
Helsinki University of Technology  
Publications in Computer and Information Science Report E4 

 April 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

BUILDING BLOCKS FOR VARIATIONAL BAYESIAN 
LEARNING OF LATENT VARIABLE MODELS 
          
 

Tapani Raiko     Harri Valpola     Markus Harva     Juha Karhunen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Distribution: 
Helsinki University of Technology 
Department of Computer Science and Engineering 
Laboratory of Computer and Information Science 
P.O. Box 5400 
FI-02015 TKK, Finland 
Tel.  +358-9-451 3267 
Fax  +358-9-451 3277 
 
 
This report is downloadable at 
http://www.cis.hut.fi/Publications/ 
 
 
 
ISBN  951-22-8191-0 
ISSN  1796-2803 
 
 
 
 
 

 



Building Blocks for Variational Bayesian Learning

of Latent Variable Models

Tapani Raiko, Harri Valpola, Markus Harva,

and Juha Karhunen

Helsinki University of Technology, Adaptive Informatics Research Centre

P.O.Box 5400, FI-02015 HUT, Espoo, FINLAND

email: firstname.lastname@tkk.fi

URL: http://www.cis.hut.fi/projects/bayes/

Fax: +358-9-451 3277

April 26, 2006

Abstract

We introduce standardised building blocks designed to be used with
variational Bayesian learning. The blocks include Gaussian variables,
summation, multiplication, nonlinearity, and delay. A large variety of
latent variable models can be constructed from these blocks, including
variance models and nonlinear modelling, which are lacking from most
existing variational systems. The introduced blocks are designed to fit
together and to yield efficient update rules. Practical implementation
of various models is easy thanks to an associated software package
which derives the learning formulas automatically once a specific model
structure has been fixed. Variational Bayesian learning provides a cost
function which is used both for updating the variables of the model
and for optimising the model structure. All the computations can
be carried out locally, resulting in linear computational complexity.
We present experimental results on several structures, including a new
hierarchical nonlinear model for variances and means. The test results
demonstrate the good performance and usefulness of the introduced
method.

1 Introduction

Various generative modelling approaches have provided powerful statistical
learning methods for neural networks and graphical models during the last
years. Such methods aim at finding an appropriate model which explains
the internal structure or regularities found in the observations. It is assumed
that these regularities are caused by certain latent variables (also called fac-
tors, sources, hidden variables, or hidden causes) which have generated the
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observed data through an unknown mapping [9]. In unsupervised learning,
the goal is to identify both the unknown latent variables and generative
mapping, while in supervised learning it suffices to estimate the generative
mapping.

The expectation-maximisation (EM) algorithm has often been used for
learning latent variable models [8, 9, 39, 41]. The distribution for the la-
tent variables is modelled, but the model parameters are found using max-
imum likelihood or maximum a posteriori estimators. However, with such
point estimates, determination of the correct model order and overfitting
are ubiquitous and often difficult problems. Therefore, full Bayesian ap-
proaches making use of the complete posterior distribution have recently
gained a lot of attention. Exact treatment of the posterior distribution is
intractable except in simple toy problems, and hence one must resort to
suitable approximations. So-called Laplacian approximation method [46, 8]
employs a Gaussian approximation around the peak of the posterior distri-
bution. However, this method still suffers from overfitting. In real-world
problems, it often does not perform adequately, and has therefore largely
given way for better alternatives. Among them, Markov Chain Monte Carlo
(MCMC) techniques [49, 51, 56] are popular in supervised learning tasks,
providing good estimation results. Unfortunately, the computational load is
high, which restricts the use of MCMC in large scale unsupervised learning
problems where the parameters and variables to be estimated are numer-
ous. For instance, [68] has a case study in unsupervised learning from brain
imaging data. He used MCMC for a scaled down toy example but resorted
to point estimates with real data.

Ensemble learning [26, 47, 51, 5, 45], which is one of the variational
Bayesian methods [40, 3, 41], has gained increasing attention during the
last years. This is because it largely avoids overfitting, allows for estimation
of the model order and structure, and its computational load is reasonable
compared to the MCMC methods. Variational Bayesian learning was first
employed in supervised problems [80, 26, 47, 5], but it has now become
popular also in unsupervised modelling. Recently, several authors have suc-
cessfully applied such techniques to linear factor analysis, independent com-
ponent analysis (ICA) [36, 66, 12, 27], and their various extensions. These
include linear independent factor analysis [2], several other extensions of the
basic linear ICA model [4, 11, 53, 67], as well as MLP networks for mod-
elling nonlinear observation mappings [44, 36] and nonlinear dynamics of the
latent variables (source signals) [38, 74, 75]. Variational Bayesian learning
has also been applied to large discrete models [54] such as nonlinear belief
networks [15] and hidden Markov models [48].

In this paper, we introduce a small number of basic blocks for building
latent variable models which are learned using variational Bayesian learning.
The blocks have been introduced earlier in two conference papers [77, 23]
and their applications in [76, 33, 30, 65, 62, 63]. [71] studied hierarchical

2



models for variance sources from signal-processing point of view. This pa-
per is the first comprehensive presentation about the block framework itself.
Our approach is most suitable for unsupervised learning tasks which are
considered in this paper, but in principle at least, it could be applied to su-
pervised learning, too. A wide variety of factor-analysis-type latent-variable
models can be constructed by combining the basic blocks suitably. Varia-
tional Bayesian learning then provides a cost function which can be used for
updating the variables as well as for optimising the model structure. The
blocks are designed so as to fit together and yield efficient update rules. By
using a maximally factorial posterior approximation, all the required com-
putations can be performed locally. This results in linear computational
complexity as a function of the number of connections in the model. The
Bayes Blocks software package by [72] is an open-source C++/Python im-
plementation that can freely be downloaded.

The basic building block is a Gaussian variable (node). It uses as its
input values both mean and variance. The other building blocks include ad-
dition and multiplication nodes, delay, and a Gaussian variable followed by a
nonlinearity. Several known model structures can be constructed using these
blocks. We also introduce some novel model structures by extending known
linear structures using nonlinearities and variance modelling. Examples will
be presented later on in this paper.

The key idea behind developing these blocks is that after the connections
between the blocks in the chosen model have been fixed (that is, a particular
model has been selected and specified), the cost function and the updating
rules needed in learning can be computed automatically. The user does
not need to understand the underlying mathematics since the derivations
are done within the software package. This allows for rapid prototyping.
The Bayes Blocks can also be used to bring different methods into a unified
framework, by implementing a corresponding structure from blocks and by
using results of these methods for initialisation. Different methods can then
be compared directly using the cost function and perhaps combined to find
even better models. Updates that minimise a global cost function are guar-
anteed to converge, unlike algorithms such as loopy belief propagation [60],
extended Kalman smoothing [1], or expectation propagation [52].

[81] have introduced a general purpose algorithm called variational mes-
sage passing. It resembles our framework in that it uses variational Bayesian
learning and factorised approximations. The VIBES framework allows for
discrete variables but not nonlinearities or nonstationary variance. The pos-
terior approximation does not need to be fully factorised which leads to a
more accurate model. Optimisation proceeds by cycling through each factor
and revising the approximate posterior distribution. Messages that contain
certain expectations over the posterior approximation are sent through the
network.

[7, 17], and [6] view variational Bayesian learning as an extension to
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the EM algorithm. Their algorithms apply to combinations of discrete and
linear Gaussian models. In the experiments, the variational Bayesian model
structure selection outperformed the Bayesian information criterion [69] at
relatively small computational cost, while being more reliable than annealed
importance sampling even with the number of samples so high that the
computational cost is hundredfold.

A major difference of our approach compared to the related methods by
[81] and by [7] is that they concentrate mainly on situations where there is
a handy conjugate prior [16] of the posterior distributions available. This
makes life easier, but on the other hand our blocks can be combined more
freely, allowing richer model structures. For instance, the modelling of vari-
ance in a way described in Section 5.1, would not be possible using the
gamma distribution for the precision parameter in the Gaussian node. The
price we have to pay for this advantage is that the minimum of the cost
function must be found iteratively, while it can be solved analytically when
conjugate distributions are applied. The cost function can always be eval-
uated analytically in the Bayes Blocks framework as well. Note that the
different approaches would fit together.

Similar graphical models can be learned with sampling based algorithms
instead of variational Bayesian learning. For instance, the BUGS software
package by [70] uses Gibbs sampling for Bayesian inference. It supports
mixture models, nonlinearities, and nonstationary variance. There are also
many software packages concentrated on discrete Bayesian networks. No-
tably, the Bayes Net toolbox by [55] can be used for Bayesian learning and
inference of many types of directed graphical models using several meth-
ods. It also includes decision-theoretic nodes. Hence it is in this sense
more general than our work. A limitation of the Bayes net toolbox [55] is
that it supports latent continuous nodes only with Gaussian or conditional
Gaussian distributions.

Autobayes [20] is a system that generates code for efficient implementa-
tions of algorithms used in Bayes networks. Currently the algorithm schemas
include EM, k-means, and discrete model selection. This system does not
yet support continuous hidden variables, nonlinearities, variational meth-
ods, MCMC, or temporal models. One of the greatest strengths of the code
generation approach compared to a software library is the possibility of au-
tomatically optimising the code using domain information.

In the independent component analysis community, traditionally, the ob-
servation noise has not been modelled in any way. Even when it is modelled,
the noise variance is assumed to have a constant value which is estimated
from the available observations when required. However, more flexible vari-
ance models would be highly desirable in a wide variety of situations. It
is well-known that many real-world signals or data sets are nonstationary,
being roughly stationary on fairly short intervals only. Quite often the am-

4



plitude level of a signal varies markedly as a function of time or position,
which means that its variance is nonstationary. Examples include financial
data sets, speech signals, and natural images.

Recently, [59] have demonstrated that several higher-order statistical
properties of natural images and signals are well explained by a stochastic
model in which an otherwise stationary Gaussian process has a nonstation-
ary variance. Variance models are also useful in explaining volatility of
financial time series and in detecting outliers in the data. By utilising the
nonstationarity of variance it is possible to perform blind source separation
on certain conditions [36, 61].

Several authors have introduced hierarchical models related to those dis-
cussed in this paper. These models use subspaces of dependent features in-
stead of single feature components. This kind of models have been proposed
at least in context with independent component analysis [10, 35, 34, 58], and
topographic or self-organising maps [43, 18]. A problem with these meth-
ods is that it is difficult to learn the structure of the model or to compare
different model structures.

The remainder of this paper is organised as follows. In the following sec-
tion, we briefly present basic concepts of variational Bayesian learning. In
Section 3, we introduce the building blocks (nodes), and in Section 4 we dis-
cuss variational Bayesian computations with them. In the next section, we
show examples of different types of models which can be constructed using
the building blocks. Section 6 deals with learning and potential problems
related with it, and in Section 7 we present experimental results on several
structures given in Section 5. This is followed by a short discussion as well
as conclusions in the last section of the paper.

2 Variational Bayesian learning

In Bayesian data analysis and estimation methods [51, 16, 39, 56], all the
uncertain quantities are modelled in terms of their joint probability density
function (pdf). The key principle is to construct the joint posterior pdf for
all the unknown quantities in a model, given the data sample. This posterior
density contains all the relevant information on the unknown variables and
parameters.

