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1 Introduction
2 Missing year
3 1700

3.1 An essay concerning human understanding [159]
3.1.1 Original Abstract

Many of the earliest books, particularly those dating back to the 1900s and be-
fore, are now extremely scarce and increasingly expensive. Pomona Press are
republishing these classic works in affordable, high quality, modern editions,
using the original text and artwork.

4 1749

4.1 Observations on man, his frame, his duty, and his
expectations [95]

4.1.1 Original Abstract

None

5 1873

5.1 Mind and body. The theories of their relation [16]
5.1.1 Original Abstract

None
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5.1.2 Main points
6 1890

6.1 The principles of psychology [264]
6.1.1 Original Abstract
vol. 1

7 1909

7.1 Histologie du systeme nerveux de I’homme & des
vertebres [34]

7.1.1 Original Abstract

Translation of Textura del sistema nervioso del hombre y de los vertebrados;
Microfilmed for preservation; t. 1. Généralités, moelle, ganglions rachidiens,
bulbe
protubérance.— t. 2. Cervelet, cerveau moyen, rétine, couche optique, corps
strié, écorce cérébrale générale
régionale, grand sympathique

7.1.2 Main points
8 1921

8.1 A history of the association psychology [109]
8.1.1 Original Abstract

None
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9 1943

9.1 A logical calculus of the ideas immanent in nervous
activity [166]

9.1.1 Original Abstract

Because of the “all-or-none” character of nervous activity, neural events and
the relations among them can be treated by means of propositional logic. It is
found that the behavior of every net can be described in these terms, with the
addition of more complicated logical means for nets containing circles; and
that for any logical expression satisfying certain conditions, one can find a net
behaving in the fashion it describes. It is shown that many particular choices
among possible neurophysiological assumptions are equivalent, in the sense
that for every net behaving under one assumption, there exists another net
which behaves under the other and gives the same results, although perhaps
not in the same time. Various applications of the calculus are discussed.

10 1945

10.1 First Draft of a Report on the EDVAC [254]
10.1.1 Original Abstract

None

11 1947

11.1 On a test of whether one of two random variables
is stochastically larger than the other [162]

11.1.1 Original Abstract

Let xx and yy be two random variables with continuous cumulative distribu-
tion functions ff and gg. A statistic UU depending on the relative ranks of
the xx’s and yy’s is proposed for testing the hypothesis f=gf = g. Wilcozon
proposed an equivalent test in the Biometrics Bulletin, December, 1945, but
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gave only a few points of the distribution of his statistic. Under the hypoth-
esis f=gf = g the probability of obtaining a given UU in a sample of na'sn
x’s and my sm y’s is the solution of a certain recurrence relation involving
nn and mm. Using this recurrence relation tables have been computed giving
the probability of UU for samples up to n=m=8n = m = 8. At this point
the distribution is almost normal. From the recurrence relation explicit ex-
pressions for the mean, variance, and fourth moment are obtained. The 2rth
moment is shown to have a certain form which enabled us to prove that the
limit distribution is normal if m,nm, n go to infinity in any arbitrary man-
ner. The test is shown to be consistent with respect to the class of alternatives

f(x)>g(z)f(x) > g(x) for every xz.
11.1.2 Main points

12 1948

12.1 Cybernetics or Control and Communication in the
Animal and the Machine [262]

12.1.1 Original Abstract

"It appers impossible for anyone seriously interested in our civilization to
tgnore this book. It is a ‘must’ book forthose in every branch of science...
in addition, economists, politicians, statesmen, and businessmen cannot af-
ford to overlook cybernetics and its tremendous, even terrifying implications.
"It is a beautifully written book, lucid, direct, and despite its complexity, as
readable by the layman as the trained scientist.” — John B. Thurston

13 1949

13.1 The Orgamization of Behavior a Neuropsycholog-
ical Theory [98]

13.1.1 Original Abstract

None

34



14 1953

14.1 Equation of State Calculations by Fast Computing
Machines [169]

14.1.1 Original Abstract

A general method, suitable for fast computing machines, for investigating

such properties as equations of state for substances consisting of interacting
individual molecules is described. The method consists of a modified Monte

Carlo integration over configuration space. Results for the two [U+2010] dimensional
rigid [U+2010] sphere system have been obtained on the Los Alamos MANIAC

and are presented here. These results are compared to the free volume equa-

tion of state and to a four [U+2010]term virial coefficient expansion.

15 1954

15.1 Theory of neural-analog reinforcement systems and
its application to the brain model problem [175]

15.1.1 Original Abstract

None

15.2 Communication theory and cybernetics [76]

15.2.1 Original Abstract

In the case of band-limited signals, the sampling theorem permits us to re-
place analytic operations with algebraic operations. We are then able to dis-
cuss problems of measurement of information, coding, and transmission over
noisy channels in terms of discrete samples, rather than continuous time
functions. The design of the optimum linear filter reduces from a very diffi-
cult analysis problem involving spec- trum factorizatlon to a straightforward
problem of solving a set of simultaneous linear equations. Unless we are in-
terested in the most economical implementation, it is not even necessary to
solve the equations. since a synthesis procedure involving only simple func-
tions of the correlation functions is available. When extended to the general
nonlinear case, the design is still specified by a set of simultaneous algebraic
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equations, but the labor of solution grows very rapidly. It is proposed to short
circuit this labor by building a learning filter which in effect designs itself.
A training period in which the adjust- ments are automatically optimized
precedes the use period. By modi- fying the training program, it is possible
that the filter could be taught to recognize specific signals, including, perhaps,
certain speech sounds.

