
Deep Learning Made Easier by Linear Transformations in
Perceptrons

Tapani Raiko Harri Valpola Yann LeCun
Aalto University Aalto University New York University

Abstract

We transform the outputs of each hidden
neuron in a multi-layer perceptron network
to have zero output and zero slope on aver-
age, and use separate shortcut connections
to model the linear dependencies instead.
This transformation aims at separating the
problems of learning the linear and nonlin-
ear parts of the whole input-output mapping,
which has many benefits. We study the the-
oretical properties of the transformation by
noting that they make the Fisher informa-
tion matrix closer to a diagonal matrix, and
thus standard gradient closer to the natural
gradient. We experimentally confirm the use-
fulness of the transformations by noting that
they make basic stochastic gradient learning
competitive with state-of-the-art learning al-
gorithms in speed, and that they seem also
to help find solutions that generalize bet-
ter. The experiments include both classifi-
cation of small images and learning a low-
dimensional representation for images by us-
ing a deep unsupervised auto-encoder net-
work. The transformations were beneficial
in all cases, with and without regularization
and with networks from two to five hidden
layers.

1 Introduction

Learning deep neural networks has become a popu-
lar topic since the invention of unsupervised pretrain-
ing [5]. Some later works have returned to tradi-
tional back-propagation learning and noticed that it
can also provide impressive results given either a so-

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

phisticated learning algorithm [11] or simply enough
computational power [3]. In this work we study back-
propagation learning in deep networks with up to five
hidden layers.

In learning multi-layer perceptron (MLP) networks
by back-propagation, there are known transformations
that speed up learning [10, 13, 14]. For instance, in-
puts are recommended to be centered to zero mean (or
even whitened), and nonlinear functions are proposed
to have a range from -1 to 1 rather than 0 to 1 [10].
Schraudolph [14, 13] proposed centering all factors in
the gradient to have zero mean. This lead to a signifi-
cant speed-up in learning when using shortcut connec-
tions. In this paper, we transform the nonlinearities
in the hidden neurons. The effect is very similar to
gradient factor centering, but transforming the model
instead of the gradient makes it easier to generalize to
other contexts such as variational Bayes. We explain
the usefulness of these transformations by studying the
Fisher information matrix.

It is well known that second-order optimization meth-
ods such as the natural gradient [1] or Newton’s
method decrease the number of required iterations
compared to the basic gradient descent, but they can-
not be easily used with high-dimensional models due
to heavy computations with large matrices. In prac-
tice, it is possible to use a diagonal or block-diagonal
approximation [8] of the Fisher information matrix. If
one has to approximate most of the matrix with ze-
ros anyway, we should use transformations that move
these elements as close to zero as possible.

2 Proposed Transformations

Let us study an MLP-network with a single hidden
layer1 and a shortcut mapping, that is, the output
column vectors yt for each sample t are modelled as a
function of the input column vectors xt with

yt = Af (Bxt) + Cxt + εt, (1)

1The assumption is done for notational simplicity only,
the method is applied in the general deep case.

924

Deep Learning Made Easier by Linear Transformations in Perceptrons

where f is a nonlinearity (such as tanh) applied to each
component of the argument vector separately, A, B,
and C are the weight matrices, and εt is the noise
which is assumed to be zero mean and Gaussian, that
is, p(εit) = N

(
εit; 0, σ2

i

)
. In order to avoid separate

bias vectors that complicate formulas, the input vec-
tors are assumed to have been supplemented with an
additional component that is always one.

Let us supplement the tanh nonlinearity with auxil-
iary scalar variables αi and βi for each nonlinearity fi.
They are not learnt, but instead they will be set in a
manner to help learn the other parameters. We define

fi(bixt) = tanh(bixt) + αibixt + βi, (2)

where bi is the ith row vector of matrix B. An example
fi can be seen in Figure 1. We will ensure that

T∑

t=1

fi(bixt) = 0 (3)

T∑

t=1

f ′
i(bixt) = 0 (4)

by setting αi and βi to

αi = − 1

T

T∑

t=1

tanh′(bixt) (5)

βi = − 1

T

T∑

t=1

[tanh(bixt) + αibixt] (6)

as shown in the appendix.