Denote by θ the set of all model parameters and other unknown variables
that we wish to estimate from a given data set X. The posterior probability
density p(θ|X) of the parameters θ given the data X is obtained from Bayes
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rule1

p(θ|X) =
p(X |θ)p(θ)

p(X)
(1)

Here p(X |θ) is the likelihood of the parameters θ given the data X, p(θ) is
the prior pdf of these parameters, and

p(X) =

∫

θ

p(X|θ)p(θ)dθ (2)

is a normalising term which is called the evidence. The evidence can be
directly understood as the marginal probability of the observed data X as-
suming the chosen model H. By evaluating the evidences p(X) for different
models Hi, one can therefore choose the model which describes the observed
data with the highest probability2 [8, 51].

Variational Bayesian learning [5, 26, 45, 47, 51] is a fairly recently intro-
duced [26, 47] approximate fully Bayesian method, which has become pop-
ular because of its good properties. Its key idea is to approximate the exact
posterior distribution p(θ|X) by another distribution q(θ) that is computa-
tionally easier to handle. The approximating distribution is usually chosen
to be a product of several independent distributions, one for each parameter
or a set of similar parameters.

Variational Bayesian learning employs the Kullback-Leibler (KL) infor-
mation (divergence) between two probability distributions q(v) and p(v).
The KL information is defined by the cost function [24]

JKL(q ‖ p) =

∫

v

q(v) ln
q(v)

p(v)
dv (3)

which measures the difference in the probability mass between the densities
q(v) and p(v). Its minimum value 0 is achieved when the densities q(v) and
p(v) are the same.

The KL information is used to minimise the misfit between the actual
posterior pdf p(θ|X) and its parametric approximation q(θ). However, the
exact KL information JKL(q(θ) ‖ p(θ|X)) between these two densities does
not yet yield a practical cost function, because the normalising term p(X)
needed in computing p(θ|X) cannot usually be evaluated.

Therefore, the cost function used in variational Bayesian learning is de-
fined [26, 47]

CKL = JKL(q(θ) ‖ p(θ|X))− ln p(X) (4)

1The subscripts of all pdf’s are assumed to be the same as their arguments, and are
omitted for keeping the notation simpler.

2More accurately, one could show the dependence on the chosen model H by condi-
tioning all the pdf’s in (1) by H: p(θ|X ,H), p(X |H), etc. We have here dropped also the
dependence on H out for notational simplicity. See [74] for a somewhat more complete
discussion of Bayesian methods and ensemble learning.
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After slight manipulation, this yields

CKL =

∫

θ

q(θ) ln
q(θ)

p(X ,θ)
dθ (5)

which does not require p(X) any more. The cost function CKL consists of
two parts:

Cq = 〈ln q(θ)〉 =

∫

θ

q(θ) ln q(θ)dθ (6)

Cp = 〈− ln p(X ,θ)〉 = −

∫

θ

q(θ) ln p(X,θ)dθ (7)

where the shorthand notation 〈·〉 denotes expectation with respect to the
approximate pdf q(θ).

In addition, the cost function CKL provides a bound for the evidence
p(X). Since JKL(q ‖ p) is always nonnegative, it follows directly from (4)
that

CKL ≥ − ln p(X) (8)

This shows that the negative of the cost function bounds the log-evidence
from below.

It is worth noting that variational Bayesian ensemble learning can be de-
rived from information-theoretic minimum description length coding as well
[26]. Further considerations on such arguments, helping to understand sev-
eral common problems and certain aspects of learning, have been presented
in a recent paper [31].

The dependency structure between the parameters in our method is the
same as in Bayesian networks [60]. Variables are seen as nodes of a graph.
Each variable is conditioned by its parents. The difficult part in the cost
function is the expectation 〈ln p(X ,θ)〉 which is computed over the approxi-
mation q(θ) of the posterior pdf. The logarithm splits the product of simple
terms into a sum. If each of the simple terms can be computed in constant
time, the overall computational complexity is linear.

In general, the computation time is constant if the parents are indepen-
dent in the posterior pdf approximation q(θ). This condition is satisfied if
the joint distribution of the parents in q(θ) decouples into the product of
the approximate distributions of the parents. That is, each term in q(θ)
depending on the parents depends only on one parent. The independence
requirement is violated if any variable receives inputs from a latent variable
through multiple paths or from two latent variables which are dependent in
q(θ), having a non-factorisable joint distribution there. Figure 1 illustrates
the flow of information in the network in these two qualitatively different
cases.

Our choice for q(θ) is a multivariate Gaussian density with a diagonal
covariance matrix. Even this crude approximation is adequate for finding
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Figure 1: The dash-lined nodes and connections can be ignored while updat-
ing the shadowed node. Left: In general, the whole Markov blanket needs to
be considered. Right: A completely factorial posterior approximation with
no multiple computational paths leads to a decoupled problem. The nodes
can be updated locally.

the region where the mass of the actual posterior density is concentrated.
The mean values of the components of the Gaussian approximation pro-
vide reasonably good point estimates of the corresponding parameters or
variables, and the respective variances measure the reliability of these esti-
mates. However, occasionally the diagonal Gaussian approximation can be
too crude. This problem has been considered in context with independent
component analysis in [37], giving means to remedy the situation.

Taking into account posterior dependencies makes the posterior pdf ap-
proximation q(θ) more accurate, but also usually increases the computa-
tional load significantly. We have earlier considered networks with multiple
computational paths in several papers, for example [44, 73, 74, 75]. The
computational load of variational Bayesian learning then becomes roughly
quadratically proportional to the number of unknown variables in the MLP
network model used in [44, 75, 32].

The building blocks (nodes) introduced in this paper together with as-
sociated structural constraints provide effective means for combating the
drawbacks mentioned above. Using them, updating at each node takes place
locally with no multiple paths. As a result, the computational load scales
linearly with the number of estimated quantities. The cost function and the
learning formulas for the unknown quantities to be estimated can be eval-
uated automatically once a specific model has been selected, that is, after
the connections between the blocks used in the model have been fixed. This
is a very important advantage of the proposed block approach.

3 Node types

In this section, we present different types of nodes that can be easily com-
bined together. Variational Bayesian inference algorithm for the nodes is
then discussed in Section 4.
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Figure 2: First subfigure from the left: The circle represents a Gaussian node
corresponding to the latent variable s conditioned by mean m and variance
exp(−v). Second subfigure: Addition and multiplication nodes are used to
form an affine mapping from s to As + a. Third subfigure: A nonlinearity f
is applied immediately after a Gaussian variable. The rightmost subfigure:
Delay operator delays a time-dependent signal by one time unit.

In general, the building blocks can be divided into variable nodes, com-
putation nodes, and constants. Each variable node corresponds to a random
variable, and it can be either observed or hidden. In this paper we present
only one type of variable node, the Gaussian node, but others can be used
in the same framework. The computation nodes are the addition node, the
multiplication node, a nonlinearity, and the delay node.

In the following, we shall refer to the inputs and outputs of the nodes. For
a variable node, its inputs are the parameters of the conditional distribution
of the variable represented by that node, and its output is the value of the
variable. For computation nodes, the output is a fixed function of the inputs.
The symbols used for various nodes are shown in Figure 2. Addition and
multiplication nodes are not included, since they are typically combined to
represent the effect of a linear transformation, which has a symbol of its
own. An output signal of a node can be used as input by zero or more nodes
that are called the children of that node. Constants are the only nodes that
do not have inputs. The output is a fixed value determined at creation of
the node.

Nodes are often structured in vectors or matrices. Assume for example
that we have a data matrix X = [x(1),x(2), . . . ,x(T )], where t = 1, 2, . . . T
is called the time index of an n-dimensional observation vector. Note that
t does not have to correspond to time in the real world, e.g. different t
could point to different people. In the implementation, the nodes are either
vectors so that the values indexed by t (e.g. observations) or scalars so
that the values are constants w.r.t. t (e.g. weights). The data X would be
represented with n vector nodes. A scalar node can be a parent of a vector
node, but not a child of a vector node.
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3.1 Gaussian node

The Gaussian node is a variable node and the basic element in building
hierarchical models. Figure 2 (leftmost subfigure) shows the schematic dia-
gram of the Gaussian node. Its output is the value of a Gaussian random
variable s, which is conditioned by the inputs m and v. Denote generally by
N (x;mx, σ2

x) the probability density function of a Gaussian random variable
x having the mean mx and variance σ2

x. Then the conditional probability
function (cpf) of the variable s is p(s | m, v) = N (s;m, exp(−v)). As a
generative model, the Gaussian node takes its mean input m and adds to it
Gaussian noise (or innovation) with variance exp(−v).

Variables can be latent or observed. Observing a variable means fixing
its output s to the value in the data. Section 4 is devoted to inferring the
distribution over the latent variables given the observed variables. Infer-
ring the distribution over variables that are independent of t is also called
learning.

3.2 Computation nodes

The addition and multiplication nodes are used for summing and multiplying
variables. These standard mathematical operations are typically used to
construct linear mappings between the variables. This task is automated in
the software, but in general, the nodes can be connected in other ways, too.
An addition node that has n inputs denoted by s1, s2, . . . , sn, gives the sum
of its inputs as the output

∑n
i=1 si. Similarly, the output of a multiplication

node is the product of its inputs
∏n

i=1 si.
A nonlinear computation node can be used for constructing nonlinear

mappings between the variable nodes. The nonlinearity

f(s) = exp(−s2) (9)

is chosen because the required expectations can be solved analytically for
it. Another implemented nonlinearity for which the computations can be
carried out analytically is the cut function g(s) = max(s, 0). Other possible
nonlinearities are discussed in Section 4.3.

3.3 Delay node

The delay operation can be used to model dynamics. The node operates
on time-dependent signals. It transforms the inputs s(1), s(2), . . . , s(T ) into
outputs s0, s(1), s(2), . . . , s(T − 1) where s0 is a scalar parameter that pro-
vides a starting distribution for the dynamical process. The symbol z−1 in
the rightmost subfigure of Fig. 2 illustrating the delay node is the standard
notation for the unit delay in signal processing and temporal neural net-
works [24]. Models containing the delay node are called dynamic, and the
other models are called static.
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4 Variational Bayesian inference in Bayes blocks

In this section we give equations needed for computation with the nodes
introduced in Section 3. Generally speaking, each node propagates to the
forward direction a distribution of its output given its inputs. In the back-
ward direction, the dependency of the cost function (5) of the children on
the output of their parent is propagated. These two potentials are combined
to form the posterior distribution of each variable. There is a direct analogy
to Bayes rule (1): the prior (forward) and the likelihood (backward) are
combined to form the posterior distribution. We will show later on that
the potentials in the two directions are fully determined by a few values,
which consist of certain expectations over the distribution in the forward
direction, and of gradients of the cost function w.r.t. the same expectations
in the backward direction.

In the following, we discuss in more detail the properties of each node.
Note that the delay node does actually not process the signals, it just rewires
them. Therefore no formulas are needed for its associated the expectations
and gradients.

