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Abstract We study the emergent properties of an artificial neural agtwhich
combines segmentation by oscillations and biased congefitr perceptual pro-
cessing. The aim is to progress in image segmentation byaking abstractly the
way how the cerebral cortex works. In our model, the neurssscaiated with fea-
tures belonging to an object start to oscillate synchrolypusile competing ob-
jects oscillate with an opposing phase. The emergent piiepaf the network are
confirmed by experiments with artificial image data.

1 Introduction

The success of animals depends on their ability to extréetaat information from
their environment. Since animals have got very good at thigd evolution, engi-
neers have a lot to learn from the computational principhekeulying the perceptual
abilities of animals.

In mammals, the cerebral cortex is largely responsiblerf@arpretation and ex-
traction of relevant information. The perceptual abistf cerebral cortex include
learning to make relevant sensory discriminatiosymentation of objects and at-
tentionalsel ection of relevant objects.

In this article, we focus on segmentation. However, it is @nt@nt to recognise
that segmentation cannot be isolated from the other commgeriéor example, when
segmenting objects in a visual scene, one typically has tabbeto recognise the
individual objects to know which parts go with which obje®©n the other hand,
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recognition usually requires one to segment out the objestt fi is therefore im-
possible to achieve good performance by neatly separatimgtocess into two
consecutive stages of segmentation and recognition. Meless, this is what is
usually done in machine vision: first segment the object bed tecognise it.

The cerebral cortex seems to take a different approach:esgigition and recog-
nition are combined into an iterative, dynamical proce$g goal of this article is
to study such a process from an engineering perspective.oibioe bottom-up
biological inspiration with top-down demands and resiwits of the engineering
problem of interpreting and extracting useful informationthe environment.

The rest of the article is structured as follows. Sectionv2gjia background on
segmentation by coupled oscillators and on biased congetitodel for attention
and learning. In Section 3 we list the desired emergent ptiggethat we would
like to have in our model. We start from high-level phenomand work our way
towards details. Section 4 gives the definition of a mode taa such properties,
which is then experimentally confirmed in Section 5, folla@Axy discussion in Sec-
tion 6.

2 Background

In this section, we will first introduce Gestalt principlesieh form the basis for
segmentation. Next, we discuss segmentation by couplatlatas. Finally, we
introduce biased competition model for attention and leayrOur goal in this pa-
per is to apply segmentation with coupled oscillators to et®dvhich use biased
competition for perception and learning.

2.1 Gestalt principles

When we humans see a new object, we may not know its identityéean never-
theless tell what is part of the object and what is not. In othards, we are able to
segment out an object without having seen it before.

In perceptual psychology, the rules of the organisationes€gptual scenes are
called Gestalt principles [9]. Psychologists have idegdifseveral principles, such
as proximity, common fate, similarity, continuity, clogyuisymmetry and convex-
ity. The Gestalt principle of continuity is illustrated ingere 1a, where the human
visual system groups some of the line segments to form ecircl

What makes the Gestalt principles interesting in the ctircentext is that they
can be learnt from data. In neural terms, the Gestalt priesipan be implemented
by giving positive connections between certain neuronimarea and some other
neurons in an adjacent area. Learning the connections chadesgl on simple cor-
relations found in the data. For example, features respagntdi lines of certain
orientation in one part of the visual field are more probalohactivated with fea-
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Fig. 1 a) Because of the Gestalt principles, a circle is perceiaditer than some other grouping

of the lines. b) Gestalt grouping of the neurons. The linesfeatures coded by different neurons.
The shades of gray illustrate the connection strengthsdsatwhe neurons on the right and the
neuron on the left, darker meaning stronger. The lateratections are stronger when the Gestalt
principle is better fulfilled.

tures of similar orientation in some other part of the vidiedtl. This mechanism is
illustrated in Fig. 1b.

These “neural” Gestalt rules can be learnt from the data lagyglaperate on the
level on individual feature-coding neurons. The princigléherefore applicable to
any modality and also between modalities unlike, for exanmplany segmentation
procedures that make use of the spatial structure of visuayés. Moreover, the
neural Gestalt rules can be learnt locally and in paraltethe visual domain this
means that the local correlations found in familiar objeeseralise to new objects
which have different overall shapes but nevertheless ofeysame local correla-
tions.

2.2 Segmentation by coupled oscillators

In the cerebral cortex, the representation of objects iwiliged. For instance,
colour and movement are represented in different visudlaadrareas in humans
and other primates. Moreover, the brain represents thetshjemany levels of ab-
straction. For instance, the cerebral cortex can recogmdeepresent the identity
(lion or hammer), category (predator or tool) and emotiaigrificance (dangerous
or useful) of objects.