The effect of the linear transformation can be com-
pensated exactly by updating the shortcut mapping
C by

Cnew = Cold −A(αnew −αold)B

−A(βnew − βold) [0 0 . . . 1] , (7)

where α is a matrix with elements αi on the diagonal
and one empty row below for the bias term, and β is a
column vector with components βi and one zero below
for the bias term.

We also emphasize making the inputs xk zero mean
(and similar in scale) as a preprocessing step (see
e.g. [10]).

Schraudolph [14, 13] proposed centering the factors of
the gradient to zero mean. It was argued that devi-
ations from the gradient fall into the linear subspace
that the shortcut connections operate in, so they do
not harm the overall performance. Transforming the
nonlinearities as proposed in this paper has a simi-
lar effect on the gradient. Equation (3) corresponds
to Schraudolph’s activity centering and Equation (4)
corresponds to slope centering.

3 Intuitive Justification

Second-order optimization methods such as the natu-
ral gradient [1] or Newton’s method decrease the num-
ber of required iterations compared to the basic gradi-
ent descent, but they cannot be easily used with large
models due to heavy computations with large matrices.
The natural gradient is the basic gradient multiplied
from the left by the inverse of the Fisher information
matrix. Using basic gradient descent can thus be seen
as using the natural gradient while approximating the
Fisher information with a unit matrix. We will see how
the proposed transformations moves the non-diagonal
elements of the Fisher information matrix closer to
zero, thus making the basic gradient closer to the nat-
ural gradient.

The Fisher information matrix contains elements

Gij =
∑

t

〈
∂2 log p(yt | xt,A,B,C)

∂θi∂θj

〉
, (8)

where 〈·〉 is the expectation over the Gaussian distribu-
tion of noise εt in Equation (1), and vector θ contains
all the elements of matrices A, B, and C. Note that yt

is a random variable and thus the Fisher information
does not depend on the output data.

These elements are:

∂

∂aij

∂

∂ai′j′
log p =

{
0 i′ 6= i
− 1

σ2
i

∑
t fj(bjxt)fj′(bj′xt) i′ = i,

(9)
where aij is the ijth element of matrix A, fj is the jth
nonlinearity, and bj is the jth row vector of matrix B.
Similarly

∂

∂bjk

∂

∂bj′k′
log p =

−
∑

i

1

σ2
i

aijaij′
∑

t

f ′
j(bjxt)f

′
j′(bj′xt)xktxk′t (10)

and

∂

∂cik

∂

∂ci′k′
log p =

{
0 i′ 6= i
− 1

σ2
i

∑
t xktxk′t i′ = i. (11)

The cross terms are

∂

∂aij

∂

∂bj′k
log p = − 1

σ2
i

aij′
∑

t

fj(bjxt)f
′
j′(bj′xt)xkt

(12)

∂

∂cik

∂

∂ai′j
log p =

{
0 i′ 6= i
− 1

σ2
i

∑
t fj(bjxt)xkt i′ = i

(13)

∂

∂cik

∂

∂bjk′
log p = − 1

σ2
i

aij

∑

t

f ′
j(bjxt)xktxk′t. (14)

925

Tapani Raiko, Harri Valpola, Yann LeCun

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

tanh(x)
tanh(x)−0.5x

Figure 1: As a positive side effect, the nonlinearity in
Equation (2) does not saturate at all for example with
a typical α = −0.5 and β = 0.