4.1 Gaussian node

Recall the Gaussian node in Section 3.1. The variance is parameterised
using the exponential function as exp(−v). This is because then the mean
〈v〉 and expected exponential 〈exp v〉 of the input v suffice for evaluating the
cost function, as will be shown shortly. Consequently the cost function can
be minimised using the gradients with respect to these expectations. The
gradients are computed backwards from the children nodes, but otherwise
our learning method differs clearly from standard back-propagation [24].

Another important reason for using the parameterisation exp(−v) for
the prior variance of a Gaussian random variable s is that the posterior
distribution of s then becomes approximately Gaussian, provided that the
prior mean m of s is Gaussian, too (see for example Section 7.1 or [45]). The
conjugate prior distribution of the inverse of the prior variance of a Gaussian
random variable is the gamma distribution [16]. Using such gamma prior
pdf causes the posterior distribution to be gamma, too, which is mathemat-
ically convenient. However, the conjugate prior pdf of the second parameter
of the gamma distribution is something quite intractable. Hence gamma
distribution is not suitable for developing hierarchical variance models. The
logarithm of a gamma distributed variable is approximately Gaussian dis-
tributed [16], justifying the adopted parameterisation exp(−v). However, it
should be noted that both the gamma and exp(−v) distributions are used
as prior pdfs mainly because they make the estimation of the posterior pdf
mathematically tractable [45]; one cannot claim that either of these choices
would be correct.
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4.1.1 Cost function

Recall now that we are approximating the joint posterior pdf of the random
variables s, m, and v in a maximally factorial manner. It then decouples
into the product of the individual distributions: q(s,m, v) = q(s)q(m)q(v).
Hence s, m, and v are assumed to be statistically independent a posteriori.
The posterior approximation q(s) of the Gaussian variable s is defined to be
Gaussian with mean s and variance s̃: q(s) = N (s; s, s̃). Utilising these, the
part Cp of the Kullback-Leibler cost function arising from the data, defined in
Eq. (7), can be computed in closed form. For the Gaussian node of Figure 2,
the cost becomes

Cs,p = −〈ln p(s|m, v)〉

=
1

2

{
〈exp v〉

[
(s− 〈m〉)2 + Var {m}+ s̃

]
− 〈v〉+ ln 2π

}
(10)

The derivation is presented in Appendix B of [74] using slightly different
notation. For the observed variables, this is the only term arising from
them to the cost function CKL.

However, latent variables contribute to the cost function CKL also with
the part Cq defined in Eq. (6), resulting from the expectation 〈ln q(s)〉. This
term is

Cs,q =

∫

s

q(s) ln q(s)ds = −
1

2
[ln(2πs̃) + 1] (11)

which is the negative entropy of Gaussian variable with variance s̃. The
parameters defining the approximation q(s) of the posterior distribution of
s, namely its mean s and variance s̃, are to be optimised during learning.

The output of a latent Gaussian node trivially provides the mean and
the variance: 〈s〉 = s and Var {s} = s̃. The expected exponential can be
easily shown to be [45, 74]

〈exp s〉 = exp(s + s̃/2) (12)

The outputs of the nodes corresponding to the observations are known
scalar values instead of distributions. Therefore for these nodes 〈s〉 = s,
Var {s} = 0, and 〈exp s〉 = exp s. An important conclusion of the consid-
erations presented this far is that the cost function of a Gaussian node can
be computed analytically in a closed form. This requires that the posterior
approximation is Gaussian and that the mean 〈m〉 and the variance Var {m}
of the mean input m as well as the mean 〈v〉 and the expected exponential
〈exp v〉 of the variance input v can be computed. To summarise, we have
shown that Gaussian nodes can be connected together and their costs can
be evaluated analytically.

We will later on use derivatives of the cost function with respect to some
expectations of its mean and variance parents m and v as messages from
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children to parents. They are derived directly from Eq. (10), taking the
form

∂Cs,p
∂ 〈m〉

= 〈exp v〉 (〈m〉 − s) (13)

∂Cs,p
∂Var {m}

=
〈exp v〉

2
(14)

∂Cs,p
∂ 〈v〉

= −
1

2
(15)

∂Cs,p
∂ 〈exp v〉

=
(s− 〈m〉)2 + Var {m}+ s̃

2
. (16)

4.1.2 Updating the posterior distribution

The posterior distribution q(s) of a latent Gaussian node can be updated as
follows.

1. The distribution q(s) affects the terms of the cost function Cs arising
from the variable s itself, namely Cs,p and Cs,q, as well as the Cp terms of
the children of s, denoted by Cch(s),p. The gradients of the cost Cch(s),p

with respect to 〈s〉, Var {s}, and 〈exp s〉 are computed according to
Equations (13–16).

2. The terms in Cp which depend on s and s̃ can be shown (see Appendix
B.2) to be of the form 3

Cp = Cs,p + Cch(s),p = Ms + V [(s − scurrent)
2 + s̃] + E 〈exp s〉 , (17)

where

M =
∂Cp
∂s

, V =
∂Cp
∂s̃

, and E =
∂Cp

∂ 〈exp s〉
. (18)

3. The minimum of Cs = Cs,p + Cs,q + Cch(s),p is solved. This can be done
analytically if E = 0, corresponding to the case of so-called free-form
solution (see [45] for details):

sopt = scurrent −
M

2V
, s̃opt =

1

2V
. (19)

Otherwise the minimum is obtained iteratively. Iterative minimisation
can be carried out efficiently using Newton’s method for the posterior
mean s and a fixed-point iteration for the posterior variance s̃. The
minimisation procedure is discussed in more detail in Appendix A.

3Note that constants are dropped out since they do not depend on s or es.
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4.2 Addition and multiplication nodes

Consider first the addition node. The mean, variance and expected exponen-
tial of the output of the addition node can be evaluated in a straightforward
way. Assuming that the inputs si are statistically independent, these expec-
tations are respectively given by

〈
n∑

i=1

si

〉
=

n∑

i=1

〈si〉 (20)

Var

{
n∑

i=1

si

}
=

n∑

i=1

Var {si} (21)

〈
exp

(
n∑

i=1

si

)〉
=

n∏

i=1

〈exp si〉 (22)

The proof has been given in Appendix B.1.
Consider then the multiplication node. Assuming independence between

the inputs si, the mean and the variance of the output take the form (see
Appendix B.1)

〈
n∏

i=1

si

〉
=

n∏

i=1

〈si〉 (23)

Var

{
n∏

i=1

si

}
=

n∏

i=1

[
〈si〉

2 + Var {si}
]
−

n∏

i=1

〈si〉
2 (24)

For the multiplication node the expected exponential cannot be evaluated
without knowing the exact distribution of the inputs.

The formulas (20)–(24) are given for n inputs because of generality, but
in practice we have carried out the needed calculations pairwise. When us-
ing the general formula (24), the variance might otherwise occasionally take
a small negative value due to minor imprecisions appearing in the compu-
tations. This problem does not arise in pairwise computations. Now, the
propagation in the forward direction is covered.

The form of the cost function propagating from children to parents is
assumed to be of the form (17). This is true even in the case, where there
are addition and multiplication nodes in between (see Appendix B.2 for
proof). Therefore only the gradients of the cost function with respect to
the different expectations need to be propagated backwards to identify the
whole cost function w.r.t. the parent. The required formulas are obtained
in a straightforward manner from Eqs. (20)–(24). The gradients for the
addition node are:

∂C

∂ 〈s1〉
=

∂C

∂ 〈s1 + s2〉
(25)
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∂C

∂Var {s1}
=

∂C

∂Var {s1 + s2}
(26)

∂C

∂ 〈exp s1〉
= 〈exp s2〉

∂C

∂ 〈exp(s1 + s2)〉
. (27)

For the multiplication node, they become

∂C

∂ 〈s1〉
= 〈s2〉

∂C

∂ 〈s1s2〉
+ 2Var {s2}

∂C

∂Var {s1s2}
〈s1〉 (28)

∂C

∂Var {s1}
=
(
〈s2〉

2 + Var {s2}
) ∂C

∂Var {s1s2}
. (29)

As a conclusion, addition and multiplication nodes can be added between
the Gaussian nodes whose costs still retain the form (17). Proofs can be
found in Appendices B.1 and B.2.

4.3 Nonlinearity node

A serious problem arising here is that for most nonlinear functions it is im-
possible to compute the required expectations analytically. Here we describe
a particular nonlinearity in detail and discuss the options for extending to
other nonlinearities, for which the implementation is underway.

Ghahramani and Roweis have shown [19] that for the nonlinear function
f(s) = exp(−s2) in Eq. (9), the mean and variance have analytical expres-
sions, to be presented shortly, provided that it has Gaussian input. In our
graphical network structures this condition is fulfilled if we require that the
nonlinearity must be inserted immediately after a Gaussian node. The same
type of exponential function (9) is frequently used in standard radial-basis
function networks [8, 24, 19], but in a different manner. There the exponen-
tial function depends on the Euclidean distance from a center point, while
in our case it depends on the input variable s directly.

The first and second moments of the function (9) with respect to the
distribution q(s) are [19]

〈f(s)〉 = exp

(
−

s2

2s̃ + 1

)
(2s̃ + 1)−

1

2 (30)

〈
[f(s)]2

〉
= exp

(
−

2s2

4s̃ + 1

)
(4s̃ + 1)−

1

2 (31)

The formula (30) provides directly the mean 〈f(s)〉, and the variance is
obtained from (30) and (31) by applying the familiar formula Var {f(s)} =〈
[f(s)]2

〉
−〈f(s)〉2. The expected exponential 〈exp f(s)〉 cannot be evaluated

analytically, which limits somewhat the use of the nonlinear node.
The updating of the nonlinear node following directly a Gaussian node

takes place similarly as the updating of a plain Gaussian node. The gradients
of Cp with respect to 〈f(s)〉 and Var {f(s)} are evaluated assuming that they
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arise from a quadratic term. This assumption holds since the nonlinearity
can only propagate to the mean of Gaussian nodes. The update formulas
are given in Appendix C.

Another possibility is to use as the nonlinearity the error function f(s)
=
∫ s

−∞ exp(−r2)dr, because its mean can be evaluated analytically and vari-
ance approximated from above [15]. Increasing the variance increases the
value of the cost function, too, and hence it suffices to minimise the upper
bound of the cost function for finding a good solution. [15] apply the error
function in MLP (multilayer perceptron) networks [8, 24] but in a manner
different from ours.

Finally, [54] has applied the hyperbolic tangent function f(s) = tanh(s),
approximating it iteratively with a Gaussian. [32] approximate the same
sigmoidal function with a Gauss-Hermite quadrature. This alternative could
be considered here, too. A problem with it is, however, that the cost function
(mean and variance) cannot be computed analytically.

4.4 Other possible nodes

One of the authors has recently implemented two new variable nodes [21, 23]
into the Bayes Blocks software library. They are the mixture-of-Gaussians
(MoG) node and the rectified Gaussian node. MoG can be used to model
any sufficiently well behaving distribution [8]. In the independent factor
analysis (IFA) method introduced in [2], a MoG distribution was used for
the sources, resulting in a probabilistic version of independent component
analysis (ICA) [36].