15.3 Simulation of self-organizing systems by digital com-
puter [63]

15.3.1 Original Abstract

A general discussion of ideas and definitions relating to self-organizing sys-
tems and their synthesis is given, together with remarks concerning their
simulation by digital computer. Synthesis and simulation of an actual sys-
tem is then described. This system, initially randomly organized within wide
limits, organizes itself to perform a simple prescribed task.

16 1955

16.1 Memory: The Analogy with Ferromagnetic Hys-
teresis [46]

16.1.1 Original Abstract

None

17 1956

17.1 Electrical simulation of some nervous system func-
tional activities. [244]

17.1.1 Original Abstract

None
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17.2 Temporal and spatial patterns in a conditional prob-
ability machine [249]

17.2.1 Original Abstract

None

17.3 Conditional probability machines and conditional
reflexes [248]

17.3.1 Original Abstract

None

17.4 Probabilistic logics and the synthesis of reliable
organisms from unreliable components [255]

17.4.1 Original Abstract

None

17.5 Tests on a cell assembly theory of the action of the
brain, using a large digital computer [207]

17.5.1 Original Abstract

Theories by D.O. Hebb and P.M. Milner on how the brain works were tested
by simulating neuron nets on the IBM Type 704 FElectronic Calculator. The
formation of cell assemblies from an unorganized net of neurons was demon-
strated, as well as a plausible mechanism for short-term memory and the
phenomena of growth and fractionation of cell assemblies. The cell assem-
blies do not yet act just as the theory requires, but changes in the theory and
the simulation offer promise for further experimentation.
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18 1957

18.1 The Perceptron, a Perceiving and Recognizing Au-
tomaton [210]

18.1.1 Original Abstract

None
18.1.2 Main points
19 1958

19.1 The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. [208§]

19.1.1 Original Abstract

To answer the questions of how information about the physical world is
sensed, in what form is information remembered, and how does information
retained in memory influence recognition and behavior, a theory is developed
for a hypothetical nervous system called a perceptron. The theory serves as
a bridge between biophysics and psychology. It is possible to predict learning
curves from meurological variables and vice versa. The quantitative statisti-
cal approach is fruitful in the understanding of the organization of cognitive
systems. 18 references.

19.1.2 Main points

19.2 The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. [208]

19.2.1 Original Abstract

To answer the questions of how information about the physical world is
sensed, in what form is information remembered, and how does information
retained in memory influence recognition and behavior, a theory is developed
for a hypothetical nervous system called a perceptron. The theory serves as
a bridge between biophysics and psychology. It is possible to predict learning
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curves from meurological variables and vice versa. The quantitative statisti-
cal approach is fruitful in the understanding of the organization of cognitive
systems. 18 references.

19.2.2 Main points
19.3 The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. [208§]

19.3.1 Original Abstract

To answer the questions of how information about the physical world is
sensed, in what form is information remembered, and how does information
retained in memory influence recognition and behavior, a theory is developed
for a hypothetical nervous system called a perceptron. The theory serves as
a bridge between biophysics and psychology. It is possible to predict learning
curves from neurological variables and vice versa. The quantitative statisti-
cal approach is fruitful in the understanding of the organization of cognitive
systems. 18 references.

20 1960

20.1 An Adaptive "ADALINE" Neuron Using Chemi-
cal "Memistors" [261]

20.1.1 Original Abstract

None

20.2 Design for a Brain: The Origin of Adaptive Be-
havior [13]

20.2.1 Original Abstract

None
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20.2.2 Main points

21 1961

21.1 Principles of neurodynamics. perceptrons and the
theory of brain mechanisms [209]

21.1.1 Original Abstract

Part I attempts to review the background, basic sources of data, concepts, and
methodology to be employed in the study of perceptrons. In Chapter 2, a brief
review of the main alternative approaches to the development of brain models
is presented. Chapter 3 considers the physiological and psychological criteria
for a suitable model, and attempts to evaluate the empirical evidence which
1s available on several important issues. Chapter 4 contains basic definitions
and some of the notation to be used in later sections are presented. Parts
Il and III are devoted to a summary of the established theoretical results
obtained to date. Part II (Chapters 5 through 14) deals with the theory of
three-layer series-coupled perceptrons, on which most work has been done to
date. Part III (Chapters 15 through 20) deals with the theory of multi-layer
and cross-coupled perceptrons. Part IV is concerned with more speculative
models and problems for future analysis. Of necessity, the final chapters
become increasingly heuristic in character, as the theory of perceptrons is not
yet complete, and new possibilities are continually coming to light.

22 1962

22.1 On convergence proofs on perceptrons [190]
22.1.1 Original Abstract

None
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22.2 Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex [112]

