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a b s t r a c t

Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are important models in
deep learning, but it is often difficult tomeasure their performance in general, or measure the importance
of individual hidden units in specific. We propose to usemutual information tomeasure the usefulness of
individual hidden units in Boltzmann machines. The measure is fast to compute, and serves as an upper
bound for the information the neuron can pass on, enabling detection of a particular kind of poor training
results. We confirm experimentally that the proposed measure indicates how much the performance of
the model drops when some of the units of an RBM are pruned away. We demonstrate the usefulness of
the measure for early detection of poor training in DBMs.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Restricted Boltzmann machines (RBMs) and deep Boltzmann
machines (DBMs) are important models in the field of deep learn-
ing, helping to achieve state-of-the-art performances in many
machine learning tasks. However, bothmodels are known to be dif-
ficult to train (Cho, Raiko, & Ilin, 2013; Cho, Raiko, Ilin, & Karhunen,
2013).

It is often possible to determine the success of training an RBM
or a DBM by observing the performance of the features learned
by the Boltzmann machine (BM) on another task. One important
shortcoming of this approach is thatwe are only given the final and
overall performance of a model. Furthermore, because either an
RBM or a DBM is not trained directly tomaximize the performance
on another task, it is not clear how the final performancemeasured
on that task is related to the actual training of the model.

In this paper we are more interested in the behavior of an RBM
or a DBM during the training phase. We expect that it would be
beneficial to have deeper understanding of the learning dynamics
of a model beyond a mere final performance. Specifically, we are
interested in how the statistical characteristics of each individual
neuron in a BM evolves and how those can be collected during
learning. We claim that collecting and investigating the statistics
of individual neurons is one important way to understand the
underlying factors affecting the learning dynamics of a model.

✩ This paper is an extended version of Berglund, Raiko, and Cho (2013).
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One potential application of observing the statistical charac-
teristics of individual neurons of a BM is in learning its structure.
The statistics of each neuron may reveal its usefulness as well as
how saturated the whole model is, which may allow us to either
prune useless neurons or add more neurons to the model. This ap-
proach of adaptively learning the structure of a model has been
applied to other types of neural networks and probabilistic mod-
els (see, e.g., Adams, Wallach, & Ghahramani, 2010; Engelbrecht,
2001; Reed, 1993; Zhou, Sohn, & Lee, 2012) with the reported ben-
efits of, for instance, a fewer number of hyperparameters (Adams
et al., 2010), better generalization and faster performance (Reed,
1993).

In this paper, we propose that the mutual information between
input data (clamped to the visible neurons) and each individual
hidden neuron measures the statistical importance of each hidden
neuron.

After reviewing RBMs and DBMs in Section 2, we describe the
mutual information (MI) measure for evaluating the importance of
individual hidden units of a BM in Section 3. Experimenting with
RBMs in Section 4, we demonstrate the usefulness of the measure
in pruning and addingneurons aswell as visualizing the progress of
learning. In Section 5, we compare a plain training algorithm with
one using pretraining on DBMs using the proposed MI measure.

2. Boltzmann machines: background

2.1. Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) (Smolensky, 1986) is
a variant of a Boltzmann machine that has a bipartite structure
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such that each visible neuron is connected to all hidden neurons
and each hidden neuron to all visible neurons, but there are no
edges between the same type of neurons (see Fig. 1 (left) for an
illustration). An RBM defines the negative energy of each state
(x,h) by

−E(x,h | θ) = b⊤x + c⊤h + x⊤Wh,

and assigns the following probability to the state via Boltzmann
distribution:

p(x,h | θ) =
1

Z(θ)
exp {−E (x,h | θ)} , (1)

where θ = {b, c,W} is a set of parameters consisting of visible and
hidden biases as well as weights between visible and hidden neu-
rons. Z(θ) is a normalization constant that makes the probabilities
sum up to one.

2.2. Deep Boltzmann machines

A Deep Boltzmann machine (DBM) was proposed by Salakhut-
dinov and Hinton (2009) as a structurally relaxed version of an
RBM. A DBM stacks multiple additional layers of hidden neurons
on the top of an RBM. As was the case with an RBM, consecutive
layers are fully connected, while there is no edge among the neu-
rons in each layer. See Fig. 1 (right) for an illustration of a typical
DBM.