Since there are typically multiple objects present in theldyahe brain needs
to represent which feature belong together. Von der Matsilr suggested that
the brain would achieve this by a temporal code, by synckiogithe neural firing
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of the neurons which represent features belonging togeth&h object-specific
synchronisation was found experimentally by Gray and Sifi§leand Eckhorn et al
[4].

From an engineering perspective, segmentation by synidation of coupled
oscillators seems to be an attractive option because itigt@uable to work in a
hierarchical neural network. Such networks are used intigewhen recognising
objects. It should therefore be possible to combine segatientand recognition
into an iterative process that solves both problems at tne seme.

Modelling work has shown that coupled oscillators are ablgynchronise their
firing under suitable conditions (for a review, see e.g..[B])is property has also
been used for segmentation in many models (e.g., [12, 1} fe@cent review, see
(10)).

2.3 Biased competition model for attention and learning

Based on psychophysical experiments, contextual (presmtly top-down) bias-
ing of local lateral competition had been proposed as a mafdebvert attention
in humans [3]. Usher and Niebur [11] then suggested a cortipotd model for
biased competition that has been shown to replicate maegtethal phenomena,
for instance both bottom-up and top-down aspects of attefig].

Deco and Rolls [2] also showed that it is possible to learnvikaghts for con-
textual biasing by the mechanism outlined in Sec. 2.1. Irothords, the neural
Gestalt rules can be applied in a relatively straight-foduamanner to implement
selective attention.

Yli-Krekola [13] combined biased competition model withnapetetive learning.
This model not only supports attention but forms a good biasitearning hierar-
chical feature representations suitable for categorisirjgcts. The model already
includes the lateral connections which can be used for segtien. However, the
model selects just one object. This makes it difficult to eotlly segment objects if
there are features which could belong to more than one olfjectsegmentation,
it would usually be better that each feature is assigneddmtiject where it fits
best. Such an assignment is in practice possible only if theéelrepresents several
objects at once or sequentially.

Yli-Krekola et al [14] added a habituation mechanism to thedei. The purpose
was to make the model switch between different objects amslithprove the seg-
mentation capability. In this paper we further develop tteelei by replacing the ha-
bituation mechanism by oscillators. Essentially we arelgioaing coupled-oscillator
models with biased competition model. This developmentstep towards models
which would support learning, segmentation and selectfaelevant objects in a
hierarchical network.
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3 Design for Emergence

Our goal is to combine the oscillator ideas (Section 2.2h Wik biased competition
model (Section 2.3). Both oscillations and competitionfatend on cerebral cortex
so they should be compatible.

The overall structure of our network is such that there arealed areas that
correspond to patches in the image. The areas get bottompupfrom the pixels.
The areas should be connected to each other with local atiena only, that is,
there is no hierarchy or global signals. The different askemild work in the same
way, using the same algorithms.

We start from four high-level emergent properties and ca@iwith require-
ments for one area that would lead to those properties.

3.1 Expected Emergent Properties

Al The network should integrate information from local fregs. When seeing
an object, the local features belonging to it should staxdaillate. The local
features strengthen each other if the features are conmédtib instance in the
sense that an edge is continuous. These pairwise conngtténslate into the
gain of the whole population corresponding to the object.

A2 When a scene contains many objects or many differentgreations, the
object with globally highest gain emerges. The attentiothiss drawn to the
most obvious object.

A3 The oscillations of an object should synchronise intdyrend completely.
Not only should pieces of objects synchronise to each oth#rthe synchrony
should spread to the whole population.

A4 When there are multiple objects in a scene, they shoulgniésonise be-
tween each other. When using only local connections, thsofacourse only
happen when the objects overlap. This should not be corsides restrictive as
it might first sound. When building a hierarchical reprea@int of the scene, ob-
jects do “overlap” on high-level representations with &rgceptive fields, even
if they do not on the pixel level or on the local feature level.

3.2 Requirements for One Area
We hope to accomplish the above emergent high-level priegdry incorporating
the following low-level properties in a single area.

B1 Not many neurons (e.g., less than one percent) shouldthve at the same
time. This is required for attention (A2).
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B2 The activity or oscillation of a single neuron should natvg without limits
regardless of the strength of the bottom-up input or latwpport.

B3 Without any lateral support from other areas, the neuhmulsl not start to
oscillate clearly.

B4  With constant lateral support, the oscillation shoulddsee clearer.

B5 With oscillating lateral support, the neuron should b with the same
frequency and phase as the lateral input.

B6 The amplitude of the oscillation should describe thedotup activation and
the oscillation of the lateral support. The requirementsB® are the basic re-
quirements for the oscillatory system in general (Al).

B7 As the different neurons in an area compete for their timbecome active
(asrequired in B1), their oscillations should become gntikronised, thatis, the
phase differences in lateral inputs should become evenggran the activations.
This should lead into global desynchronisation (A4).