22.2.1 Original Abstract

What chiefly distinguishes cerebral cortex from other parts of the central
nervous system 1is the great diversity of its cell types and interconnexions.
It would be astonishing if such a structure did not profoundly modify the
response patterns of fibres coming into it. In the cat’s visual cortex, the re-
ceptive field arrangements of single cells suggest that there is indeed a degree
of complexity far exceeding anything yet seen at lower levels in the visual sys-
tem. In a previous paper we described receptive fields of single cortical cells,
observing responses to spots of light shone on one or both retinas (Hubel
Wiesel, 1959). In the present work this method is used to examine receptive
fields of a more complex type (Part 1) and to make additional observations
on binocular interaction (Part II). This approach is necessary in order to un-
derstand the behaviour of individual cells, but it fails to deal with the problem
of the relationship of one cell to its neighbours. In the past, the technique
of recording evoked slow waves has been used with great success in studies
of individual cells, but it fails to deal with the problem of the relationship of
one cell to its neighbours. In the past, the technique of recording evoked slow
waves has been used with great success in studies of functional anatomy. It
was employed by Talbot
Marshall (1941) and by Thompson, Woolsey
Talbot (1950) for mapping out the visual cortex in the rabbit, cat, and mon-
key. Danzel
Whitteiidge (1959) have recently extended this work in the primate. Most of
our present knowledge of retinotopic projections, binocular overlap, and the
second visual area is based on these investigations. Yet the method of evoked
potentials is valuable mainly for detecting behaviour common to large popula-
tions of neighbouring cells; it cannot differentiate functionally between areas
of cortex smaller than about 1 mm 2. To overcome this difficulty a method
has in recent years been developed for studying cells separately or in small
groups during long micro-electrode penetrations through nervous tissue. Re-
sponses are correlated with cell location by reconstructing the electrode tracks
from histological material. These techniques have been applied to the somatic
sensory cortex of the cat and monkey in a remarkable series of studies by
Mountcastle (1957) and Powell
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Mountcastle (1959). Their results show that the approach is a powerful one,
capable of revealing systems of organization not hinted at by the known mor-
phology. In Part III of the present paper we use this method in studying the
functional architecture of the visual cortex. It helped us attempt to explain
on anatomical grounds how cortical receptive fields are built up.

23 1965

23.1 Learning machines: foundations of trainable pattern-
classifying systems [186]

23.1.1 Original Abstract

None

24 1966

24.1 Theory of self-reproducing automata [183]
24.1.1 Original Abstract

None

25 1967

25.1 A Theory of Adaptive Pattern Classifiers [7]
25.1.1 Original Abstract

This paper describes error-correction adjustment procedures for determining
the weight vector of linear pattern classifiers under general pattern distribu-
tion. It is mainly aimed at clarifying theoretically the performance of adaptive
pattern classifiers. In the case where the loss depends on the distance between
a pattern vector and a decision boundary and where the average risk function
15 unimodal, it is proved that, by the procedures proposed here, the weight
vector converges to the optimal one even under nonseparable pattern distri-
butions. The speed and the accuracy of convergence are analyzed, and it is
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shown that there is an important tradeoff between speed and accuracy of con-
vergence. Dynamical behaviors, when the probability distributions of patterns
are changing, are also shown. The theory is generalized and made applica-
ble to the case with general discriminant functions, including piecewise-linear
discriminant functions.

25.1.2 Main points

26 1968

26.1 Receptive fields and functional architecture of mon-
key striate cortex [113]

26.1.1 Original Abstract

1. The striate cortex was studied in lightly anaesthetized macaque and spi-
der monkeys by recording extracellularly from single units and stimulating the
retinas with spots or patterns of light. Most cells can be categorized as sim-
ple, complex, or hypercomplex, with response properties very similar to those
previously described in the cat. On the average, however, receptive fields are
smaller, and there is a greater sensitivity to changes in stimulus orientation.
A small proportion of the cells are colour coded.2. FEvidence is presented for at
least two independent systems of columns extending vertically from surface to
white matter. Columns of the first type contain cells with common receptive-
field orientations. They are similar to the orientation columns described in
the cat, but are probably smaller in cross-sectional area. In the second sys-
tem cells are aggregated into columns according to eye preference. The ocular
dominance columns are larger than the orientation columns, and the two sets
of boundaries seem to be independent.3. There is a tendency for cells to be
grouped according to symmetry of responses to movement; in some regions
the cells respond equally well to the two opposite directions of movement of a
line, but other regions contain a mixture of cells favouring one direction and
cells favouring the other.4. A horizontal organization corresponding to the
cortical layering can also be discerned. The upper layers (Il and the upper
two-thirds of I1II) contain complex and hypercomplex cells, but simple cells
are virtually absent. The cells are mostly binocularly driven. Simple cells are
found deep in layer III, and in IV A and IV B. In layer IV B they form a

large proportion of the population, whereas complex cells are rare. In layers
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IV A and IV B one finds units lacking orientation specificity; it is not clear
whether these are cell bodies or axons of geniculate cells. In layer IV most
cells are driven by one eye only; this layer consists of a mosaic with cells of
some regions responding to one eye only, those of other regions responding
to the other eye. Layers V and VI contain mostly complex and hypercomplex
cells, binocularly driven.5. The cortex is seen as a system organized vertically
and horizontally in entirely different ways. In the vertical system (in which
cells lying along a vertical line in the cortex have common features) stimulus
dimensions such as retinal position, line orientation, ocular dominance, and
perhaps directionality of movement, are mapped in sets of superimposed but
independent mosaics. The horizontal system segregates cells in layers by hi-
erarchical orders, the lowest orders (simple cells monocularly driven) located
wn and near layer IV, the higher orders in the upper and lower layers.

26.1.2 Main points
27 1969

27.1 Perceptrons [174]
27.1.1 Original Abstract

Perceptrons: an introduction to computational geometry is a book written by
Marvin Minsky and Seymour Papert and published in 1969. An edition with
handwritten corrections and additions was released in the early 1970s. An ex-
panded edition was further published in 1987, containing a chapter dedicated
to counter the criticisms made of it in the 1980s.