The negative energy function is defined as

−E(x,h | θ) = b⊤x + c⊤

[1]h[1] + x⊤Wh[1]

+

L
l=2


c⊤

[l]h[l] + h⊤

[l−1]U[l−1]h[l]

,

where L is the number of hidden layers. The probability of each
state is assigned as in Eq. (1). The states and biases of the hidden
neurons at the lth hidden layer and the weight matrix between the
lth and (l + 1)th layers are respectively defined by

h[l] =


h[l]
1 , . . . , h[l]

ql

⊤

, c[l] =


c[l]1 , . . . , c[l]ql

⊤

,

U[l] =


u[l]
ij


,

where ql is the number of the neurons in the lth layer and U[l] ∈

Rql×ql+1 .

2.3. Why Boltzmann machines?

The RBM is an important basic building block of deep neural
networks. Hinton and Salakhutdinov (2006) showed that a mul-
tilayer perceptron (MLP) with many hidden layers can be trained
well by greedily pretraining each pair of consecutive layers as an
RBM. Furthermore, deep generativemodels such as deepbelief net-
works and DBMs were found to be easily trainable if the parame-
terswere initialized by greedy layer-wise pretraining using anRBM
(Hinton, Osindero, & Teh, 2006; Salakhutdinov & Hinton, 2009). A
DBM was also found to be effective at initializing the parameters
of an MLP as well (Salakhutdinov & Hinton, 2009, 2012).

Both RBMs and DBMs have been found to be useful on their
own as well. Salakhutdinov, Mnih, and Hinton (2007) showed that
an RBM can be used for collaborative filtering. Recently Srivastava
and Salakhutdinov (2012) showed that a DBM is good at extracting
shared representation of multiple modalities of data. Furthermore,
Lee, Grosse, Ranganath, and Ng (2009) showed that a stack of
convolutional RBMs is able to extract the hierarchical part-based
features in unsupervised way. However, all these achievements by
RBMs and DBMs require that these neural networks were trained
well.
Fig. 1. Left: Example structure of an RBM. Right: Example structure of a DBM.

It is unfortunately not easy to monitor the progress of training
BMs. It is not even easy to evaluate whether the model as a whole
has trained well. The most direct measure for evaluating a BM is
the log-likelihood of a model which is maximized when training a
BM. However, due to the computational intractability of the nor-
malization constant, it is not feasible to use the log-likelihood dur-
ing training. Although it is difficult to obtain even approximations
to the normalization constant (Salakhutdinov, 2008), there are
methods for estimating it with reasonable complexity (Desjardins,
Bengio, & Courville, 2011). However, the log-likelihood does not
provide any detailed description on the contribution of each sub-
part of a BM, which is important if we were to adapt the model
on-the-fly. One strategy for obtaining that information would be
to estimate the log-likelihood for models where one hidden neu-
ron is removed in each estimate, and the biases updated to com-
pensate for the average activation of themissing neuron. Although
potentially a useful measure, it would be rather costly to compute.

Somemonitors have been proposed for visualizing the progress
of training from some perspective. One method notable for
monitoring individual neurons is a visual approach where neuron
activation probabilities are plotted. In the method, one plots
2D-images of activation probabilities of mini-batches where the
axes represent neurons and samples, respectively (Hinton, 2010).
These images are useful for monitoring how individual neurons
perform, and whether there are difficult individual samples in the
data set. However, these images become impractical if the number
of hidden neurons becomes too large.

Hence, in this paper we explore a relatively cheapmeasure that
can be used to evaluate the contribution of each hidden neuron in
an RBM and a DBM without becoming impractical even for large
models.

3. Mutual information measure

Neural networks such asmultilayer perceptrons (MLP) are often
criticized for being a black box. That is, it is difficult to understand
what the subparts of a model, specifically the individual neurons,
are doing. The variance of each hidden neuron has been one choice
of measure for evaluating the effect of each hidden neuron (see,
e.g., Glorot & Bengio, 2010). The underlying rationale is that any
neuron with constant activation across different inputs cannot
convey any discriminative information about input samples.

The variance of each hidden neuron is, however, not applicable
to neural networks having stochastic hidden neurons such as
Boltzmann machines (BM). The variance of the activations of a
single hidden neuron can be large, even though the probability of
the neuron is constant across different inputs. In other words, the
variance of a stochastic neuron is not an appropriate measure of
the (discriminative) information conveyed by the neuron.