B8 The change from one neuron being active to another betigashould hap-
pen quickly and completely. This should help in finding a clegparation be-
tween the segments (A3).

4 Implementation

We propose a model that has the above properties. Since Ilthaddel is rather
complicated, we start by defining a single oscillator andashow it works, and
only then expand it to the full model with several areas eamfsisting of several
neurons.

4.1 Single Oscillator Model

We start by introducing a single oscillator (or neuron) éstirsg of a pair of sig-
nals, called activityx(t) and inhibitiony(t). The pair works a bit like cos and sin
functions that are each other’s derivatives with one mings: £os$(t) = —sin(t)
and sir(t) = cogt). The system is activated by a bottom-up inp(t) and it has
intrinsic Gaussian noisa(t).

X(t+1) = [ (1= ax(t) = Buy(t) + yu(t) + em(t)] /5 (1)

Y(t+1) = [(1- a2y(t) + Bax(t) + eanelt) | )

ne(t) ~ N(0,2) 3)
X+ X

X = max(0,x) = = 4)
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Fig. 2 An experiment with a single neuron. The time series of thivigtx(t) is shown in black,
and the inhibitiory(t) in green. The bottom-up inputt) is one until t=100 and zero after that.

We use a nonlinearity] .+ to keep all the signals positive. This is important to ensure

that the negative terms such as the inhibitiefi;y(t) cannot activate the system.

Parameters, 3,... are positive numbers whose values are given in Table 4.2.
Figure 2 shows how the system responds to a bottom-up inptfitst activates

the oscillator at time after= 0, and then shuts it down aftee= 100. As required

in B3, the oscillation does not have a constant frequendayit lis heavily affected

by noise instead. This will help the system to adapt to otlygrads when the model

is enriched below. Note also that the response is true todttern-up input in the

sense that when the input disappears, the actijttydiminishes very quickly.

4.2 Full Model Definition

In the full model, each neuran=1...n has five non-negative signals at tityehe
bottom-up inpuui(t), the output activity (t), the inhibitiony;(t), the gain control
gi(t), and the lateral support(t). The neurons are organised in ar@as 1...A
such that each neuraelongs to exactly one ar@di). W is ann x nnon-negative
weight matrix that has been learned separately.

The discrete time dynamics of the signals are as follows:

X (t+1) = (1 an)x (1) = B (1) + (Guvi(t) + Y)ui(t) (5)
“my %0+ an®)] /et o]
jeali)
yit+1) = [(1— a2)yi(t) + Baxi(t) + Lavi(t)ui(t) (6)
“n2 Y V-0 Y xi(t)+ent)]
jeali) jea(i)

gi(t+1)=(1-0a3)gi(t) + oz [ (L—K)x(t) + K

Y jeali) Xi (t)] @)

ja(i)]
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vi(t) = 5 Wixi(t) (8)
J
ngi(t) ~N(0,1) (9)

The nonlinearity[-];+ picks the positive part of the input. The bottom-up in-
put feeds the activity especially if it has lateral suppege the term({yvi(t) +
y)ui(t). A competition of activities within an area (B1) is produdeg the term
—N13 jeai)Xj(t). The activities are saturated (B2) by dividing by the gaintoal
signal plus constang; (t) + &. The inhibition signaj; (t) has many similar terms as
the activity itself. The gain control signg|(t) is a running average of the activity
of the single neuron and the average activity in the arealdtkeeal support signal
vi(t) is only an auxiliary variable that collects the activitid®ther neurons mapped
through the weight matridV. Weights\W; = 0 whenever neurorisandj are in the
same area.

We used the parameter values given in Table 4.2. The paresswetee found by
tuning them by hand in order to achieve the desired profsatiscribed in the previ-
ous section. The signals were initialized to zeroes, that(is) = yi(1) = gi(1) =0.

arlax | as |Bu|B| v |d]|la | e |l m|n] 6|k
0.4]0.050.01/0.2]0.2]0.050.3/0.01]0.01]0.4]0.120.090.090.070.7

Table 1 Values of parameters used in the experiments.

5 Experiments

The experimental part includes two examples. In the firsegrpent, we show how
a single area syncronises to a fixed lateral input. In thersbexperiment with
artificial image data, we show how the system segments aneimag

5.1 Experiment with a Single Area

In the first experiment, we used only a single aaeal and three neurorns=1,2, 3.
The bottom-up inputi (t) = 1 is a constant 1 for each neuron the whole time. Instead
of modelling the lateral support with Equation (8), we udesgldignals;(t) shown in
the top-most subfigure of Figure 3, where two neurons gellatieg lateral support,
but the third one does not.