27.2 Non-Holographic Associative Memory [266]
27.2.1 Original Abstract

The features of a hologram that commend it as a model of associative memory
can be improved on by other devices.
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27.3 Non-Holographic Associative Memory [267]
27.3.1 Original Abstract

The features of a hologram that commend it as a model of associative memory
can be improved on by other devices.

28 1971

28.1 On the uniform convergence of relative frequencies
of events to their probabilities [250]

28.1.1 Original Abstract

None

29 1972

29.1 A simple neural network generating an interactive
memory [§]

29.1.1 Original Abstract

A model of a neural system where a group of neurons projects to another
group of neurons is discussed. We assume that a trace is the simultaneous pat-
tern of individual activities shown by a group of neurons. We assume synaptic
interactions add linearly and that synaptic weights (quantitative measure of
degree of coupling between two cells) can be coded in a simple but optimal way
where changes in synaptic weight are proportional to the product of pre-and
postsynaptic activity at a given time. Then it s shown that this simple sys-
tem is capable of “memory” in the sense that it can (1) recognize a previously
presented trace and (2) if two traces have been associated in the past (that
18, if trace f was impressed on the first group of meurons and trace g was
impressed on the second group of neurons and synaptic weights coupling the
two groups changed according to the above rule) presentation of f~ to the first
group of neurons gives rise to [ plus a calculable amount of noise at the sec-
ond set of neurons. This kind of memory is called an “interactive memory”
since distinct stored traces interact in storage. It 1s shown that this model can
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effectively perform many functions. Quantitative expressions are derived for
the average signal to noise ratio for recognition and one type of association.
The selectivity of the system is discussed. References to physiological data are
made where appropriate. A sketch of a model of mammalian cerebral cortex
which generates an interactive memory is presented and briefly discussed.
We identify a trace with the activity of groups of cortical pyramidal cells.
Then it is arqued that certain plausible assumptions about the properties of
the synapses coupling groups of pyramidal cells lead to the generation of an
nteractive memory.

29.1.2 Main points

29.2 Characteristics of Random Nets of Analog Neuron-
Like Elements [6]

29.2.1 Original Abstract

The dynamic behavior of randomly connected analog neuron-like elements
that process pulse-frequency modulated signals is investigated from the macro-
scopic point of view. By extracting two statistical parameters, the macro-
scopic state equations are derived in terms of these parameters under some
hypotheses on the stochastics of microscopic states. It is shown that a ran-
dom net of statistically symmetric structure is monostable or bistable, and
the stability criteria are explicitly given. Random nets consisting of many
different classes of elements are also analyzed. Special attention is paid to
nets of randomly connected excitatory and inhibitory elements. It is shown
that a stable oscillation exists in such a netAzin contrast with the fact that
no stable oscillations exist in a net of statistically symmetric structure even
if megative as well as positive synaptic weights are permitted at a time. The
results are checked by computer-simulated experiments.

29.2.2 Main points

29.3 Correlation matrix memories [132]
29.3.1 Original Abstract

A new model for associative memory, based on a correlation matriz, is sug-
gested. In this model information is accumulated on memory elements as
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products of component data. Denoting a key vector by q(p), and the data
associated with it by another vector z(p), the pairs (q(p), z(p)) are mem-
orized in the form of a matriz see the Fquation in PDF File where ¢ is a
constant. A randomly selected subset of the elements of Mxzq can also be
used for memorizing. The recalling of a particular datum x(r) is made by a
transformation x(r)=Mzqq(r). This model is failure tolerant and facilitates
associative search of information; these are properties that are usually as-
signed to holographic memories. Two classes of memories are discussed: a
complete correlation matrix memory (CCMM), and randomly organized in-
complete correlation matriz memories (ICMM). The data recalled from the
latter are stochastic variables but the fidelity of recall is shown to have a de-
terministic limit if the number of memory elements grows without limits. A
special case of correlation matrix memories is the auto-associative memory
in which any part of the memorized information can be used as a key. The
memories are selective with respect to accumulated data. The ICMM exhibits
adaptive improvement under certain circumstances. It is also suggested that
correlation matriz memories could be applied for the classification of data.

29.4 Automata Studies: Annals of Mathematics Stud-
ies. Number 34 [223]

29.4.1 Original Abstract

None

30 1973

30.1 Self-organization of orientation sensitive cells in
the striate cortex [252]

30.1.1 Original Abstract

A nerve net model for the visual cortex of higher vertebrates is presented.
A simple learning procedure is shown to be sufficient for the organization
of some essential functional properties of single units. The rather special
assumptions usually made in the literature regarding preorganization of the
visual cortex are thereby avoided. The model consists of 338 neurones forming
a sheet analogous to the cortex. The neurones are connected randomly to a
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“retina” of 19 cells. Nine different stimuli in the form of light bars were
applied. The afferent connections were modified according to a mechanism
of synaptic training. After twenty presentations of all the stimuli individual
cortical neurones became sensitive to only one orientation. Neurones with the
same or similar orientation sensitivity tended to appear in clusters, which are
analogous to cortical columns. The system was shown to be insensitive to a
background of disturbing input excitations during learning. After learning it
was able to repair small defects introduced into the wiring and was relatively
msensitive to stimuli not used during training.