We therefore propose to measure the relevant activity (or
importance) of a single hidden neuron hj in BMs by measuring the
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mutual information (MI) between the observation vector (or the
set of the activations of visible neurons) x and the hidden neuron
hj. Specifically, the MI-measure of the hidden unit MIj is

MIj =


hj∈{0,1}


x

P(x, hj) log2


P(hj | x)
P(hj)



=


hj∈{0,1}


− P(hj) log2


P(hj)


+


x

P(x)P(hj | x) log2

P(hj | x)



≈


hj∈{0,1}

T
t=1

1
T
P(hj | xt)


− log2


T

t=1

1
T
P(hj | xt)



+ log2

P(hj | xt)

 
(2)

where we have used an empirical estimate for P(hj) in the final
step.

We use the logarithm with base 2 in order to get the amount of
information as bits. It is easy to show that the mutual information
between the binary hidden neuron hj and the visible neurons x
ranges from 0 to 1 bit and defines the upper bound of the average
information the hidden neuron can convey about the state of the
visible neurons x.

The major part of the computational complexity of the mea-
sure is the computation of P(hj | xt). However, they are computed
during training and validation anyway, so the additional computa-
tional cost of the MI-measure is marginal.

Note that theMI-measure cannotmeasure howwell the hidden
unit works together with the other hidden units. This makes it
impossible to use the proposed MI-measure as a training criterion,
since itmay result in all hidden neurons learning identical features.
However, theMI-measure serves as an upper bound on how useful
the hidden neuron can be for a task the BM is trained for. In other
words, it is possible to tell whether a hidden neuron is useless for
another task by observing its MI-measure. If the MI-measure of a
hidden neuron is close to zero, the hidden neuronwill not be useful
for any further task, as it does not contain any information on
inputs. This becomes a particularly useful measure when training
BMs, as we empirically show later that certain common training
situations yield hidden neurons with very low MI-measures.

4. Experiments on restricted Boltzmann machines

This section studies the use of MI-measure as a measure of the
usefulness of hidden neurons in the case of RBMs by (1) pruning,
(2) adding new hidden neurons during training, and (3) visualizing
the progress of training.

4.1. Pruning neurons after training

We evaluate the contribution of hidden neurons with varying
MI-measures to a simple classification task. We train an RBM
with 4000 hidden neurons on the handwritten digits data set
(MNIST, LeCun, Bottou, Bengio, &Haffner, 1998) anduse the hidden
neuron activations as inputs to a logistic regression classifier. We
then prune 100 hidden neurons at a time in the order of the
MI-measures. We do this both in the ascending and descending
order, in addition to randomly pruning 100 hidden neurons at a
time. The activations of the remaining hidden neurons are then
used as features for the classifier. The RBM is trained with the
adaptive learning rate (Cho, Raiko, & Ilin, 2011).
Fig. 2. The evolution of the classification accuracy while pruning hidden neurons.
The original RBM with 4000 hidden neurons is trained for 1000 epochs.

The results are shown in Fig. 2. As predicted, the classification
performance does not drop markedly in the beginning of pruning
neurons in the ascending order of MI-measure, when the pruned
neurons have a very low MI-measure. On the other hand, when
pruning is done in the descending order of MI-measure, the
classification performance drops significantly faster. Pruning in
random order which is bounded from above and below by the
ascending and descending orders of MI-measure, also resulted in
significantly faster drop compared to pruning in the ascending
order.

When illustrating the filters learned by the 100 neurons with
the highest and lowest MI-measure, respectively, we see in Fig. 4
that the neurons with a high MI-measure also visually look like
filters learned by awell-trained RBM,while the neuronswith a low
MI-measure are considerably more noisy.

We also run a similar experimentwith an RBMhaving 1000 hid-
den neurons which are trained using the enhanced gradient (Cho,
Raiko, & Ilin, 2013). The critical difference to the standard gradi-
ent is that weight matrix element updates are proportional to the
covariance between visible and hidden neurons instead of the dot-
product of their activations. The enhanced gradient is less prone to
hidden layers learning similar features, and has empirically been
shown to yield more hidden neurons learning useful features. The
results of the experiment clearly differ from the previous experi-
ment, in that the drop in classification performance is much less
dependent on whether the pruning is done in the ascending, ran-
dom or descending orders of MI-measure.

As can be seen from Fig. 3, this model differs from the previous
in that all the hidden neurons have a fairly high MI-measure.
Therefore, no hidden neuron has a low enough MI-measure as to
not be able to convey enough information about the observation x.
This clearly reveals that highMI-measure is not always an accurate
indicator of high significance for the classification task—only a
sufficiently low MI-measure can with confidence predict that a
neuron is not useful. In other words, if the MI-measures of most
of the hidden neurons are high enough, one should be cautious in
using the MI-measure as an indicator of the importance of each of
those hidden neurons.

