.01 0.2 0.2 0.05 0.3 0.01 0.01 0.4 0.12 0.09 0.09 0.02 0.7

Table 1 Values of parameters used in the experiments.

5 Experiments

The experimental part includes two examples. In the first experiment, we show how
a single area syncronises to a fixed lateral input. In the second experiment with
artificial image data, we show how the system segments an image.

5.1 Experiment with a Single Area

In the first experiment, we used only a single areaa = 1 and three neuronsi = 1,2,3.
The bottom-up inputui(t) = 1 is a constant 1 for each neuron the whole time. Instead
of modelling the lateral support with Equation (8), we used the signalsvi(t) shown in
the top-most subfigure of Figure 3, where two neurons get oscillating lateral support,
but the third one does not.

The resulting signals are shown in Figure 3. The two neurons with oscillating
lateral support start to oscillate strongly, whereas the third neuron only very mildly
(see requirements B3–B6). Note that the active phases inxi(t) are better separated
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Fig. 3 An experiment with
a single area. Each subplot
shows the signals as a function
of time t, from top to bottom,
lateral supportvi(t), output
activity xi(t), inhibition yi(t),
and the gain controlgi(t).
Each colour corresponds to
one neuroni. Note that the
bottom-up inputui(t) is a
constant 1 for all neurons.
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than in the lateral supportvi(t) (B7). This is a good property that will help to separate
the oscillations of separate object to have separate phases(A4).

5.2 Experiment in Image Segmentation

We generated artificial data for the image segmentation problem. Grey scale images
of 30×30 pixels that each contain one object as shown in Figure 4. The images were
divided into 5×5 areas of 10×10 pixels each with 5 pixel overlap in each direction.
Because of overlapping areas, the grey scale values were multiplied with a kernel
√

(1+cos(φ))/2 in both horizontal and vertical directions whereφ goes from−π
to π within the 10 pixel segment. The patches from each area of 10000 examples
were pooled into one and 64 features were learned with k-means clustering. The
features looked like 63 different curve segments and one empty feature.

We transformed the data into binary activations of the features such that exactly
one of the 64 featuresi got ui(t) = 1 for all t (the nearest prototype vector in k-
means), and the others haveui(t) = 0 for all t. The empty feature was then dropped
out. Weights were learned by computing the correlation coefficientρi j for each fea-
ture over the data set and settingWi j = ρ0.7

i j whenρi j ≥ 0.06 andWi j = 0 otherwise.
Using sparse connectivity is important for computational efficiency. Some of the
weights are visualized in Figure 4.

For testing the segmentation, we introduced two objects into the same image, as
shown in Figure 5. First we tried to feed the combination on the pixel level (top right
subplot) to activate several features in each area. This ledinto a problem where a
contour from a single object activates more than one feature, which start to compete
with each other and oscillate in different phases. This issue is further discussed in
Section 6. What we did instead, was to go around this problem and find (at most)
one active feature for each object in each area, and combine the activations only
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Fig. 4 Left: Example images from the training data. Right: Some of the learned weights. Each
subfigure shows the sum of all the weights corresponding to the feature in the middle patch.

Fig. 5 Two objects are in-
serted into the same image as
a test case for segmentation.
The top row shows the gen-
erated and combined images,
the middle row shows the
activated features without the
overlap, and the bottom row
shows the activated features
with overlap which is also the
reconstruction of the images
based on the feature activa-
tions.

afterwards (see middle row in Figure 5). This way we ensured that similar features
activated by just one contour do not start to compete with each other.

The results are shown in Figure 6. The activities caused by the two object start
to oscillate with opposite phases (A1–A4) and the segmentation happens in just a
few wavelengths of the system. The activitiesxi(t) at timest = 101. . .300 were fed
into non-negative matrix factorisation [7] in order to represent them compactly as
a product of two time series and two sets of features. The two sets of features are
shown in the result figure and they show the two objects well separated.

6 Conclusion and Discussion

We have shown preliminary but promising results of a system that combines os-
cillations for segmentation and biased competition for attention. The problem of
finding the subset of features that best support each other toform objects is a very
difficult one. Instead of making an exhaustive (exponentially difficult) search for
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Fig. 6 Left: The activitiesxi(t) corresponding to the middle patch (top) and the patch below it
(bottom) plotted as a function oft. Note that the largeness of the first peaks could be easily avoided
with a reasonable non-zero initialisation for the gain control gi(1). Top right: The reconstruction
of images based on the activitiesxi(t) at different timest. Bottom right: The segmentation result
obtained from non-negative matrix factorisation of the signalsxi(t).

such subsets, our approach solves it by using the emergent properties of oscillators.
Experiments confirm that it takes only a few wave-lengths before the oscillations
synchronise to find the objects.

We noticed an important problem in the implementation. Neurons in the same
area that represent correlated features such as edges with only a slight difference in
orientation or location, start to compete with each other. This causes problems since
a single object will in general activate many of such features, which causes un-
wanted competition within a single object. In the current implementation we elimi-
nated this problem in an artificial manner that cannot be usedin a real problem. We
still need to solve this problem by changing the competitionmechanism such that it
would take into account the correlations within an area.

Our current implementation may be excessively complex, forinstance, it is very
likely that some of the terms in the system dynamics described in Equations (5–9)
could be left out by changing the other parameters. In future, we hope to make it as
simple as possible. We would also like to set the parameter values automatically in
order to achieve as fast and accurate segmentation as possible.

The computational complexity of the proposed system is veryhigh even though
we already use a sparse connection matrixW. There are many ways to make the
system faster. Firstly, we could skip modelling the activations of neurons that do
not get enough bottom-up input. This way, we would miss the phenomenon of false
contours, though. Secondly, we could change the time-scaleof the system such that
one would need fewer time points to see the oscillations settle down. Thirdly, a
parallel implementation of the system would be very efficient due to the design of
local computations only.



12 Tapani Raiko and Harri Valpola

A natural extension of the current work is to further bias thecompetition with
connections from other parts of a larger network. For instance, if the system is look-
ing for food, the food-like objects should draw the attention more easily than others.
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