31 1974

31.1 Beyond regression: new tools for prediction and
analysis in the behavioral sciences [259)]

31.1.1 Original Abstract

None

32 1975

32.1 A statistical theory of short and long term memory
[157]

32.1.1 Original Abstract

We present a theory of short, intermediate and long term memory of a neural
network incorporating the known statistical nature of chemical transmission
at the synapses. Correlated pre- and post-synaptic facilitation (related to
Hebb’s Hypothesis) on three time scales are crucial to the model. Consid-
erable facilitation is needed on a short time scale both for establishing short
term memory (active persistent firing pattern for the order of a sec) and the
recall of intermediate and long term memory (latent capability for a pattern to
be re-excited). Longer lasting residual facilitation and plastic changes (of the
same nature as the short term changes) provide the mechanism for imprinting
of the intermediate and long term memory. We discuss several interesting
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features of our theory: nonlocal memory storage, large storage capacity, ac-
cess of memory, single memory mechanism, robustness of the network and
statistical reliability, and usefulness of statistical fluctuations.

33 1976

33.1 A mechanism for producing continuous neural map-
pings: ocularity dominance stripes and ordered
retino-tectal projections [253]

33.1.1 Original Abstract

None

33.2 Luminance and opponent-color contributions to vi-
sual detection and adaptation and to temporal and
spatial integration [130]

33.2.1 Original Abstract

We show how the processes of visual detection and of temporal and spatial
summation may be analyzed in terms of parallel luminance (achromatic) and
opponent-color systems; a test flash is detected if it exceeds the threshold
of either system. The spectral sensitivity of the luminance system may be
determined by a flicker method, and has a single broad peak near 555 nm;
the spectral sensitivity of the opponent-color system corresponds to the color
recognition threshold, and has three peaks at about 440, 530, and 600 nm (on
a white background). The temporal and spatial integration of the opponent-
color system are generally greater than for the luminance system; further, a
white background selectively depresses the sensitivity of the luminance system
relative to the opponent-color system. Thus relatively large (1°) and long (200
msec) spectral test flashes on a white background are detected by the opponent-
color system except mnear 570 nm; the contribution of the luminance system
becomes more prominent if the size or duration of the test flash is reduced,
or if the white background is extinguished. The present analysis is discussed
in relation to Stiles” model of independent mechanisms.
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34 1980

34.1 Neocognitron: A Self-organizing Neural Network
Model for a Mechanism of Pattern Recognition
Unaffected by Shift in Position [74]

34.1.1 Original Abstract

A neural network model for a mechanism of visual pattern recognition is
proposed in this paper. The network is self-organized by "learning without
a teacher”, and acquires an ability to recognize stimulus patterns based on
the geometrical similarity (Gestalt) of their shapes without affected by their
positions. This network is given a nickname "neocognitron”. After comple-
tion of self-organization, the network has a structure similar to the hierarchy
model of the visual nervous system proposed by Hubel and Wiesel. The net-
work consists of an input layer (photoreceptor array) followed by a cascade
connection of a number of modular structures, each of which is composed of
two layers of cells connected in a cascade. The first layer of each module con-
sists of "S-cells’, which show charac- teristics similar to simple cells or lower
order hyper- complex cells, and the second layer consists of "C-cells" similar
to complex cells or higher order hypercomplex cells. The afferent synapses to
each S-cell have plasticity and are modifiable. The network has an ability of
unsupervised learning: We do not need any "teacher” during the process of
self- organization, and it is only needed to present a set of stimulus patterns
repeatedly to the input layer of the network. The network has been simulated
on a digital computer. After repetitive presentation of a set of stimulus pat-
terns, each stimulus pattern has become to elicit an output only from one of
the C-cells of the last layer, and conversely, this C-cell has become selectively
responsive only to that stimulus pattern. That is, none of the C-cells of the
last layer responds to more than one stimulus pattern. The response of the
C-cells of the last layer is not affected by the pattern’s position at all. Neither
is it affected by a small change in shape nor in size of the stimulus pattern.
1.

34.1.2 Main points

e Reiteration of self-organized by "learning without a teacher”

e Similar structure to the hierarchy model of the visual nervous system
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proposed by Hubel and Wiesel.
e Network structure:

— Input layer (photoreceptor array)
— (Cascade of modules each one with :

x S-cells: in the first layer Simple cells or lower order hyper-
complex cells

x C-cells: in the second layer Complex cells or higher order
hypercomplex cells

e Hubel and Wiesel : the neural network in the visual cortex has a hier-
archy structure:

LGB (Lageral Geniculate Body)
— Simple cells

— Complex cells

— Lower order hypercomplex cells
— Higher order hypercomplex cells

e a cell in a higher stage generally has tendency to respond selectively to
a more complicated feature of the stimulus pattern

e we extend the hierarchy model of Hubel and Wiesel, and hypothesize
the existance of a similar hierarchy structure even in hte stages higher
than hypercomplex cells.

e In the last module, the receptive field of each C-cell becomes so large
as to cover the whole area of input layer Uy, and each C-plane is so
determined as to have only one C-cell

e The output of an S-cell in the k;-th S-plane in the 1-th module is de-
scribed below
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35 1981

35.1 A. 1L [24]
35.1.1 Original Abstract

ABSTRACT: PROFILE of Marvin Minsky, professor at MIT, who works in
artificial intelligence. He was born in N.Y. in 1927. The term “artificial in-
telligence” is usually attributed to John McCarthy, a former colleague of Min-
sky’s. He coined the phrase in the mid-fifties to describe the ability of certain
machines to do things that people call intelligent. In 1958 McCarthy & Min-
sky created the Artificial Intelligence Group at MIT, & it soon became one of
the most distinguished scientific enterprises in the world. Today about a hun-
dred people work in the lab € it gets some 2.5millionayear fromvariousgovernmentagencies.Inl196
arithmeticproblemsNinshort, tomakethemintelligent. Atpresent, debateragesaboutwhatiarti ficia
thustheattemptstomakemachinesthatplaygames,iunder standynewspaperaccounts, &canrecogniz