Now we can notice that Equations (9–14) contain fac-
tors such as fi(·), f ′

i(·), and xit. We argue that by
making the factors as close to zero as possible, we
help in making nondiagonal elements of the Fisher in-
formation closer to zero. For instance, E[fi(·)fj(·)] =
E[fi(·)]E[fj(·)]+Cov[fi(·), fj(·)], so assuming that the
hidden units i and j are representing different things,
that is, fi(·) and fj(·) are uncorrelated, the nondi-
agonal element of the Fisher information in Equation
(9) becomes exactly zero by using the transformation.
When the units are not completely uncorrelated, the
element in question will be only approximately zero.
The same argument applies to all other elements in
Equations (10–14), some of them also highlighting the
benefit of making the input data xt zero-mean.

3.1 Positive Side Effect

Having a non-zero αi has a positive side effect of reduc-
ing plateaus in learning. Typical nonlinearities like the
tanh function saturate exponentially on positive and
negative sides. When the derivative of an activation
f ′

i(·) is about zero for most of the data samples, the
gradient propagated through it also becomes almost
zero, and learning can proceed very slowly or even
seem to stop completely. This may explain plateaus
in typical learning curves, where the learning proceeds
slowly at times. To alleviate the problem, Glorot and
Bengio [4] suggested to use the soft-sign nonlinearity
that saturates more slowly, but having a non-zero αi

provides a nonlinearity that does not saturate at all.
The difference is illustrated in Figure 1. In practice,
αi tends to vary from −0.8 to −0.5 as will be seen in
Figure 5.

4 Practical Issues

There are many practical issues when learning MLP
networks and they are addressed below.

Learning

Back-propagation learning is basically a gradient
ascent algorithm to maximize the log likelihood
log p({yt}Tt=1 | {xt}Tt=1,θ) of the parameter vector θ,
where the actual back-propagation corresponds to us-
ing the chain rule of derivatives and dynamic program-
ming to compute the gradient efficiently.

The gradient is

gi =
∂ 〈log p(yt | xt, θ)〉

∂θi
, (15)

where 〈·〉 is the expectation over the data set. The
update is

θi ← θi + γgi, (16)

where γi is a learning rate.

Online Learning

It is well known (see e.g. [2]) that looking at all the
available data before each update is wasteful, because
many samples possess redundant information. We will
use a mini-batch learning algorithm, where each up-
date is done based on the 1000 next samples from the
randomly shuffled data set. To reduce the effect of
noise due to such a small sample, a momentum term
is used. The update direction is thus set to

gi ← 0.1
∂ 〈log p(yt | xt,θ)〉

∂θi
+ 0.9gi (17)

for all learned parameters, including the shortcut map-
pings.

The transformations parameters αi and βi, however
are updated after the initialization and after every
1000 iterations thereafter, using the whole data set
in Equations (5–6). At the same time, the changes
are compensated by updating the shortcut mappings
according to Equation (7) and the momentum gi for
the gradient updates is reset to zero. Using the trans-
formations only rarely lowers the computational over-
head.

Discrete Outputs

In classification problems, the output yt is discrete and
one can use the soft-max model. The Equation (1) is
replaced by

P (yt = i | xt, θ) =
exp [Aif (Bxt) + Cixt]∑
j exp [Ajf (Bxt) + Cjxt]

, (18)

where Ai is the ith row of matrix A. Back-propagation
is done as before.

926

Deep Learning Made Easier by Linear Transformations in Perceptrons

200 200 10200

200 200 10

layer
hidden

1 2
layer

hidden

200

input
output
class

Figure 2: Top: Traditional structure for a feed-forward
multi-layer perceptron network with full connections.
Bottom: Network with shortcut connections included,
also used in the proposed method with transforma-
tions.

Multiple Hidden Layers

The extension of the proposed approach to multiple
hidden layers is straightforward. Equations (2–6) ap-
ply to all nonlinear units with bixt replaced by the
appropriate input signal. The shortcut mappings need
to be included for skipping any number of layers (see
Figure 2 for an example). The number of weights of
course increases quadratically with the number of lay-
ers, but this can be avoided by including a layer with-
out transformations as shown in Figure 6.