The second new node type, the rectified Gaussian variable, was intro-
duced in [53]. By omitting negative values and retaining only positive ones
of a variable which is originally Gaussian distributed, this block allows mod-
elling of variables having positive values only. Such variables are common-
place for example in digital image processing, where the picture elements
(pixels) have always non-negative values. The cost functions and update
rules of the MoG and rectified Gaussian node have been derived in [21]. We
postpone a more detailed discussion of these nodes to forthcoming papers
to keep the length of this paper reasonable.

In the early conference paper [77] where we introduced the blocks for
the first time, two more blocks were proposed for handling discrete models
and variables. One of them is a switch, which picks up its k-th continuous
valued input signal as its output signal. The other one is a discrete variable
k, which has a soft-max prior derived from the continuous valued input
signals ci of the node. However, we have omitted these two nodes from the
present paper, because their performance has not turned out to be adequate.
The reason might be that assuming all parents of all nodes independent is
too restrictive. For instance, building a mixture-of-Gaussians from discrete
and Gaussian variables with switches is possible, but the construction loses
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Node type 〈·〉 Var {·} 〈exp ·〉

Gaussian node s s̃ (12)
Addition node (20) (21) (22)
Multiplication node (23) (24) -
Nonlinearity (30) (30),(31) -
Constant c 0 exp c

Table 1: The forward messages or expectations that are provided by the
output of different types of nodes. The numbers in parentheses refer to
defining equations. The multiplication and nonlinearity cannot provide the
expected exponential.

Input type ∂C
∂〈·〉

∂C
∂Var{·}

∂C
∂〈exp ·〉

Mean of a Gaussian node (13) (14) 0
Variance of a Gaussian node (15) 0 (16)
Addendum (25) (26) (27)
Factor (28) (29) 0

Table 2: The backward messages or the gradients of the cost function
w.r.t. certain expectations. The numbers in parentheses refer to defining
equations. The gradients of the Gaussian node are derived from Eq. (10).
The Gaussian node requires the corresponding expectations from its inputs,
that is, 〈m〉, Var {m}, 〈v〉, and 〈exp v〉. Addition and multiplication nodes
require the same type of input expectations that they are required to pro-
vide as output. Communication of a nonlinearity with its Gaussian parent
node is described in Appendix C.

out to a specialised MoG node that makes fewer assumptions. In [63], the
discrete node is used without switches.

Action and utility nodes [60, 55] would extend the library into deci-
sion theory and control. In addition to the messages about the variational
Bayesian cost function, the network would propagate messages about utility.
[64] describe such a system in a slightly different framework.

5 Combining the nodes

The expectations provided by the outputs and required by the inputs of the
different nodes are summarised in Tables 1 and 2, respectively. One can see
that the variance input of a Gaussian node requires the expected exponential
of the incoming signal. However, it cannot be computed for the nonlinear
and multiplication nodes. Hence all the nodes cannot be combined freely.

When connecting the nodes, the following restrictions must be taken into
account:
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m v m

v s(t) w u(t) s(t)

Figure 3: Left: The Gaussian variable s(t) has a a constant variance exp(−v)
and mean m. Right: A variance source is added for providing a non-constant
variance input u(t) to the output (source) signal s(t). The variance source
u(t) has a prior mean v and prior variance exp(−w).

1. In general, the network has to be a directed acyclic graph (DAG). The
delay nodes are an exception because the past values of any node can
be the parents of any other nodes. This violation is not a real one
in the sense that if the structure were unfolded in time, the resulting
network would again be a DAG.

2. The nonlinearity must always be placed immediately after a Gaussian
node. This is because the output expectations, Equations (30) and
(31), can be computed only for Gaussian inputs. The nonlinearity
also breaks the general form of the likelihood (17). This is handled by
using special update rules for the Gaussian followed by a nonlinearity
(Appendix C).

3. The outputs of multiplication and nonlinear nodes cannot be used as
variance inputs for the Gaussian node. This is because the expected
exponential cannot be evaluated for them. These restrictions are evi-
dent from Tables 1 and 2.

4. There should be only one computational path from a latent variable to
a variable. Otherwise, the independency assumptions used in Equa-
tions (10) and (21)–(24) are violated and variational Bayesian learning
becomes more complicated (recall Figure 1).

Note that the network may contain loops, that is, the underlying undi-
rected network can be cyclic. Note also that the second, third, and fourth
restrictions can be circumvented by inserting mediating Gaussian nodes.
A mediating Gaussian node that is used as the variance input of another
variable, is called the variance source and it is discussed in the following.

5.1 Nonstationary variance

In most currently used models, only the means of Gaussian nodes have
hierarchical or dynamical models. In many real-world situations the variance
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Var{u(t)}=0
Var{u(t)}=1
Var{u(t)}=2

Figure 4: The distribution of s(t) is plotted when s(t) ∼ N (0, exp[−u(t)])
and u(t) ∼ N (0, ·). Note that when Var {u(t)} = 0, the distribution of s(t) is
Gaussian. This corresponds to the right subfigure of Fig. 3 when m = v = 0
and exp(−w) = 0, 1, 2.

is not a constant either but it is more difficult to model it. For modelling
the variance, too, we use the variance source [71] depicted schematically in
Figure 3. Variance source is a regular Gaussian node whose output u(t) is
used as the input variance of another Gaussian node. Variance source can
convert prediction of the mean into prediction of the variance, allowing to
build hierarchical or dynamical models for the variance.

The output s(t) of a Gaussian node to which the variance source is at-
tached (see the right subfigure of Fig. 3) has in general a super-Gaussian
distribution. Such a distribution is typically characterised by long tails and
a high peak, and it is formally defined as having a positive value of kurto-
sis (see [36] for a detailed discussion). This property has been proved for
example in [59], where it is shown that a nonstationary variance (ampli-
tude) always increases the kurtosis. The output signal s(t) of the stationary
Gaussian variance source depicted in the left subfigure of Fig. 3 is natu-
rally Gaussian distributed with zero kurtosis. The variance source is useful
in modelling natural signals such as speech and images which are typically
super-Gaussian, and also in modelling outliers in the observations.

5.2 Linear independent factor analysis

In many instances there exist several nodes which have quite similar role in
the chosen structure. Assuming that ith such node corresponds to a scalar
variable yi, it is convenient to use the vector y = (y1, y2, . . . , yn)T to jointly
denote all the corresponding scalar variables y1, y2, . . . , yn. This notation is
used in Figures 5 and 6 later on. Hence we represent the scalar source nodes
corresponding to the variables si(t) using the source vector s(t), and the
scalar nodes corresponding to the observations xi(t) using the observation
vector x(t).

The addition and multiplication nodes can be used for building an affine
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u(t) s(t)

x(t)

A

s(t)

x(t)

Figure 5: Model structures for linear factor analysis (FA) (left) and inde-
pendent factor analysis (IFA) (right).

transformation
x(t) = As(t) + a + nx(t) (32)

from the Gaussian source nodes s(t) to the Gaussian observation nodes
x(t). The vector a denotes the bias and vector nx(t) denotes the zero-
mean Gaussian noise in the Gaussian node x(t). This model corresponds
to standard linear factor analysis (FA) assuming that the sources si(t) are
mutually uncorrelated; see for example [36].

If instead of Gaussianity it is assumed that each source si(t) has some
non-Gaussian prior, the model (32) describes linear independent factor anal-
ysis (IFA). Linear IFA was introduced by [2], who used variational Bayesian
learning for estimating the model except for some parts which he estimated
using the expectation-maximisation (EM) algorithm. Attias used a mixture-
of-Gaussians source model, but another option is to use the variance source
to achieve a super-Gaussian source model. Figure 5 depicts the model struc-
tures for linear factor analysis and independent factor analysis.

5.3 A hierarchical variance model

Figure 6 (right subfigure) presents a hierarchical model for the variance, and
also shows how it can be constructed by first learning simpler structures
shown in the left and middle subfigures of Fig. 6. This is necessary, because
learning a hierarchical model having different types of nodes from scratch in
a completely unsupervised manner would be too demanding a task, ending
quite probably into an unsatisfactory local minimum.

The final rightmost variance model in Fig. 6 is somewhat involved in
that it contains both nonlinearities and hierarchical modelling of variances.
Before going into its mathematical details and into the two simpler models
in Fig. 6, we point out that we have considered in our earlier papers related
but simpler block models. In [76], a hierarchical nonlinear model for the
data x(t) is discussed without modelling the variance. Such a model can be
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Figure 6: Construction of a hierarchical variance model in stages from sim-
pler models. Left: In the beginning, a variance source is attached to each
Gaussian observation node. The nodes represent vectors. Middle: A layer
of sources with variance sources attached to them is added. They layers are
connected through a nonlinearity and an affine mapping. Right: Another
layer is added on the top to form the final hierarchical variance model.

applied for example to nonlinear ICA or blind source separation. Experi-
mental results [76] show that this block model performs adequately in the
nonlinear BSS problem, even though the results are slightly poorer than for
our earlier computationally more demanding model [44, 75, 32] with multiple
computational paths.

In another paper [71], we have considered hierarchical modelling of vari-
ance using the block approach without nonlinearities. Experimental re-
sults on biomedical MEG (magnetoencephalography) data demonstrate the
usefulness of hierarchical modelling of variances and existence of variance
sources in real-world data.

Learning starts from the simple structure shown in the left subfigure of
Fig. 6. There a variance source is attached to each Gaussian observation
node. The nodes represent vectors, with u1(t) being the output vector of
the variance source and x(t) the tth observation (data) vector. The vectors
u1(t) and x(t) have the same dimension, and each component of the vari-
ance vector u1(t) models the variance of the respective component of the
observation vector x(t).

Mathematically, this simple first model obeys the equations

x(t) = a1 + nx(t) (33)

u1(t) = b1 + nu1
(t) (34)

Here the vectors a1 and b1 denote the constant means (bias terms) of the
data vector x(t) and the variance variable vector u1(t), respectively. The
additive “noise” vector nx(t) determines the variances of the components
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of x(t). It has a Gaussian distribution with a zero mean and variance
exp[−u1(t)]:

nx(t) ∼ N (0, exp[−u1(t)]) (35)

More precisely, the shorthand notation N (0, exp[−u1(t)]) means that each
component of nx(t) is Gaussian distributed with a zero mean and variance
defined by the respective component of the vector exp[−u1(t)]. The expo-
nential function exp(·) is applied separately to each component of the vector
−u1(t). Similarly,

nu1
(t) ∼ N (0, exp [−v1]) (36)

where the components of the vector v1 define the variances of the zero mean
Gaussian variables nu1

(t).
Consider then the intermediate model shown in the middle subfigure of

Fig. 6. In this second learning stage, a layer of sources with variance sources
attached to them is added. These sources are represented by the source vec-
tor s2(t), and their variances are given by the respective components of the
variance vector u2(t) quite similarly as in the left subfigure. The (vector)
node between the source vector s2(t) and the variance vector u1(t) repre-
sents an affine transformation with a transformation matrix A1 including a
bias term. Hence the prior mean inputted to the Gaussian variance source
having the output u1(t) is of the form B1f(s2(t)) + b1, where b1 is the
bias vector, and f(·) is a vector of componentwise nonlinear functions (9).
Quite similarly, the vector node between s2(t) and the observation vector
x(t) yields as its output the affine transformation A1f(s2(t))+ a1, where a1

is a bias vector. This in turn provides the input prior mean to the Gaussian
node modelling the observation vector x(t).