35.1.2 Main points

p69 For a while, I studied topology, and then I ran into a young graduate
student in physics named Dean Edmonds, who was a whiz at electronics. We
began to build vacuum-tube circuits that did all sorts of things.quot; As an
undergraduate, Minsky had bequn to imagine building an electronic machine
that could learn. He had become fascinated by a paper that had been written,
in 1943, by Warren S. McCulloch, a neurophysiologist, and Walter Pitts, a
mathematical prodigy. In this paper, McCulloch and Pitts created an abstract
model of the brain cells—the neurons—and showed how they might be con-
nected to carry out mental processes such as learning. Minsky now thought
that the time might be ripe to try to create such a machine. Equot;I told FEd-
monds that I thought it might be too hard to build,quot; he said. €quot;The
one I then enuvisioned would have needed a lot of memory circuits. There
would be electronic neurons connected by synapses that would determine when
the neurons fired. The synapses would have various probabilities for conduct-
ing. But to reinforce ‘success’ one would have to have a way of changing
these probabilities. There would have to be loops and cycles in the circuits so
that the machine could remember traces of its past and adjust its behavior. I
thought that if I could ever build such a machine I might get it to learn to run
mazes through its electronics— like rats or something. I didn’t think that it
would be very intelligent. I thought it would work pretty well with about forty
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neurons. FEdmonds and I worked out some circuits so that —in principle, at
least—we could realize each of these neurons with just six vacuum tubes and
a motor.quot; Minsky told George Miller, at Harvard, about the prospective
design. Equot;He said, "Why don’t we just try it?’ €quot; Minsky recalled.
Equot;He had a lot of faith in me, which I appreciated. Somehow, he managed
to get a couple of thousand dollars from the Office of Naval Research, and in
the summer of 1951 Dean Edmonds and I went up to Harvard and built our
machine. It had three hundred tubes and a lot of motors. It needed some au-
tomatic electric clutches, which we machined ourselves. The memory of the
machine as stored in the positions of its control knobs—forty of them—and
when the machine was learning it used the clutches to adjust its own knobs.
We used a surplus gyropilot from a B-24 bomber to move the clutches.quot;
Minsky’s machine was certainly one of the first electronic learning machines,
and perhaps the very first one. In addition to its neurons and synapses and
its internal memory loops, many of the networks were wired at random, so
that it was impossible to predict what it would do. A &quot;ratquot; would
be created at some point in the network and would then set out to learn a
path to some specified end point. First, it would proceed randomly, and then
correct choices would be reinforced by making it easier for the machine to
make this choice again—to increase the probability of its doing so. There
was an arrangement of lights that allowed observers to follow the progress of
the rat—or rats. Equot; It turned out that because of an electronic accident
in our design we could put two or three rats in the same maze and follow
them all,quot; Minsky told me. Equot; The rats actually interacted with one
another. If one of them found a good path, the others would tend to follow it.
We sort of quit science for a while to watch the machine. We were amazed
that it could have several activities going on at once in its little nervous sys-
tem. Because of the random wiring, it had a sort of fail-safe characteristic.
If one of the neurons wasn’t working, it wouldn’t make much of a difference
—and, with nearly three hundred tubes and the thousands of connections we
had soldered, there would usually be something wrong somewhere. In those
days, even a radio set with twenty tubes tended to fail a lot. I don’t think we
ever debugged our machine completely, but that didn’t matter. By having this
crazy random design, it was almost sure to work, no matter how you built
it.quot; Minsky went on, Equot; My Harvard machine was basically Skinner-
ian, although Skinner, with whom I talked a great deal while I was building
it, was never much interested in it. The unrewarded behavior of my machine
was more or less random. This limited its learning ability. It could never
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formulate a plan. The next idea I had, which I worked on for my doctoral
thesis, was to give the network a second memory, which remembered after a
response what the stimulus had been. This enabled one to bring in the idea
of prediction. If the machine or animal is confronted with a new situation,
it can search its memory to see what would happen if it reacted in certain
ways. If, say, there was an unpleasant association with a certain stimulus,
then the machine could choose a different response. I had the naive idea that
if one could build a big enough network, with enough memory loops, it might
get lucky and acquire the ability to envision things in its head. This became
a field of study later. It was called self-organizing random networks. Even
today, I still get letters from young students who say, 'Why are you people
trying to program intelligence? Why don’t you try to find a way to build a
nervous system that will just spontaneously create it?’ Finally, I decided that
either this was a bad idea or it would take thousands or millions of neurons
to make it work, and I couldn’t afford to try to build a machine like that.quot;
I asked Minsky why it had not occurred to him to use a computer to simu-
late his machine. By this time, the first electronic digital computer— named
ENIAC, for &quot;electronic numerical integrator and calculatorquot;,—had
been built, at the University of Pennsylvania’s Moore School of Electrical En-
gineering; and the mathematician John von Neumann was completing work
on a computer, the prototype of many present-day computers, at the Insti-
tute for Advanced Study. €quot;I knew a little bit about computers,quot;
Minsky answered. Equot; At Harvard, I had even taken a course with Howard
Aikenquot;—one of the first computer designers. €quot;Aiken had built an
electromechanical machine in the early forties. It had only about a hundred
memory registers, and even von Neumann’s machine had only a thousand.
On the one hand, I was afraid of the complexity of these machines. On the
other hand, I thought that they weren’t big enough to do anything interesting
in the way of learning. In any case, I did my thesis on ideas about how the
nervous system might learn.