Initialization

We use the initialization proposed by Glorot and Ben-
gio [4] for weights between consecutive layers, that is,
the weight is drawn from a uniform distribution be-
tween ±

√
6/
√

nj + nj+1 where nj is the number of
neurons on the jth layer. This normalized initializa-
tion is based on the objectives of maintaining acti-
vation variances and back-propagated gradient’s vari-
ance throughout the layers. With unnormalized ini-
tialization, the gradient tends to vanish or explode
exponentially with the number of layers [4]. Biases
are drawn from a uniform distribution between ±0.5.
Weights for all shortcut connections are initialized to
zero.

Learning Rate

We use a hand-set learning rate γi for each prob-
lem. The base learning rate γ is halved for connection
weights once for each layer that the connection skips.
This is a heuristic to take into account that shortcut
connections have a more direct influence to the final
output of the network. Also we linearly decrease the
learning rate to zero after half of the allocated compu-
tational time has been used.

Regularization

Overfitting is a crucial problem in a large network,
and regularization is essential to make it perform well
with new data. We use three different regularization
methods. Firstly, the dimensionality of input data was
decreased as a preprocessing step. We used principal
component analysis (PCA) followed by a random ro-
tation (see Figure 3). The motivation for the random
rotation was to make each input approximately equally
important. Secondly, we use weight decay (see e.g. [7]),
or equivalently a Gaussian prior on the parameters θ.
The final update direction becomes

gi ← 0.1

[
∂ 〈log p(yt | xt,θ)〉

∂θi
− λθi

]
+ 0.9gi, (19)

where λ is the weight decay parameter set by hand.
Thirdly, we add randomly generated Gaussian noise to
the original input data each time they are presented
to the learner, inspired by denoising autoencoders [15]
and also recently used in classification [12].

5 Experiments

We compare MLP learning with and without pro-
posed transformations in three problems where we can
also compare to other state-of-the-art learning algo-
rithms. The two first experiments are image classi-
fication tasks, and the last one is an autoregressive
model to find a low-dimensional representation of im-
ages. Even though all experiments use image data, we
do not use or compare to any image-specific processing
such as convolutional networks or elastic distortions.
Our approach would work exactly the same even if the
order of pixels was randomly permutated. All experi-
ments were run on a desktop computer with Intel Core
i7 2.93GHz and 8 gigabytes of memory.

5.1 MNIST Handwritten Digit Classification

The MNIST data set [9] consists of 28 by 28 pixel
gray-scale images of handwritten digits with examples
depicted in Figure 3. There are 60000 training sam-
ples and 10000 test samples. The mean activation of
each pixel was subtracted from the data, and the di-
mensionality was dropped from 28 × 28 = 784 to 200
using PCA followed by a random rotation (see Figure
3). A classification network with layer sizes 200–200–
200–10 was learned with a normal MLP model (origi-
nal), one with shortcut mappings included (shortcuts),
and the proposed model with shortcut mappings and
transformations in the nonlinearities (transformations)
(see Figure 2). We also ran a simple 200–10 network
(linear) for comparison. Training and test errors were
tracked during learning and their computation was not

927

Tapani Raiko, Harri Valpola, Yann LeCun

Figure 3: Left: Top row shows the PCA filters corresponding to the largest eigenvalues (1–5), second row to
the smallest eigenvalues (196–200). The bottom rows show 10 filters after the random rotation in the principal
subspace. Middle: Top row shows 5 examples from the MNIST handwritten digit data set. The second row
shows reconstructions from the 200 component principal subspace. The third and forth row show reconstructions
when including the added noise to the training data. Two instantiations of the noise is shown to remind that
the noise is resampled for each epoch. Right: The corresponding images (16 examples) for the CIFAR-10 data
set with 500 components.

linear original shortcuts transformations literature

MNIST
classification

training error 8.99 0.063 0.058 0.068 -
test error 8.58 1.15 1.22 1.10 1.64

learning rate - 1.0 0.5 1.0 -
of iterations 30k 4717 3498 2674 -

CIFAR-10
classification

training error 58.07 23.21 22.46 4.56 -
test error 59.09 44.42 44.99 43.70 48.47

of iterations 32k 12k 8k 8k -

MNIST
autoencoder

training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

of iterations 92k 49k 38k 37k -

Table 1: Results of the proposed method (transformations) compared against other methods run with the same
settings and against results in the literature [4, 6, 11]. The number of iterations in the allocated time is reported
to compare the computational complexities.

included in learning time. Learning time was restricted
to 15 minutes, weight decay parameter was λ = 0.0001
and the regularization noise was used with standard
deviation 0.4 for each input (see Figure 3).