The mathematical equations corresponding to the model represented
graphically in the middle subfigure of Fig. 6 are:

x(t) = A1f(s2(t)) + a1 + nx(t) (37)

u1(t) = B1f(s2(t)) + b1 + nu1
(t) (38)

s2(t) = a2 + ns2
(t) (39)

u2(t) = b2 + nu2
(t) (40)

Compared with the simplest model (33)–(34), one can observe that the
source vector s2(t) of the second (upper) layer and the associated variance
vector u2(t) are of quite similar form, given in Eqs. (39)–(40). The models
(37)–(38) of the data vector x(t) and the associated variance vector u1(t)
in the first (bottom) layer differ from the simple first model (33)–(34) in
that they contain additional terms A1f(s2(t)) and B1f(s2(t)), respectively.
In these terms, the nonlinear transformation f(s2(t)) of the source vector
s2(t) coming from the upper layer have been multiplied by the linear mixing
matrices A1 and B1. All the “noise” terms nx(t), nu1

(t), ns2
(t), and nu2

(t)
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in Eqs. (37)–(40) are modelled by similar zero mean Gaussian distributions
as in Eqs. (35) and (36).

In the last stage of learning, another layer is added on the top of the
network shown in the middle subfigure of Fig. 6. The resulting structure
is shown in the right subfigure. The added new layer is quite similar as
the layer added in the second stage. The prior variances represented by the
vector u3(t) model the source vector s3(t), which is turn affects via the affine
transformation B2f(s3(t)) +b2 to the mean of the mediating variance node
u2(t). The source vector s3(t) provides also the prior mean of the source
s2(t) via the affine transformation A2f(s3(t)) + a2.

The model equations (37)–(38) for the data vector x(t) and its associated
variance vector u1(t) remain the same as in the intermediate model shown
graphically in the middle subfigure of Fig. 6. The model equations of the
second and third layer sources s2(t) and s3(t) as well as their respective
variance vectors u2(t) and u3(t) in the rightmost subfigure of Fig. 6 are
given by

s2(t) = A2f(s3(t)) + a2 + ns2
(t) (41)

u2(t) = B2f(s3(t)) + b2 + nu2
(t) (42)

s3(t) = a3 + ns3
(t) (43)

u3(t) = b3 + nu3
(t) (44)

Again, the vectors a2, b2, a3, and b3 represent the constant means (biases) in
their respective models, and A2 and B2 are mixing matrices with matching
dimensions. The vectors ns2

(t), nu2
(t), ns3

(t), and nu3
(t) have similar zero

mean Gaussian distributions as in Eqs. (35) and (36).
It should be noted that in the resulting network the number of scalar-

valued nodes (size of the layers) can be different for different layers. Addi-
tional layers could be appended in the same manner. The final network of
the right subfigure in Fig. 6 utilises variance nodes in building a hierarchical
model for both the means and variances. Without the variance sources the
model would correspond to a nonlinear model with latent variables in the
hidden layer. As already mentioned, we have considered such a nonlinear
hierarchical model in [76]. Note that computation nodes as hidden nodes
would result in multiple paths from the latent variables of the upper layer
to the observations. This type of structure was used in [44], and it has a
quadratic computational complexity as opposed to linear one of the networks
in Figure 6.

5.4 Linear dynamic models for the sources and variances

Sometimes it is useful to complement the linear factor analysis model

x(t) = As(t) + a + nx(t) (45)
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Figure 7: Three model structures. A linear Gaussian state-space model
(left); the same model complemented with a super-Gaussian innovation pro-
cess for the sources (middle); and a dynamic model for the variances of the
sources which also have a recurrent dynamic model (right).

with a recursive one-step prediction model for the source vector s(t):

s(t) = Bs(t− 1) + b + ns(t) (46)

The noise term ns(t) is called the innovation process. The dynamic model
of the type (45), (46) is used for example in Kalman filtering [24, 25], but
other estimation algorithms can be applied as well [24]. The left subfigure
in Fig. 7 depicts the structure arising from Eqs. (45) and (46), built from
the blocks.

A straightforward extension is to use variance sources for the sources
to make the innovation process super-Gaussian. The variance signal u(t)
characterises the innovation process of s(t), in effect telling how much the
signal differs from the predicted one but not in which direction it is changing.
The graphical model of this extension is depicted in the middle subfigure of
Fig. 7. The mathematical equations describing this model can be written
in a similar manner as for the hierarchical variance models in the previous
subsection.

Another extension is to model the variance sources dynamically by using
one-step recursive prediction model for them:

u(t) = Cu(t− 1) + c + nu(t). (47)

This model is depicted graphically in the rightmost subfigure of Fig. 7. In
context with it, we use the simplest possible identity dynamical mapping for
s(t):

s(t) = s(t− 1) + ns(t). (48)

The latter two models introduced in this subsection will be tested experi-
mentally later on in this paper.
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5.5 Hierarchical priors

It is often desirable that the priors of the parameters should not be too
restrictive. A common type of a vague prior is the hierarchical prior [16].
For example the priors of the elements aij of a mixing matrix A can be
defined via the Gaussian distributions

p(aij | v
a
i ) = N (aij ; 0, exp(−va

i )) (49)

p(va
i | m

va, vva) = N (va
i ;mva, exp(−vva)) . (50)

Finally, the priors of the quantities mva and vva have flat Gaussian dis-
tributions N (·; 0, 100) (the constants depending on the scale of the data).
When going up in the hierarchy, we use the same distribution for each col-
umn of a matrix and for each component of a vector. On the top, the
number of required constant priors is small. Thus very little information is
provided and needed a priori. This kind of hierarchical priors are used in
the experiments later on this paper.

6 Learning

Let us now discuss the overall learning procedure, describing also briefly
how problems related with learning can be handled.

6.1 Updating of the network

The nodes of the network communicate with their parents and children by
providing certain expectations in the feedforward direction (from parents
to children) and gradients of the cost function with respect to the same
expectations in the feedback direction (from children to parents). These
expectations and gradients are summarised in Tables 1 and 2.

The basic element for updating the network is the update of a single
node assuming the rest of the network fixed. For computation nodes this is
simple: each time when a child node asks for expectations and they are out
of date, the computational node asks from its parents for their expectations
and updates its own ones. And vice versa: when parents ask for gradients
and they are out of date, the node asks from its children for the gradients
and updates its own ones. These updates have analytical formulas given in
Section 4.

For a variable node to be updated, the input expectations and output
gradients need to be up-to-date. The posterior approximation q(s) can then
be adjusted to minimise the cost function as explained in Section 4. The
minimisation is either analytical or iterative, depending on the situation.
Signals propagating outwards from the node (the output expectations and
the input gradients) of a variable node are functions of q(s) and are thus
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updated in the process. Each update is guaranteed not to increase the cost
function.

One sweep of updating means updating each node once. The order in
which this is done is not critical for the system to work. It would not be
useful to update a variable twice without updating some of its neighbours
in between, but that does not happen with any ordering when updates are
done in sweeps. We have used an ordering where each variable node is
updated only after all of its descendants have been updated. Basically when
a variable node is updated, its input gradients and output expectations are
labeled as outdated and they are updated only when another node asks for
that information.

It is possible to use different measures to improve the learning process.
Measures for avoiding local minima are described in the next subsection.
Another enhancement can be used for speeding up learning. The basic idea
is that after some time, the parameters describing q(s) are changing fairly
linearly between consecutive sweeps. Therefore a line search in that direction
provides faster learning, as discussed in [28, 33]. We apply this line search
only at every tenth sweep for allowing the consecutive updates to become
fairly linear again.

Learning a model typically takes thousands of sweeps before convergence.
The cost function decreases monotonically after every update. Typically this
decrease gets smaller with time, but not always monotonically. Therefore
care should be taken in selecting the stopping criterion. We have chosen to
stop the learning process when the decrease in the cost during the previous
200 sweeps is lower than some predefined threshold.

6.2 Structural learning and local minima

The chosen model has a pre-specified structure which, however, has some
flexibility. The number of nodes is not fixed in advance, but their optimal
number is estimated using variational Bayesian learning, and unnecessary
connections can be pruned away.

A factorial posterior approximation, which is used in this paper, often
leads to automatic pruning of some of the connections in the model. When
there is not enough data to estimate all the parameters, some directions
remain ill-determined. This causes the posterior distribution along those di-
rections to be roughly equal to the prior distribution. In variational Bayesian
learning with a factorial posterior approximation, the ill-determined direc-
tions tend to get aligned with the axes of the parameter space because then
the factorial approximation is most accurate.

The pruning tendency makes it easy to use for instance sparsely con-
nected models, because the learning algorithm automatically selects a small
amount of well-determined parameters. But at the early stages of learning,
pruning can be harmful, because large parts of the model can get pruned
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away before a sensible representation has been found. This corresponds to
the situation where the learning scheme ends up into a local minimum of the
cost function [50]. A posterior approximation which takes into account the
posterior dependences has the advantage that it has far less local minima
than a factorial posterior approximation. It seems that Bayesian learning
algorithms which have linear time complexity cannot avoid local minima in
general.

However, suitable choices of the model structure and countermeasures
included in the learning scheme can alleviate the problem greatly. We have
used the following means for avoiding getting stuck into local minima:

• Learning takes place in several stages, starting from simpler struc-
tures which are learned first before proceeding to more complicated
hierarchic structures. An example of this technique was presented in
Section 5.3.

• New parts of the network are initialised appropriately. One can use
for instance principal component analysis (PCA), independent com-
ponent analysis (ICA), vector quantisation, or kernel PCA [29]. The
best option depends on the application. Often it is useful to try dif-
ferent methods and select the one providing the smallest value of the
cost function for the learned model. There are two ways to handle ini-
tialisation: either to fix the sources for a while and learn the weights
of the model, or to fix the weights for a while and learn the sources
corresponding to the observations. The fixed variables can be released
gradually (see Section 5.1 of [76]).

• Automatic pruning is discouraged initially by omitting the term

2Var {s2}
∂C

∂Var {s1s2}
〈s1〉

in the multiplication nodes (Eq. (28)). This effectively means that the
mean of s1 is optimistically adjusted as if there were no uncertainty
about s2. In this way the cost function may increase at first due to
overoptimism, but it may pay off later on by escaping early pruning.

• New sources si(t) (components of the source vector s(t) of a layer) are
generated, and pruned sources are removed from time to time.

• The activations of the sources are reset a few times. The sources
are re-adjusted to their places while keeping the mapping and other
parameters fixed. This often helps if some of the sources are stuck into
a local minimum.
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7 Experimental results

The Bayes Blocks software [72] has been applied to several problems.
[71] considered several models of variance. The main application was

the analysis of MEG measurements from a human brain. In addition to
features corresponding to brain activity the data contained several artifacts
such as muscle activity induced by the patient biting his teeth. Linear
ICA applied to the data was able to separate the original causes to some
degree but still many dependencies remained between the sources. Hence an
additional layer of so-called variance sources was used to find correlations
between the variances of the innovation processes of the ordinary sources.
These were able to capture phenomena related to the biting artifact as well
as to rhythmic activity.