36 1982

36.1 Learning-logic [194]
36.1.1 Original Abstract

None
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37 1983

37.1 Optimization by Simulated Annealing [131]
37.1.1 Original Abstract

None

37.2 Neocognitron: A neural network model for a mech-
anism of visual pattern recognition [73]

37.2.1 Original Abstract

A recognition with a large-scale network is simulated on a PDP-11/3/ mini-
computer and is shown to have a great capability for visual pattern recogni-
tion. The model consists of nine layers of cells. The authors demonstrate
that the model can be trained to recognize handwritten Arabic numerals even
with considerable deformations in shape. A learning-with-a-teacher process is
used for the reinforcement of the modifiable synapses in the new large-scale
model, instead of the learning-without-a-teacher process applied to a previous
model. The authors focus on the mechanism for pattern recognition rather
than that for self-organization.

37.3 Neuronlike adaptive elements that can solve diffi-
cult learning control problems [17]

37.3.1 Original Abstract

It is shown how a system consisting of two neuronlike adaptive elements can
solve a difficult learning control problem. The task is to balance a pole that
s hinged to a movable cart by applying forces to the cart’s base. It is arqued
that the learning problems faced by adaptive elements that are components of
adaptive networks are at least as difficult as this version of the pole-balancing
problem. The learning system consists of a single associative search element
(ASE) and a single adaptive critic element (ACE). In the course of learning
to balance the pole, the ASE constructs associations between input and output
by searching under the influence of reinforcement feedback, and the ACE con-
structs a more informative evaluation function than reinforcement feedback
alone can provide. The differences between this approach and other attempts
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to solve problems using neurolike elements are discussed, as is the relation
of this work to classical and instrumental conditioning in animal learning
studies and its possible implications for research in the neurosciences.

37.3.2 Main points
38 1985

38.1 Une procédure d’apprentissage pour réseau a seuil
asymmetrique (a Learning Scheme for Asymmetric
Threshold Networks) [148]

38.1.1 Original Abstract

None

38.2 A Learning Algorithm for Boltzmann Machines*
3]
38.2.1 Original Abstract

The computational power of massively parallel networks of simple processing
elements resides in the communication bandwidth provided by the hardware
connections between elements. These connections can allow a significant frac-
tion of the knowledge of the system to be applied to an instance of a problem
in a very short time. One kind of computation for which massively paral-
lel networks appear to be well suited is large constraint satisfaction searches,
but to use the connections efficiently two conditions must be met: First, a
search technique that is suitable for parallel networks must be found. Second,
there must be some way of choosing internal representations which allow the
preexisting hardware connections to be used efficiently for encoding the con-
straints in the domain being searched. We describe a general parallel search
method, based on statistical mechanics, and we show how it leads to a gen-
eral learning rule for modifying the connection strengths so as to incorporate
knowledge about a task domain in an efficient way. We describe some simple
examples in which the learning algorithm creates internal representations that
are demonstrably the most efficient way of using the preexisting connectivity
structure.
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38.2.2 Main points
39 1986

39.1 Learning Process in an Asymmetric Threshold Net-
work [149]

39.1.1 Original Abstract

Threshold functions and related operators are widely used as basic elements
of adaptive and associative networks [Nakano 72, Amari 72, Hopfield 82].
There exist numerous learning rules for finding a set of weights to achieve a
particular correspondence between input-output pairs. But early works in the
field have shown that the number of threshold functions (or linearly separa-
ble functions) in N binary variables is small compared to the number of all
possible boolean mappings in N variables, especially if N is large. This prob-
lem is one of the main limitations of most neural networks models where the
state is fully specified by the environment during learning: they can only learn
linearly separable functions of their inputs. Moreover, a learning procedure
which requires the outside world to specify the state of every neuron during the
learning sesston can hardly be considered as a general learning rule because in
real-world conditions, only a partial information on the “ideal” network state
for each task is available from the environment. It is possible to use a set
of so-called “hidden units” [Hinton,Sejnowski, Ackley. 84/, without direct in-
teraction with the environment, which can compute intermediate predicates.
Unfortunately, the global response depends on the output of a particular hid-
den unit in a highly non-linear way, moreover the nature of this dependence
1s influenced by the states of the other cells.

40 1987

40.1 Parallel networks that learn to pronounce English
text [219]

40.1.1 Original Abstract

None
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40.2 Intelligence: The Eye, the Brain, and the Com-
puter [65]

40.2.1 Original Abstract

This book treats the question of how far we have come in understanding intel-

ligence and in duplicating it mechanically. The major facets of intelligence—
reasoning, vision, language and learning are discussed as an approach to
contrasting biological intelligence with current computer realizations.