The results are shown in Table 1 and Figure 4. With
a proper learning rate (1.0), the proposed method gets
the test error below 1.5% in six minutes and to 1.1%
in fifteen minutes. Thus, the transformations make
a simple gradient descent algorithm competitive in
speed with complex state-of-the-art learning methods
such as TONGA [8], which reaches test error 1.7% in
around 30 minutes. Deep networks learned with back-
propagation have reached 1.64% error in [4]. Deep
belief network [5] gives 1.20% error.

The experiments were run with an 8-core desktop com-
puter and Matlab implementation. The learning time

was measured with Matlab function cputime, which
counts time spent by each core, so wall-clock learning
times were smaller. For example one 900 cpu-second
run took 233 seconds including computations of the
training and test errors for result graphs. Table 1 re-
ports the number of iterations reached in the allocated
learning time.

One can note that the errors drop fast in the latter half
of learning when the learning rate is decreased (See
middle of Figure 4). This is mostly due to filtering out
the noise caused by the stochastic gradient. It might
seem that the comparison methods are even catching
up at the end. However, when the experiment is re-
peated with a longer learning time (not shown here),
the curves look qualitatively similar with comparison
methods almost catching up at the end.

928

Deep Learning Made Easier by Linear Transformations in Perceptrons

10
−0.9

10
−0.3

10
0.3

0

0.5

1

1.5

2

original

shortcuts

transformations

0 200 400 600 800
0

1

2

3

4

5

6

original
shortcuts
transformations

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

 original

shortcuts

transformations

Figure 4: Left: MNIST problem. Classification error rate in percentage as a function of learning rate after
15 minutes of learning. Lower curves in each figure are the training error rates and higher curves are test
error rates. The vertical dashed line shows the point at which the learning rate starts to be decreased. Middle:
MNIST problem. Error rates against learning time for the best learning rates for each method. Right: CIFAR-10
problem. Error rates against learning time.

−0.9 −0.8 −0.7 −0.6 −0.5
0

5

10

15

20

25

30

−0.2 −0.1 0 0.1 0.2
0

5

10

15

20

−2 −1 0 1 2
−0.5

0

0.5

Figure 5: MNIST classification problem. Histograms of the transformation parameters αi (left) and βi (middle)
for the first hidden layer after learning. Right: Twenty examples of corresponding nonlinearities fi(·).

Let us also study some of the properties of the transfor-
mations. Figure 5 shows what the transformed non-
linearities look like in practice. How do they affect
the Fisher information matrix? Equation (9) measures
the covariance of the signals fi(·). The ratio of mean
square nondiagonal element of the covariance to mean
square diagonal element drops from 0.051 to 0.007 in
the first hidden layer and from 0.080 to 0.009 in the
second hidden layer, when comparing models learned
traditionally or with transformation. The transforma-
tions also decrease the norm of the gradient with re-
spect to weights of adjacent layers. The decrease is
about 2 to 3-fold in the initial phase of learning. This
might also explain why the proposed model performed
worse than the others with a too small learning rate
(See left part of Figure 4). With a small norm of the
gradient and a small learning rate, the optimization
simply does not finish in the allocated time.