An astrophysical problem of separating young and old star populations
from a set of elliptical galaxy spectra has been studied by one of the authors
in [57]. Since the observed quantities are energies and thus positive and
since the mixing process is also known to be positive, it is necessary for the
subsequent astrophysical analysis to be feasible to include these constraints
to the model as well. The standard technique of putting a positive prior
on the sources was found to have the unfortunate technical shortcoming
of inducing sparsely distributed factors, which was deemed inappropriate
in that specific application. To get rid of the induced sparsity but to still
keep the positivity constraint, the nonnegativity was forced by rectification
nonlinearities [22]. In addition to finding an astrophysically meaningful
factorisation, several other specifications were needed to be met related to
handling of missing values, measurements errors and predictive capabilities
of the model.

In [63], a nonlinear model for relational data is applied to the analysis
of the boardgame Go. The difficult part of the game state evaluation is to
determine which groups of stones are likely to get captured. A model similar
to the one that will be described in Section 7.2, is built for features of pairs
of groups, including the probability of getting captured. When the learned
model is applied to new game states, the estimates propagate through a
network of such pairs. The structure of the network is thus determined
by the game state. The approach can be used for inference in relational
databases.

The following three sets of experiments are given as additional examples.
The first one is a difficult toy problem that illustrates hierarchy and variance
modelling, the second one studies the inference of missing values in speech
spectra, and the third one has a dynamical model for image sequences.

28



Figure 8: Samples from the 1000 image patches used in the extended bars
problem. The bars include both standard and variance bars in horizontal and
vertical directions. For instance, the patch at the bottom left corner shows
the activation of a standard horizontal bar above the horizontal variance bar
in the middle.

7.1 Bars problem

The first experimental problem studied was testing of the hierarchical non-
linear variance model in Figure 6 in an extension of the well-known bars
problem [13]. The data set consisted of 1000 image patches each having
6× 6 pixels. They contained both horizontal and vertical bars. In addition
to the regular bars, the problem was extended to include horizontal and ver-
tical variance bars, characterized and manifested by their higher variance.
Samples of the image patches used are shown in Figure 8.

The data were generated by first choosing whether vertical, horizon-
tal, both, or neither orientations were active, each with probability 1/4.
Whenever an orientation is active, there is a probability 1/3 for a bar in
each row or column to be active. For both orientations, there are 6 regular
bars, one for each row or column, and 3 variance bars which are 2 rows or
columns wide. The intensities (grey level values) of the bars were drawn
from a normalised positive exponential distribution having the pdf p(z) =
exp(−z), z ≥ 0, p(z) = 0, z < 0. Regular bars are additive, and variance
bars produce additive Gaussian noise having the standard deviation of its
intensity. Finally, Gaussian noise with a standard deviation 0.1 was added
to each pixel.

The network was built up following the stages shown in Figure 6. It was
initialised with a single layer with 36 nodes corresponding to the 36 dimen-
sional data vector. The second layer of 30 nodes was created at the sweep
20, and the third layer of 5 nodes at the sweep 100. After creating a layer
only its sources were updated for 10 sweeps, and pruning was discouraged
for 50 sweeps. New nodes were added twice, 3 to the second layer and 2 to
the third layer, at sweeps 300 and 400. After that, only the sources were
updated for 5 sweeps, and pruning was again discouraged for 50 sweeps.
The source activations were reset at the sweeps 500, 600 and 700, and only
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the sources were updated for the next 40 sweeps. Dead nodes were removed
every 20 sweeps. The multistage training procedure was designed to avoid
suboptimal local solutions, as discussed in Section 6.2.

Figure 9 demonstrates that the algorithm finds a generative model that
is quite similar to the generation process. The two sources on the third layer
correspond to the horizontal and vertical orientations and the 18 sources on
the second layer correspond to the bars. Each element of the weight matrices
is depicted as a pixel with the appropriate grey level value in Fig. 9. The
pixels of A2 and B2 are ordered similarly as the patches of A1 and B1,
that is, vertical bars on the left and horizontal bars on the right. Regular
bars, present in the mixing matrix A1, are reconstructed accurately, but the
variance bars in the mixing matrix B1 exhibit some noise. The distinction
between horizontal and vertical orientations is clearly visible in the mixing
matrix A2.

A2 (18 × 2) B2 (18 × 2)

A1 (36× 18) B1 (36× 18)

Figure 9: Results of the extended bars problem: Posterior means of the
weight matrices after learning. The sources of the second layer have been
ordered for visualisation purposes according to the weight (mixing) matrices
A2 and B2. The elements of the matrices have been depicted as pixels having
corresponding grey level values. The 18 pixels in the weight matrices A2

and B2 correspond to the 18 patches in the weight matrices A1 and B1.

A comparison experiment with a simplified learning procedure was run
to demonstrate the importance of local optima. The creation and pruning
of layers were done as before, but other methods for avoiding local min-
ima (addition of nodes, discouraging pruning and resetting of sources) were
disabled. The resulting weights can be seen in Figure 10. This time the
learning ends up in a suboptimal local optimum of the cost function. One
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Figure 10: Left: Cost function plotted against the number of learning
sweeps. Solid curve is the main experiment and the dashed curve is the
comparison experiment. The peaks appear when nodes are added. Right:
The resulting weights in the comparison experiment are plotted like in Fig-
ure 9.
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Figure 11: A typical example illustrating the posterior approximation of a
variance source.

of the bars was not found (second horizontal bar from the bottom), some
were mixed up in a same source (most variance bars share a source with a
regular bar), fourth vertical bar from the left appears twice, and one of the
sources just suppresses variance everywhere. The resulting cost function (5)
is worse by 5292 compared to the main experiment. The ratio of the model
evidences is thus roughly exp(5292).

Figure 11 illustrates the formation of the posterior distribution of a typ-
ical single variable. It is the first component of the variance source u1(1)
in the comparison experiment. The prior means here the distribution given
its parents (especially s2(1) and B1) and the likelihood means the potential
given its children (the first component of x(1)). Assuming the posteriors
of other variables accurate, we can plot the true posterior of this variable
and compare it to the Gaussian posterior approximation. Their difference
is only 0.007 measured by Kullback-Leibler divergence.
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7.2 Missing values in speech spectra

In hierarchical nonlinear factor analysis (HNFA) [76], there are a number
of layers of Gaussian variables, the bottom-most layer corresponding to the
data. There is a nonlinearity and a linear mixture mapping from each layer
to all the layers below it.

HNFA resembles the model structure in Section 5.3. The model structure
is depicted in the left subfigure of Fig. 12. Model equations are

h(t) = As(t) + a + nh(t) (51)

x(t) = Bφ[h(t)] + Cs(t) + b + nx(t) , (52)

where nh(t) and nx(t) are Gaussian noise terms and the nonlinearity φ(ξ) =
exp(−ξ2) again operates on each element of its argument vector separately.
Note that we have included a short-cut mapping C from sources to obser-
vations. This means that hidden nodes only need to model the deviations
from linearity.

HNFA is compared against three other methods. Factor analysis (FA) is
a linear method described in Section 5.2. It is a special case of HNFA where
the dimensionality of h(t) is zero. Nonlinear factor analysis (NFA) [44, 32]
differs from HNFA in that it does not use mediating variables h(t):

x(t) = B tanh[As(t) + a] + b + nx(t). (53)

Note that NFA has multiple computational paths between s(t) and x(t),
which leads to a higher computational complexity compared to HNFA.

The self-organising map SOM [42] differs most from the other methods.
A rectangular map has a number of map units with associated model vectors
that are points in the data space. Each data point is matched to the closest
map unit. The model vectors of the best-matching unit and its neighbours in
the map are moved slightly towards the data point. See [42, 24] for details.

The data set consisted of speech spectrograms from several Finnish sub-
jects. Short term spectra were windowed to 30 dimensions with a standard
preprocessing procedure for speech recognition. It is clear that a dynamic
source model would give better reconstructions, but in this case the tempo-
ral information was left out to ease the comparison of the models. Half of
the about 5000 samples were used as test data with some missing values.
Missing values were set in four different ways to measure different properties
of the algorithms (Figure 13):

1. 38 percent of the values are set to miss randomly in 4 × 4 patches.
(Right subfigure of Figure 12)

2. Training and testing sets are randomly permuted before setting miss-
ing values in 4× 4 patches as in Setting 1.

3. 10 percent of the values are set to miss randomly independent of any
neighbours. This is an easier setting, since simple smoothing using
nearby values would give fine reconstructions.
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Figure 12: Left: The model structure for hierarchical nonlinear factor anal-
ysis (HNFA). Right: Some speech data with and without missing values
(Setting 1) and the reconstruction given by HNFA.
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Figure 13: Four different experimental settings with the speech data used
for measuring different properties of the algorithms.

4. Training and testing sets are permuted and 10 percent of the values
are set to miss independently of any neighbours.

We tried to optimise each method and in the following, we describe
how we got the best results. The self-organising map was run using the
SOM Toolbox [79] with long learning time, 2500 map units and random
initialisations. In other methods, the optimisation was based on minimising
the cost function or its approximation. NFA was learned for 5000 sweeps
through data using a Matlab implementation. Varying number of sources
were tried out and the best ones were used as the result. The optimal
number of sources was around 12 to 15 and the size used for the hidden
layer was 30. A large enough number should do, since the algorithm can
effectively prune out parts that are not needed.

In factor analysis (FA), the number of sources was 28. In hierarchical
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nonlinear factor analysis (HNFA), the number of sources at the top layer
was varied and the best runs according to the cost function were selected.
In those runs, the size of the top layer varied from 6 to 12 and the size of the
middle layer, which is determined during learning, turned out to vary from
12 to 30. HNFA was run for 5000 sweeps through data. Each experiment
with NFA or HNFA took about 8 hours of processor time, while FA and
SOM were faster.

Several runs were conducted with different random initialisations but
with the same data and the same missing value pattern for each setting and
for each method. The number of runs in each cell is about 30 for HNFA,
4 for NFA and 20 for the SOM. FA always converges to the same solution.
The mean and the standard deviation of the mean square reconstruction
error are:

FA HNFA NFA SOM

Setting 1 1.87 1.80 ± 0.03 1.74 ± 0.02 1.69 ± 0.02
Setting 2 1.85 1.78 ± 0.03 1.71 ± 0.01 1.55 ± 0.01
Setting 3 0.57 0.55 ± .005 0.56 ± .002 0.86 ± 0.01
Setting 4 0.58 0.55 ± .008 0.58 ± .004 0.87 ± 0.01

The order of results of the Setting 1 follow our expectations on the
nonlinearity of the models. The SOM with highest nonlinearity gives the
best reconstructions, while NFA, HNFA and finally FA follow in that order.
The results of HNFA vary the most - there is potential to develop better
learning schemes to find better solutions more often. The sources h(t) of
the hidden layer did not only emulate computation nodes, but they were
also active themselves. Avoiding this situation during learning could help
to find more nonlinear and thus perhaps better solutions.