4.2. Adding neurons during training

One potential way to learn an optimal structure of an RBM
would be to add neurons to the hidden layer in the middle of
training. This has been studied by, for instance, Adams et al. (2010)
and Zhou et al. (2012) in the context of denoising autoencoders
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Fig. 3. The evolution of the classification accuracy while pruning hidden neurons.
The original RBM with 1000 hidden neurons is trained for 100 epochs using the
enhanced gradient (Cho, Raiko, & Ilin, 2013).
and deep belief networks. Here, we investigate the effect of adding
more hidden neurons in the middle of training an RBM.

It is, however, possible that adding neurons to a layer of hidden
units where the previous hidden units have been trained for some
timewould not be beneficial, as the added neuronsmight not learn
relevant structures in addition to the already co-adapted hidden
neurons. In order to test that hypothesis, we train an RBM of 500
hidden neurons for 50 epochs, after which we add another set of
500hiddenneurons to themodel and train it for another 50 epochs.
When we add neurons, we reset the adaptive learning rate to the
initial values.

Fig. 5 shows the development of the MI-measures. Clearly the
MI-measures of the newly added hiddenneurons stay considerably
lower than those of the initial 500 hidden neurons. It is also worth
noting that the MI-measures of the added hidden neurons do not
increase over training, unlike those of the initial hidden neurons.

We further use the hidden neuron activations as features for
a logistic regression classifier and compare the performance to
two RBMs that are trained from start to end with 500 and 1000
hidden units, respectively. For comparability, we also reset the
Fig. 4. Illustration of the filters learned by the 100 neurons with the highest MI-measure (left) and the lowest MI-measure (right) for an RBM with 4000 hidden units.
Fig. 5. The MI-measures of the hidden neurons of the RBM where 500 hidden neurons are added in the middle of the training (left) vs. those of the hidden neurons of the
RBM with 1000 hidden neurons from the beginning of training (right). Both models are trained for 100 epochs.
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Fig. 6. (Left) TheMI-measure vs. the entropy of each hidden neuron at different stages of learning. (Right) The variance of the expected activation (Var-E) vs. theMI-measure
of each hidden neuron after 100 epochs.
Table 1
Classification accuracies obtained by the features learned by the RBM with added
hidden neurons and the normal RBM. Reported ranges are standard errors.

Begin
units

500 500 1000 1000

Added
units

– 500 – –

Epochs 100 100 100 50

Accuracy 95.17±0.08% 95.35±0.19% 96.38±0.08% 96.43±0.14%

adaptive learning rate to the initial values after 50 epochs for the
two benchmark models.

Table 1 lists the mean accuracy from ten runs. The performance
of the model with added features is clearly inferior to the model
trained with 1000 hidden neurons for 100 epochs. Even if the
1000 neuron model is only allowed to train for 50 epochs, it still
performs better than the model where we add 500 neurons in the
middle of the training and continue training for 50 epochs.

This result suggests that the proposed MI-measure reflects
well the amount of information carried by the hidden neurons.
From this, we may further hypothesize that it is not easy for the
newly added hidden neuron to learn an informative feature and
is important to have a way to initialize the newly added neurons
(Zhou et al., 2012).

4.3. Relations to entropy and variance

By investigating the definition of the proposed MI-Measure in
Eq. (2), we find two related measures. The first one is the entropy
which is defined by

H(hj) = −


hj∈{0,1}

P(hj) log2

P(hj)


.

This is exactly the first term of theMI-measure, which corresponds
to measuring the amount of information learned by each hidden
neuron without considering the relationship with respect to
observations.

The second measure is the variance of the expected activation,
which we call Var-E. The Var-E is defined as

Var-Ej = Vart

Ehj|xt


hj


.

Thismeasurewas used by Cho, Raiko, and Ilin (2013) to check if the
activation probability of a hidden neuron of an RBM is dependent
on the input. This may be considered in analogy to the second
term of the MI-measure in Eq. (2), considering that the Var-E also
measures the relationship between the hidden neuron and the
input.
In Fig. 6, we show the relationship among these measures in
an RBM with 1000 hidden neurons. As expected from the fact that
theMI-measure reflects the information of the input conveyed by a
hidden neuron, it is clear that the Var-E ismore correlatedwith the
MI-measure than the entropy is. If used as a diagnostic measure to
detect neurons with near-zero MI-measure, Var-E can be used as a
proxy for the MI-measure in cases where such implementation is
easier.