To study which regularization method was important,
the runs were repeated with several variants. The

table below shows test errors evaluated by includ-
ing regularization methods one by one, using the
learning rate γ = 1.0. The final run was repeated
with ten times the learning time and γ = 0.5.
regularization original shortcuts transform.

none 1.87 2.02 1.63
weight decay 1.85 1.77 1.65

PCA 1.62 1.59 1.56
rotation 1.63 1.60 1.48

input noise 1.15 1.23 1.10
long run 1.03 1.17 1.02

Adding noise to the inputs turned out to be the
most important regularization method, followed
by dimensionality reduction by PCA. Using the
transformations improved all variants.

5.2 CIFAR-10 Classification

The CIFAR-10 data set [6] consists of 32 by 32 pixel
color images classified to 10 different classes, with ex-
amples depicted in Figure 3. There are 50000 training

929

Tapani Raiko, Harri Valpola, Yann LeCun

samples and 10000 test samples. Each channel of each
pixel was normalized to zero mean unit variance, and
the dimensionality was dropped from 32×32×3 = 3072
to 500 using PCA followed by a random rotation. A
classification network with layer sizes 500–500–500–10
was used with the same structure and variants as in
MNIST classification. Learning time was restricted to
10000 seconds, the base learning rate was set by hand
to γ = 0.3, weight decay parameter was λ = 0.001
and the regularization noise was used with standard
deviation 0.4 for each input (see Figure 3).

The results are shown in Table 1 and Figure 4. Earlier
test errors with MLP networks include 48.47% in [6]
and 52.92% in [4]. The test error of 44.42% obtained
here with the original MLP is already much better and
it is further improved to 43.70% by using the proposed
transformations. It should be noted that even the best
back-propagation results are far behind from results
obtained with for instance unsupervised pretraining or
convolutional networks.

Role of Regularization

The role of regularization was studied by rerunning
the CIFAR-10 classification experiment without any
regularization. The network size was thus 3072–500–
500–10, and we dropped the learning rate to γ = 0.03
to better compare to the initialization. All three meth-
ods reached the training error 0.0%, but the test er-
rors increased to 50.7%, 49.1%, and 46.8%. This over-
fitting was expected since the number of weights in
the network is much larger than the number of labels
in the training set, which makes the system under-
determined.

To further study the found solutions, we compute the
angles between the 3072-dimensional incoming weight
vectors of the neurons in the first hidden layer against
the vectors that they were initialized to. The median
angle over the 500 units was 39.6◦, 29.8◦, and 22.0◦

in the three models. Firstly, the angles are surpris-
ingly small taking into account that high-dimensional
vectors easily become rather orthogonal, which indi-
cates that the found solution still retains much of the
randomness of the initialization.2 Secondly, shortcut
weights seem to help against overfitting.

5.3 MNIST Autoencoder

The third problem uses the same MNIST handwritten
digit data set [9], but in this case both the inputs and
outputs of the network are the images. The network
topology is 784–500–250–30–250–500–784 with tanh-
nonlinearity at each layer except the bottleneck layer

2This also partly explains why initializing with unsu-
pervised pretraining works so well in large networks.

in the middle. The output is scaled from -1 to 1 to
match the tanh nonlinearity. The goal in this problem
is to find a good 30-dimensional representation from
which the image can be reconstructed. Naturally the
shortcut connections that skip the bottleneck are not
used (see left part of Figure 6). The labels are not used
in this experiment at all. Learning time was restricted
to 60000 seconds, the base learning rate was γ = 0.05,
weight decay parameter was λ = 0.001 and the regu-
larization noise was used with standard deviation 0.1
for each input. To avoid early divergence in learning,
the learning rate was increased from one hundredth to
the full rate exponentially during the first one percent
of learning time.

The performance is measured by the average sum of
squared reconstruction errors on the test data when
it is scaled back to the range from 0 to 1. The final
reconstruction error is 2.44 and some reconstructions
are visualized in the middle of Figure 6. As a compar-
ison, a linear 784–30–784 autoencoder gives an error
7.85. State-of-the-art comparison results are presented
by Martens [11]: Hessian-free optimization gives 2.55
with a larger network. The results in [11] were fur-
ther improved to 2.28 by initializing the network with
layerwise pretraining, which could be used here, too.