In the Setting 2, due to the permutation, the test set contains vectors
very similar to some in the training set. Therefore, generalisation is not as
important as in the Setting 1. The SOM is able to memorise details corre-
sponding to individual samples better due to its high number of parameters.
Compared to the Setting 1, SOM benefits a lot and makes clearly the best
reconstructions, while the others benefit only marginally.

The Settings 3 and 4, which require accurate expressive power in high
dimensionality, turned out not to differ from each other much. The basic
SOM has only two intrinsic dimensions4 and therefore it was clearly poorer
in accuracy. Nonlinear effects were not important in these settings, since
HNFA and NFA were only marginally better than FA. HNFA was better
than NFA perhaps because it had more latent variables when counting both
s(t) and h(t).

To conclude, HNFA lies between FA and NFA in performance. HNFA
is applicable to high dimensional problems and the middle layer can model

4Higher dimensional SOMs become quickly intractable due to exponential number of
parameters.
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part of the nonlinearity without increasing the computational complexity
dramatically. FA is better than SOM when expressivity in high dimensions
is important, but SOM is better when nonlinear effects are more important.
The extensions of FA, NFA and HNFA, expectedly performed better than
FA in each setting. It may be possible to enhance the performance of NFA
and HNFA by new learning schemes whereas especially FA is already at its
limits. On the other hand, FA is best if low computational complexity is
the determining factor.

7.3 Variance model of image sequences

In this section an experiment with a dynamical model for variances applied
to image sequence analysis is reported. The motivation behind modelling
variances is that in many natural signals, there exists higher order depen-
dencies which are well characterised by correlated variances of the signals
[59]. Hence we postulate that we should be able to better catch the dynam-
ics of a video sequence by modelling the variances of the features instead of
the features themselves. This indeed is the case as will be shown.

The model considered can be summarised by the following set of equa-
tions:

x(t) ∼ N (As(t),diag(exp[−vx]))

s(t) ∼ N (s(t− 1),diag(exp[−u(t)]))

u(t) ∼ N (Bu(t − 1),diag(exp[−vu]))

We will use the acronym DynVar in referring to this model. The linear
mapping A from sources s(t) to observations x(t) is constrained to be sparse
by assigning each source a circular region on the image patch outside of
which no connections are allowed. These regions are still highly overlapping.
The variances u(t) of the innovation process of the sources have a linear
dynamical model. It should be noted that modelling the variances of the
sources in this manner is impossible if one is restricted to use conjugate
priors.

The sparsity of A is crucial as the computational complexity of the
learning algorithm depends on the number of connections from s(t) to x(t).
The same goal could have been reached with a different kind of approach
as well. Instead of constraining the mapping to be sparse from the very
beginning of learning it could have been allowed to be full for a number of
iterations and only after that pruned based on the cost function as explained
in Section 6.2. But as the basis for image sequences tends to get sparse
anyway, it is a waste of computational resources to wait while most of the
weights in the linear mapping tend to zero.

For comparison purposes, we postulate another model where the dynam-
ical relations are sought directly between the sources leading to the following
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model equations:

x(t) ∼ N (As(t),diag(exp[−vx]))

s(t) ∼ N (Bs(t− 1),diag(exp[−u(t)]))

We shall refer to this model as DynSrc.
The data x(t) was a video image sequence [78] of dimensions 16 × 16 ×

4000. That is, the data consisted of 4000 subsequent digital images of the
size 16× 16. A part of the data set is shown in Figure 14.

Both models were learned by iterating the learning algorithm 2000 times
at which stage a sufficient convergence was attained. The first hint of the
superiority of the DynVar model was provided by the difference of the cost
between the models which was 28 bits/frame (for the coding interpretation,
see [31]). To further evaluate the performance of the models, we considered
a simple prediction task where the next frame was predicted based on the
previous ones. The predictive distributions, p(x(t+1)|x(1), ...,x(t)), for the
models can be approximately computed based on the posterior approxima-
tion. The means of the predictive distributions are very similar for both of
the models. Figure 15 shows the means of the DynVar model for the same
sequence as in Figure 14. The means themselves are not very interesting,
since they mainly reflect the situation in the previous frame. However, the
DynVar model provides also a rich model for the variances. The standard
deviations of its predictive distribution are shown in Figure 16. White stands
for a large variance and black for a small one. Clearly, the model is able
to increase the predicted variance in the area of high motion activity and
hence provide better predictions. We can offer quantitative support for this
claim by computing the predictive perplexities for the models. Predictive
perplexity is widely used in language modelling and it is defined as

perplexity(t) = exp

{
−

1

256

256∑

i=1

log p(xi(t + 1)|x(1), ...,x(t))

}
.

The predictive perplexities for the same sequence as in Figure 14 are shown
in Figure 17. Naturally the predictions get worse when there is movement
in the video. However, DynVar model is able to handle it much better than
the compared DynSrc model. The same difference can also be directly read
by comparing the cost functions (3).

The possible applications for a model of image sequences include video
compression, motion detection, early stages of computer vision, and making
hypotheses on biological vision.

8 Discussion

One of the distinctive factors between different Bayesian approaches is the
type of posterior approximation. We have concentrated on large unsuper-
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Figure 14: A sequence of 80 frames from the data used in the experiment.

Figure 15: The means of the predictive distribution for the DynVar model.

Figure 16: The standard deviations of the predictive distribution for the
DynVar model.
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Figure 17: Predictive perplexities.

vised learning tasks, where point estimates are too prone to overfitting and
sampling used in MCMC methods and particle filters, is often too slow.
The problems tackled with particle filters in [14] vary from 1 to 10 in di-
mensionality, whereas the latent space in Section 7.3 is 128 dimensional. The
variational Bayesian learning seems to provide a good compromise between
point estimates and sampling methods.

Often the posterior distribution consists of clusters or solution modes. It
depends on the posterior approximation again, whether only one of the clus-
ters, or all of them are modelled. In our case, the expectation in JKL(q ‖ p)
is taken over the approximate distribution q, which in practice leads to mod-
elling a single mode. In expectation propagation [52], the Kullback-Leibler
divergence is formed differently, leading to modelling of all the modes. Also,
sampling is supposed to take place in all the modes. For the purpose of find-
ing a single good representative of the posterior probability mass, the first
approach should be better. In fact, the expectation over the true posterior,
also known as the Bayes estimate, is often degenerate due to symmetry. For
instance in factor analysis type models, the posterior is symmetric to the
permutation of factors. The number of permutations also gives a hint of
the infeasibility of accurately modelling all the modes in a high-dimensional
problem. Perhaps it would be best to find one mode for the parameters, but
all modes for the time-dependent variables when feasible.

The variational Bayesian methods vary further depending on the pos-
terior approximation. In this paper, all variables are assumed to be in-
dependent a posteriori. We have chosen to model individual distributions
as Gaussians. Often different conjugate distributions are used instead, for
instance, the variance of a Gaussian variable is modelled with a Gamma
distribution. Conjugate distributions are accurate and in some sense practi-

38



cal, but by restricting to Gaussians, the nodes can be connected more freely
allowing for example hierarchical modelling of variances. It should be noted
that the effect of assuming independencies is far more significant compared
to the effect of approximations in modelling individual distributions.

The scope of this paper has been restricted to models which can be
learned using purely local computations. This is possible, if the parents
of each node are independent a posteriori. This can be accomplished by
using a factorial posterior approximation and by not allowing multiple com-
putational paths between variables. Purely local computations result in a
computational complexity that is linear w.r.t. the number of connections in
the model. In small models, one could afford to take all the dependencies
into account. In larger models, it might be desirable to model posterior
dependencies within disjoint groups of variables, but to assume the groups
statistically independent, as is done by [81].

According to our experience, almost maximally factorial posterior pdf
approximation q(θ) suffices in many cases. It seems that a good model
structure is usually more important than a good approximation of the pos-
terior pdf of the model. Therefore the available computation time is often
better invested in a larger model using a simple posterior approximation.
In any case, density estimates of continuous valued latent variables offer an
important advantage over point estimates, because they are robust against
overfitting and provide a cost function suitable for learning model structures.
With variational Bayesian learning employing a factorial posterior pdf ap-
proximation q(θ) the density estimates are almost as efficient as point esti-
mates. Moreover, latent variable models often exhibit rotational and other
invariances which variational Bayesian learning can utilise by choosing a
solution where the factorial approximation is most accurate.

The basic algorithm for learning and inference is based on updating a
variable at a time while keeping other variables fixed. It has the benefits
of being completely local and guaranteed to converge. A drawback is that
the flow of information through time can be slow while performing inference
in a dynamical model. There are alternative inference algorithms, where
updates are carried out in forward and backward sweeps. These include
particle smoothing [14], extended Kalman smoothing [1], and expectation
propagation [52]. When the model needs to be learned at the same time,
one needs to iterate a lot anyway, so the variational Bayesian algorithm
that makes small but consistent improvements at every sweep might be
preferable.

It is an important design choice that each node is updated while keeping
the other nodes fixed. If new node types are added later on, there is no
need to change the global learning algorithm, but it suffices to design an
update rule for the new node type. Also, there is an option to update
some nodes more often than others. When different parameters are coupled
and cyclic updating is slow, it can be sped up by line search as described
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by [33]. Note that all the updates are done in order to minimise a global
cost function, that is, a cost function over all the variables. Expectation
propagation [52] updates one approximation at a time, too. An important
difference is that there updates are done using a local cost function, i.e. the
local approximation is fitted to the local true posterior assuming that the
rest of the approximation is accurate. This is the reason why expectation
propagation may diverge.

Large nonlinear problems often have numerous suboptimal local solu-
tions that should be avoided. We have used many tricks to avoid them, as
discussed in Section 6.2. It depends on the application which tricks work
best. It is an important aspect of future work to make the procedure as
simple as possible for the user.

9 Conclusions

In this paper, we have introduced standardised nodes (blocks) for construct-
ing generative latent variable models. These nodes include a Gaussian node,
addition, multiplication, a nonlinearity following directly a Gaussian node,
and a delay node. The nodes have been designed so that they fit together, al-
lowing construction of many types of latent variable models, including both
known and novel structures. Constructing new prototype models is rapid
since the user does not need to take care of the learning formulas. The nodes
have been implemented in an open source software package called the Bayes
Blocks [72].

The models built from these blocks are taught using variational Bayesian
(ensemble) learning. This learning method essentially uses as its cost func-
tion the Kullback-Leibler information between the true posterior density
and its approximation. The cost function is used for updating the unknown
variables in the model, but it also allows optimisation of the number of nodes
in the chosen model type. By using a factorial posterior density approxima-
tion, all the required computations can be carried out locally by propagating
means, variances, and expected exponentials instead of full distributions. In
this way, one can achieve a linear computational complexity with respect to
the number of connections in the chosen model. However, initialisation to
avoid premature pruning of nodes and local minima require special attention
in each application for achieving good results.