5. Experiments on deep Boltzmann machines

Although deep Boltzmann machines (DBM, Salakhutdinov &
Hinton, 2009) have been used with great success in several
applications (see, e.g. Srivastava & Salakhutdinov, 2012), they are
generally considered difficult to train (Cho, Raiko, Ilin, & Karhunen,
2013; Goodfellow, Mirza, Courville, & Bengio, 2013). One method
for alleviating that difficulty is pretraining.

In this section, we briefly show that the proposed MI-measure
can be used efficiently to detect the failure of training DBMs. To
illustrate this point, we train three DBMs with two layers of 1000
hidden neurons for 100 epochs: the first using ‘‘vanilla’’ Persistent
Contrastive Divergence (Tieleman, 2008), the second one with
two-stage pretraining (Cho, Raiko, Ilin, & Karhunen, 2013) and
the third one with the adaptive learning rate1 (Cho et al., 2011).
We then use a mean-field approximation for the hidden neuron
activations. The hidden neuron activations of both layers of all of
the models are used as features for a logistic classifier.

We achieved an accuracy of 96.6% with pretraining, 93.7%
with the adaptive learning rate and 11.3% without pretraining or
adaptive learning rate. The near-chance performance of the last
case represents a failure case of training DBMs. In Fig. 7 we have
illustrated the MI-measure development during training for the
cases with pretraining and without either pretraining or adaptive
learning rate. We can clearly see that in the latter case of training
failure, the mutual information of, especially, the second layer is
extremely low. The mutual information is in fact so low, that the
entire second layer only conveys on average a maximum of 1.5 ×

10−10 bits of information about the observations in the training
set. This illustration suggests that by observing the proposed
MI-measurewe candetect if theDBMdoes not learnuseful features
of the data.

If we examine the MI-measure of both hidden layers at the end
of training for all the three training cases, we can see in Fig. 8
that without pretraining but with the adaptive learning rate the

1 We limit the learning rate never to exceed 0.0001.
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Fig. 7. The MI-measures of the hidden neurons of the DBMs having two layers of hidden units trained without pretraining (left) and with pretraining (right).
Fig. 8. The MI-measures of the hidden neurons of the DBM first hidden layer (left) and second hidden layer (right) at the end of training for different training options.
DBM training does not fail completely. However, we can see that
almost half of the neurons in the first hidden layer and all of the
neurons in the second hidden layer have a very low MI-measure,
which is in line with the classification performance. Although we
do not propose to use the MI-measure as a sole criterion for model
selection, it can serve as an indicator for how well subparts of the
model have been trained.

6. Discussion

We propose to use the mutual information between the obser-
vation vector and a single hidden unit (MI-measure) for evaluating
the importance of individual hidden neurons of a Boltzmann ma-
chine (BM). We expect that observing the proposed MI-measure
can be useful during training to determine hidden neurons that are
not learning any useful features.
The proposed measure is a useful monitoring tool for training
BMs. The measure is therefore likely to be suitable to speed up
development of training algorithms for BMs. In addition, it could
be used to find better methods for pruning or adding neurons.

By observing the proposed MI-measures of the hidden neurons
of BMs, we were able to notice a number of cases where many hid-
den neurons become non-informative. Firstly, training a large RBM
with the traditional gradient may include a lot of inactive neu-
rons. Secondly, when an RBM has already learned the important
structure of data, we found that it is difficult to add new neurons.
Thirdly, we found that the hidden neurons in the deeper layers of
a deep Boltzmannmachine (DBM)may easily become useless with
standard learning methods used to train RBMs.

The proposed MI-measure, however, has some limitations.
Firstly, the MI-measure, especially in the case of RBMs, effectively
ignores the interaction, or co-adaptation, among multiple hidden
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neurons. This is problematic, since BMs are known to produce very
distributed representation of data. The measure is therefore not
suitable as the sole criterion for e.g. model selection. Secondly, the
MI-measure which was shown to correlate well with the entropy
does not agree with the well known and observed phenomenon
that sparse featureswhich have in general low entropy are good for
manymachine learning tasks including classification. This suggests
that a more accurate measure may be designed by combining the
proposed MI-measure and the entropy, in the future.
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