Typical applications of dimensionality reduction meth-
ods include visualization, data denoising, or missing
value imputation, but we will show another simple
demonstration by comparing them as preprocessing
methods for the k nearest neighbor (kNN) classifier.
By using the raw pixel data, kNN gives 2.95% test er-
ror. Using a linear network to reduce dimensionality
to 30 as a preprocessing gives 2.39% error, while us-
ing the proposed model gives 1.95% error. It can be
concluded that the bottleneck layer has found a repre-
sentation that also better separates the clusters formed
by the different classes, despite the fact that the labels
were not used in learning.

6 Discussion

We proposed transformations to nonlinearities that
make learning MLP networks much easier. The moti-
vation is to make the nonlinear mapping as separate
as possible from the linear mapping which is modelled
using shortcut weights. A basic stochastic gradient op-
timization became faster than state-of-the-art learning
algorithms. Those algorithms could also be tested with
transformations for further improvements. The theory
of the speed-up is based on making the standard gradi-
ent more similar to the natural gradient by having the
nondiagonal terms of the Fisher information matrix
closer to zero. As a side effect, the transformed nonlin-
earities might also help in avoiding plateaus [10]. The

930

Deep Learning Made Easier by Linear Transformations in Perceptrons

30

layers
layer

500 784784 500 250 250

input hidden hidden
layersbottleneck

(hidden)

30 500 784784 500 250 250

output

0 1 2 3 4 5 6

x 10
4

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

original
shortcuts
transformations

Figure 6: MNIST autoencoder. Left: Traditional autoencoder network above, shortcut connections included
below. Note that the bottleneck layer does not have a nonlinearity or transformations. Middle: Each triplet
shows an example digit from test data, its reconstruction with a deep autoencoder, and a reconstruction with a
linear autoencoder as a comparison. Right: Error rate in average sum of squared reconstruction errors plotted
against learning time in seconds. Higher curves are test errors, lower curves are training errors. The vertical
dashed line shows the point at which the learning rate starts to be decreased.

experiments showed that these simple transformations
helps learning deep structures at least up to 5 hidden
layers using good-old back-propagation learning.

The transformations also seemed to help generaliza-
tion when no regularization was used. We think that
this is because the transformations help to separate
the simpler and more complex parts of each mapping.
Let us think of a network with just one hidden layer.
The linear part of the problem (the shortcut connec-
tions C) do not suffer much from the overfitting and
can be learned more reliably even without regulariza-
tion. Overfitting the more complex parts A and B
might not hurt the performance as much when they
do not influence the linear part of the whole mapping.
It might be possible to test this hypothesis in the fu-
ture.

Another theoretical study that could be done in the
future, is to measure the angle between the traditional
gradient and the natural gradient with and without
transformations. It would require a small network such
that computing the natural gradient would be feasible.

The effect of the transformations could also be stud-
ied in other contexts. For variational Bayesian (VB)
learning, the proposed transformations make both the
signals in the network and the network weights less
dependent a posteriori. Often they are assumed to
be independent in the posterior approximation of VB
anyway. Thus, the transformation makes the effect of
the assumption smaller and the approximation more
accurate. This should help in avoiding the problem
of underfitting (or output weights of too many hidden
neurons going to zero). One could also use MCMC
methods for sampling network weights. The effective-

ness of the sampling process depends heavily on how
large jumps can be made in the parameter space. We
can make longer jumps for the matrices A and B if
we use the proposed transformations to ensure that
even large changes in them do not affect the linear
part of the input-output mapping. These new contexts
would highlight the difference between transforming
nonlinearities compared to transforming gradient fac-
tors [14, 13].

The term deep learning refers either to networks with
many layers (as in this work) but sometimes it is used
for unsupervised pretraining which allows for well-
performing deeper networks in practice. The proposed
transformations could also be applied to initializations
based on unsupervised pretraining. We could also
study a multi-task learning problem combining clas-
sification and auto-encoding. This simple alternative
to layerwise pretraining might provide some useful in-
sights about combining unsupervised and supervised
learning.