In this paper, we have tested the introduced method experimentally in
three separate unsupervised learning problems with different types of mod-
els. The results demonstrate the good performance and usefulness of the
method. First, hierarchical nonlinear factor analysis (HNFA) with variance
modelling was applied to an extension of the bars problem. The presented
algorithm could find a model that is essentially the same as the complicated
way in which the data were generated. Secondly, HNFA was used to recon-
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struct missing values in speech spectra. The results were consistently better
than with linear factor analysis, and were generally best in cases requir-
ing accurate representation in high dimensionality. The third experiment
was carried out using real-world video image data. We compared the lin-
ear dynamical model for the means and for the variances of the sources.
The results demonstrate that finding strong dependencies between different
sources was considerably easier when the variances were modelled, too.
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APPENDICES

A Updating q(s) for the Gaussian node

Here we show how to minimise the function

C(m, v) = Mm + V [(m−m0)
2 + v] + E exp(m + v/2) −

1

2
ln v, (54)

where M ,V ,E, and m0 are scalar constants. A unique solution exists when
V > 0 and E ≥ 0. This problem occurs when a Gaussian posterior with
mean m and variance v is fitted to a probability distribution whose logarithm
has both a quadratic and exponential part resulting from Gaussian prior
and log-Gamma likelihoods, respectively, and Kullback-Leibler divergence
is used as the measure of the misfit.

In the special case E = 0, the minimum of C(m, v) can be found an-
alytically and it is m = m0 −

M
2V

, v = 1
2V

. In other cases where E > 0,
minimisation is performed iteratively. At each iteration, one Newton iter-
ation for the mean m and one fixed-point iteration for the variance v are
carried out as explained in more detail in the following.
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A.1 Newton iteration for the mean m

The Newton iteration for m is obtained by

mi+1 = mi −
∂C(mi, vi)/∂mi

∂2C(mi, vi)/∂m2
i

= mi −
M + 2V (mi −m0) + E exp(m + v/2)

2V + E exp(m + v/2)
. (55)

The Newton iteration converges in one step if the second derivative remains
constant. The step is too short if the second derivative decreases and too
long if the second derivative increases. For stability, it is better to take too
short than too long steps.

In this case, the second derivative always decreases if the mean m de-
creases and vice versa. For stability it is therefore useful to restrict the
growth of m because it is consistently over-estimated.

A.2 Fixed-point iteration for the variance v

A simple fixed-point iteration rule is obtained for the variance v by solving
the zero of the derivative:

0 =
∂C(m, v)

∂v
= V +

E

2
exp(m + v/2) −

1

2v
⇔

v =
1

2V + E exp(m + v/2)

def
= g(v) (56)

vi+1 = g(vi) (57)

In general, fixed-point iterations are stable around the solution vopt if |g′(vopt)| <
1 and converge best when the derivative g′(vopt) is near zero. In our case
g′(vi) is always negative and can be less than −1. In this case the solution
can be an unstable fixed-point. This can be avoided by taking a weighted
average of (57) and a trivial iteration vi+1 = vi:

vi+1 =
ξ(vi)g(vi) + vi

ξ(vi) + 1

def
= f(vi) (58)

The weight ξ should be such that the derivative of f is close to zero at the
optimal solution vopt which is achieved exactly when ξ(vopt) = −g′(vopt).

It holds

g′(v) = −
(E/2) exp(m + v/2)

[2V + E exp(m + v/2)]2
= g2(v)

[
V −

1

2g(v)

]
= g(v)

[
V g(v)−

1

2

]
⇒

g′(vopt) = vopt

[
V vopt −

1

2

]
⇒ ξ(vopt) = vopt

[
1

2
− V vopt

]
(59)
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The last steps follow from the fact that vopt = g(vopt) and from the re-
quirement that f ′(vopt) = 0. We can assume that v is close to vopt and
use

ξ(v) = v

[
1

2
− V vopt

]
. (60)

Note that the iteration (57) can only yield estimates with 0 < vi+1 < 1/2V
which means that ξ(vi+1) > 0. Therefore the use of ξ always shortens the
step taken in (58). If the initial estimate v0 > 1/2V , we can set it to
v0 = 1/2V .

A.3 Summary of the updating method for q(s)

1. Set v0 ← min(v0, 1/2V ).

2. Iterate:

(a) Solve the new estimate of the mean m from Eq. (55) under the
restriction that the maximum step is 4;

(b) Solve the new estimate of the variance v from Eqs. (60) and (58)
under the restriction that the maximum step is 4.

3. Stop the iteration after the corrections become small enough, being
under some suitable predefined threshold value.

B Addition and multiplication nodes

Equations (20)–(24) for the addition and multiplication nodes are proven in
the following section. Only the Equation (20) applies in general, the others
assume that the incoming signals are independent a posteriori. That is,
q(s1, s2, . . . , sn) = q(s1)q(s2) . . . q(sn). Also the proof of the form of the cost
function mostly concerns propagation through addition and multiplication
nodes, so it is presented here. Finally, the formulas of propagating the
gradients of the cost function w.r.t. the expectations are derived.

B.1 Expectations

Equation (20) follows directly from the linearity of the expectation opera-
tion, or can be proven analogously to the proof of Equation (23):

〈
n∏

i=1

si

〉
=

∫ ( n∏

i=1

si

)
q(s1, s2, . . . , sn)ds

=

∫ n∏

i=1

siq(si)ds =
n∏

i=1

∫
siq(si)dsi =

n∏

i=1

〈si〉 .
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Equation (21) states that the variance of a sum of independent variables
is the sum of their variances. This fact can be found in basic probability
theory books. It can be proven with simple manipulation by using Equations
(20) and (23).

Equation (22) can be proven by applying (23) to exp si:

〈
exp

(
n∑

i=1

si

)〉
=

〈
n∏

i=1

exp si

〉
=

n∏

i=1

〈exp si〉 .

Equation (24) can be proven by applying Equation (23) to both si and s2
i :

Var

{
n∏

i=1

si

}
=

〈(
n∏

i=1

si

)2〉
−

〈
n∏

j=1

sj

〉2

=

〈
n∏

i=1

s2
i

〉
−




n∏

j=1

〈sj〉




2

=

n∏

i=1

〈
s2
i

〉
−

n∏

j=1

〈sj〉
2 =

n∏

i=1

[
〈si〉

2 + Var {si}
]
−

n∏

j=1

〈sj〉
2 .

B.2 Form of the cost function

The form of the part of the cost function that an output of a node affects is
shown to be of the form

Cp = M 〈·〉+ V [(〈·〉 − 〈·〉current)
2 + Var {·}] + E 〈exp ·〉+ C (61)

where 〈·〉 denotes the expectation of the quantity in question. If the output
is connected directly to another variable, this can be seen from Eq. (10) by
substituting

M = 〈exp v〉 (〈s〉current − 〈m〉)

V =
1

2
〈exp v〉

E = 0

C =
1

2

[
〈exp v〉

(
Var {m}+ 〈m〉2 − 〈s〉2current

)
− 〈v〉+ ln 2π

]
.

If the output is connected to multiple variables, the sum of the affected costs
is of the same form. Now one has to prove that this form remains the same
when the signals are fed through the addition and multiplication nodes. 5

If the cost function is of the predefined form (61) for the sum s1 + s2, it
has the same form for s1, when s2 is regarded as a constant. This can be

5Note that delay node only rewires connections so it does not affect the formulas.

44



shown using Eqs. (20), (21), and (22):

Cp = M 〈s1 + s2〉+ V
[
(〈s1 + s2〉 − 〈s1 + s2〉current)

2 + Var {s1 + s2}
]

+ E 〈exp(s1 + s2)〉+ C (62)

= M 〈s1〉+ V
[
(〈s1〉 − 〈s1〉current)

2 + Var {s1}
]

+ (E 〈exp s2〉) 〈exp s1〉+ (C + M 〈s2〉+ V Var {s2})

It can also be seen from (62) that when E = 0 for the sum s1 + s2, it is zero
for the addend s1, that is E′ = E 〈exp s2〉 = 0. This means that the outputs
of product and nonlinear nodes can be fed through addition nodes.

If the cost function is of the predefined form (61) with E = 0 for the
product s1s2, it is similar for the variable s1, when the variable s2 is regarded
as a constant. This can be shown using Eqs. (23) and (24):

Cp = M 〈s1s2〉+ V
[
(〈s1s2〉 − 〈s1s2〉current)

2 + Var {s1s2}
]

+ C (63)

= (M 〈s2〉+ 2V Var {s2} 〈s1〉current) 〈s1〉

+
[
V
(
〈s2〉

2 + Var {s2}
)] [

(〈s1〉 − 〈s1〉current)
2 + Var {s1}

]

+
(
C − V Var {s2} 〈s1〉

2
current

)

C Updating q(s) for the Gaussian node followed

by a nonlinearity

A Gaussian variable has its own terms in the cost function and it affects the
cost function of its children. In case there is a nonlinearity attached to it,
only the latter is changed. The cost function of the children can be written
in the form

Cch(s),p = M 〈f(s)〉+ V [(〈f(s)〉 − 〈f(s)〉current)
2 + Var {f(s)}] (64)

where 〈f(s)〉current stands for the expectation using the current posterior
estimate q(s), and M and V are constants.

The posterior q(s) = N (s; s, s̃) is updated to minimise the cost function.
For s̃ we get a fixed point iteration for the update candidate:

vs̃new =

[
〈exp v〉+

4V
(
1− 2s2 + 2s̃

)
(〈f(s)〉 − M

2V
) 〈f(s)〉

(2s̃ + 1)2

−
4V
(
1− 4s2 + 4s̃

) 〈
[f(s)]2

〉

(4s̃ + 1)2

]−1

(65)
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And for s we have an approximated Newton’s iteration update candidate

snew = s− s̃new

[
〈exp v〉 (s− 〈m〉) + 4V s

(
(〈f(s)〉 − M

2V
) 〈f(s)〉

2s̃ + 1
−

〈
[f(s)]2

〉

4s̃ + 1

)]

(66)

These candidates guarantee a direction, in which the cost function decreases
locally. As long as the cost function is about to increase in value, the step
size is halved. This guarantees the convergence to a stable point.

D Example where point estimates fail

The following example illustrates what can go wrong with point estimates.
Three dimensional data vectors x(t) are modelled with the linear factor
analysis model x(t) = as(t) + n(t), using a scalar source signal s(t) and
a Gaussian noise vector n(t) with zero mean and parameterised variance
p(nk) = N (0, σ2

k). Here a is a three-dimensional weight vector.

The weight vector a might get a value a = [1 0 0]T , while the source can
just copy the values of the first dimension of x(t), that is, s(t) = x1(t). When
the reconstruction error or the noise term is evaluated: n(t) = x(t)−as(t) =
[0 x2(t) x3(t)]

T , one can see that problems will arise with the first variance
parameter σ2

1. The likelihood goes to infinity as σ2
1 goes to zero. The

same applies to the posterior density, since it is basically just the likelihood
multiplied by a finite factor.

The found model is completely useless and still, it is rated as infinitely
good using point estimates. These problems are typical for models with
estimates of the noise level or products. They can be sometimes avoided
by fixing the noise level or using certain normalisations [4]. When the noise
model is nonstationary (see Section 5.1), the problem becomes even worse,
since the infinite likelihood appears if the any of the variances goes to zero.
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