The resulting signals are shown in Figure 3. The two neuraditls @scillating
lateral support start to oscillate strongly, whereas tlirel theuron only very mildly
(see requirements B3-B6). Note that the active phasrgtinare better separated
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than in the lateral suppovi(t) (B7). This is a good property that will help to separate
the oscillations of separate object to have separate plades

5.2 Experiment in Image Segmentation

We generated artificial data for the image segmentationi@nokGrey scale images
of 30x 30 pixels that each contain one object as shown in Figuredifhges were
divided into 5x 5 areas of 1& 10 pixels each with 5 pixel overlap in each direction.
Because of overlapping areas, the grey scale values wet@liea with a kernel

(14 codq®))/2 in both horizontal and vertical directions whegegjoes from—rt
to T within the 10 pixel segment. The patches from each area cdd @@amples
were pooled into one and 64 features were learned with k-melstering. The
features looked like 63 different curve segments and oneyefaature.

We transformed the data into binary activations of the festigsuch that exactly
one of the 64 featureisgot uj(t) = 1 for all t (the nearest prototype vector in k-
means), and the others hayét) = O for allt. The empty feature was then dropped
out. Weights were learned by computing the correlationfaeit pj; for each fea-
ture over the data set and settWy = pﬂ-7 whenpj; > 0.06 andW; = 0 otherwise.
Using sparse connectivity is important for computatiorfitiency. Some of the
weights are visualized in Figure 4.

For testing the segmentation, we introduced two objectstht same image, as
shown in Figure 5. First we tried to feed the combination @ixel level (top right
subplot) to activate several features in each area. Thigwteda problem where a
contour from a single object activates more than one featwhieh start to compete
with each other and oscillate in different phases. Thiseégsuurther discussed in
Section 6. What we did instead, was to go around this probledrfiad (at most)
one active feature for each object in each area, and combéadtivations only
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Fig. 4 Left: Example images from the training data. Right: Somehef fearned weights. Each
subfigure shows the sum of all the weights correspondingetdeiiture in the middle patch.

Fig. 5 Two objects are in-
serted into the same image as

a test case for segmentation. 9 D @
The top row shows the gen-

erated and combined images,
the middle row shows the EEE T
activated features without the
overlap, and the bottom row
shows the activated features
with overlap which is also the
reconstruction of the images U i |
based on the feature activa- q J

tions.

REED

afterwards (see middle row in Figure 5). This way we ensunatigimilar features
activated by just one contour do not start to compete with egloer.

The results are shown in Figure 6. The activities caused &yvtio object start
to oscillate with opposite phases (A1-A4) and the segmient&iappens in just a
few wavelengths of the system. The activitigd) at timest = 101...300 were fed
into non-negative matrix factorisation [7] in order to repent them compactly as
a product of two time series and two sets of features. The et® f features are
shown in the result figure and they show the two objects welhssed.

6 Conclusion and Discussion

We have shown preliminary but promising results of a systieat tombines os-
cillations for segmentation and biased competition foergibn. The problem of
finding the subset of features that best support each otHerrtoobjects is a very
difficult one. Instead of making an exhaustive (exponelytidifficult) search for
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Fig. 6 Left: The activitiesx;(t) corresponding to the middle patch (top) and the patch betow i
(bottom) plotted as a function dfNote that the largeness of the first peaks could be easildedo
with a reasonable non-zero initialisation for the gain colng;(1). Top right: The reconstruction
of images based on the activitiggt) at different timeg. Bottom right: The segmentation result
obtained from non-negative matrix factorisation of thensigx; (t).

e

such subsets, our approach solves it by using the emerggrenies of oscillators.
Experiments confirm that it takes only a few wave-length®teethe oscillations
synchronise to find the objects.

We noticed an important problem in the implementation. Idasrin the same
area that represent correlated features such as edgesnlyita slight difference in
orientation or location, start to compete with each othkisTauses problems since
a single object will in general activate many of such featumghich causes un-
wanted competition within a single object. In the currenpiementation we elimi-
nated this problem in an artificial manner that cannot be usadeal problem. We
still need to solve this problem by changing the competitr@thanism such that it
would take into account the correlations within an area.

Our current implementation may be excessively complexinfstance, it is very
likely that some of the terms in the system dynamics desgriibé&quations (5-9)
could be left out by changing the other parameters. In futneehope to make it as
simple as possible. We would also like to set the parameteesautomatically in
order to achieve as fast and accurate segmentation as lgossib

The computational complexity of the proposed system is @k even though
we already use a sparse connection matvixThere are many ways to make the
system faster. Firstly, we could skip modelling the actiag of neurons that do
not get enough bottom-up input. This way, we would miss trenpimenon of false
contours, though. Secondly, we could change the time-stafe system such that
one would need fewer time points to see the oscillationgesdtiwn. Thirdly, a
parallel implementation of the system would be very effitigume to the design of
local computations only.
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A natural extension of the current work is to further bias toenpetition with
connections from other parts of a larger network. For instaif the system is look-
ing for food, the food-like objects should draw the attentioore easily than others.
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