A “poor man’s variant” of the proposed framework
would be to use shortcut connections and fixed non-
linearities such as f(x) = tanh(x) − 0.5x. Dispite its
simplicity, this variant might still provide most of the
discussed benefits in practice.

Another future direction is to introduce a third trans-
formation. While currently we aim at making the
Fisher information matrix diagonal, we could also
make it closer to the unit matrix. This could be done
by using a multiplicative transformation in order to
normalize the scale of the output and the slope of each
nonlinearity.

931

Tapani Raiko, Harri Valpola, Yann LeCun

References

[1] S. Amari. Natural gradient works efficiently in
learning. Neural Computation, 10(2):251–276,
1998.

[2] R. Battiti. First- and second-order methods for
learning: Between steepest descent and New-
ton’s method. Neural Computation, 4(2):141–166,
1992.

[3] D. C. Ciresan, U. Meier, L. M. Gambardella, and
J. Schmidhuber. Deep big simple neural nets
excel on handwritten digit recognition. CoRR,
abs/1003.0358, 2010.

[4] X. Glorot and Y. Bengio. Understanding the dif-
ficulty of training deep feedforward neural net-
works. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and
Statistics (AISTATS), pages 249–256, 2010.

[5] G. E. Hinton and R. R. Salakhutdinov. Reducing
the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

[6] A. Krizhevsky. Learning multiple layers of fea-
tures from tiny images. Master’s thesis, 2009.

[7] A. Krogh and J. A. Hertz. A simple weight decay
can improve generalization. In Advances in Neural
Information Processing Systems 4 (NIPS 1991),
pages 950–957, 1992.

[8] N. Le Roux, P. A. Manzagol, and Y. Bengio. Top-
moumoute online natural gradient algorithm. In
Advances in Neural Information Processing Sys-
tems 20 (NIPS*2007), 2008.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, vol-
ume 86, pages 2278–2324, 1998.

[10] Y. LeCun, L. Bottou, G. B. Orr, and K.-R.
Müller. Efficient backprop. In Neural Networks:
tricks of the trade. Springer-Verlag, 1998.

[11] J. Martens. Deep learning via Hessian-free opti-
mization. In Proceedings of the 27th International
Conference on Machine Learning (ICML), 2010.

[12] S. Rifai, X. Glorot, Y. Bengio, and P. Vincent.
Adding noise to the input of a model trained with
a regularized objective. Technical Report 1359,
Université de Montréal, Montréal (QC), H3C 3J7,
Canada, April 2011.

[13] N. N. Schraudolph. Accelerated gradient descent
by factor-centering decomposition. Technical Re-
port IDSIA-33-98, Istituto Dalle Molle di Studi
sull’Intelligenza Artificiale, 1998.

[14] N. N. Schraudolph. Centering neural network gra-
dient factors. In Genevieve Orr and Klaus-Robert
Mller, editors, Neural Networks: Tricks of the
Trade, volume 1524 of Lecture Notes in Computer
Science, pages 548–548. Springer Berlin / Heidel-
berg, 1998.

[15] P. Vincent, H. Larochelle, Y. Bengio, and P. A.
Manzagol. Extracting and composing robust fea-
tures with denoising autoencoders. In Proceedings
of the Twenty-fifth International Conference on
Machine Learning (ICML08), pages 1096–1103,
2008.

Derivations

Derivation of Equations (5–6):

0 =
T∑

t=1

f ′
i(bixt) =

T∑

t=1

[
tanh′(bixt) + αibi

]

⇒ αi = − 1

T

T∑

t=1

tanh′(bixt).

0 =
T∑

t=1

fi(bixt) =
T∑

t=1

[tanh(bixt) + αibixt + βi]

⇒ βi = − 1

T

T∑

t=1

[tanh(bixt) + αibixt] .

932