40.3 Highly parallel, hierarchical, recognition cone per-
ceptual structures [247]

40.3.1 Original Abstract

None

41 1988

41.1 Neurocomputing: foundations of research [9]

41.1.1 Original Abstract

None

41.1.2 Main points

41.2 Radial basis functions, multi-variable functional
interpolation and adaptive networks [31]

41.2.1 Original Abstract

The relationship between ‘learning’ in adaptive layered networks and the fit-
ting of data with high dimensional surfaces is discussed. This leads naturally
to a picture of ’generalization in terms of interpolation between known data
points and suggests a rational approach to the theory of such networks. A
class of adaptive networks is identified which makes the interpolation scheme
explicit. This class has the property that learning is equivalent to the solu-
tion of a set of linear equations. These networks thus represent nonlinear
relationships while having a guaranteed learning rule. Great Britain.
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41.2.2 Main points

41.3 Self-organisation in a perceptual network [156]

41.3.1 Original Abstract

The emergence of a feature-analyzing function from the development rules
of simple, multilayered networks is explored. It is shown that even a single
developing cell of a layered network exhibits a remarkable set of optimization
properties that are closely related to issues in statistics, theoretical physics,
adaptive signal processing, the formation of knowledge representation in ar-
tificial intelligence, and information theory. The network studied is based on
the visual system. These results are used to infer an information-theoretic
principle that can be applied to the network as a whole, rather than a sin-
gle cell. The organizing principle proposed is that the network connections
develop in such a way as to maximize the amount of information that is
preserved when signals are transformed at each processing stage, subject to
certain constraints. The operation of this principle is illustrated for some
simple cases.

41.4 A Combined Corner and Edge Detector [94]
41.4.1 Original Abstract

None

41.4.2 Main points

41.5 A theoretical framework for back-propagation [50]
41.5.1 Original Abstract

None
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42 1989

42.1 A learning algorithm for continually running fully
recurrent neural networks [265]

42.1.1 Original Abstract

The exact form of a gradient-following learning algorithm for completely
recurrent networks running in continually sampled time s derived and used
as the basis for practical algorithms for temporal supervised learning tasks.
These algorithms have (1) the advantage that they do not require a precisely
defined training interval, operating while the network runs; and (2) the disad-
vantage that they require nonlocal communication in the network being trained
and are computationally expensive. These algorithms allow networks having
recurrent connections to learn complex tasks that require the retention of in-
formation over time periods having either fized or indefinite length.

42.1.2 Main points

42.2 A learning algorithm for continually running fully
recurrent neural networks [265]

42.2.1 Original Abstract

The exact form of a gradient-following learning algorithm for completely
recurrent networks running in continually sampled time is derived and used
as the basis for practical algorithms for temporal supervised learning tasks.
These algorithms have (1) the advantage that they do not require a precisely
defined training interval, operating while the network runs; and (2) the disad-
vantage that they require nonlocal communication in the network being trained
and are computationally expensive. These algorithms allow networks having
recurrent connections to learn complex tasks that require the retention of in-
formation over time periods having either fized or indefinite length.
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42.2.2 Main points

42.3 Connectionism: Past, present, and future [200]

42.3.1 Original Abstract

Research efforts to study computation and cognitive modeling on neurally-
inspired mechanisms have come to be called Connectionism. Rather than
being brand new, it is actually the rebirth of a research programme which
thrived from the 40s through the 60s and then was severely retrenched in
the 70s. Connectionism s often posed as a paradigmatic competitor to the
Symbolic Processing tradition of Artificial Intelligence (Dreyfus & Dreyfus,
1988), and, indeed, the counterpoint in the timing of their intellectual and
commercial fortunes may lead one to believe that research in cognition is
merely a zero-sum game. This paper surveys the history of the field, often in
relation to Al, discusses its current successes and failures, and makes some
predictions for where it might lead in the future.

42.4 Neurocomputing [99]
42.4.1 Original Abstract

Exploring many aspects of neurocomputers, this book gives an overview of
the network theory behind them, including a background review, basic con-
cepts, associative networks, mapping networks, spatiotemporal networks, and
adaptive resonance networks.

42.5 Multilayer feedforward networks are universal ap-
proximators [108§]

42.5.1 Original Abstract

This paper rigorously establishes that standard multilayer feedforward net-
works with as few as one hidden layer using arbitrary squashing functions
are capable of approximating any Borel measurable function from one finite
dimensional space to another to any desired degree of accuracy, provided suffi-
ciently many hidden units are available. In this sense, multilayer feedforward
networks are a class of universal approzimators.
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42.5.2 Main points

42.6 A learning algorithm for continually running fully
recurrent neural networks [265]

42.6.1 Original Abstract

The exact form of a gradient-following learning algorithm for completely
recurrent networks running in continually sampled time is derived and used
as the basis for practical algorithms for temporal supervised learning tasks.
These algorithms have (1) the advantage that they do not require a precisely
defined training interval, operating while the network runs; and (2) the disad-
vantage that they require nonlocal communication in the network being trained
and are computationally expensive. These algorithms allow networks having
recurrent connections to learn complex tasks that require the retention of in-
formation over time periods having either fized or indefinite length.

42.7 Backpropagation applied to handwritten zip code
recognition [146]

42.7.1 Original Abstract

The ability of learning networks to generalize can be greatly enhanced by
providing constraints from the task domain. This paper demonstrates how
such constraints can be integrated into a backpropagation network through
the architecture of the network. This approach has been successfully applied
to the recognition of handwritten zip code digits provided by the U.S. Postal
Service. A single network learns the entire recognition operation, going from
the normalized 1mage of the character to the final classification.

42.8 Generalization and network design strategies [144]

42.8.1 Original Abstract

An interestmg property of connectiomst systems is their ability tolearn from
examples. Although most recent work in the field concentrateson reducing
learning times, the most important feature of a learning ma-chine is its gen-
eralization performance. It is usually accepted that goodgeneralization perfor-
mance on real-world problems cannot be achievedunless some a pnon knowl-

62



edge about the task is butlt Into the system.Back-propagation networks pro-
vide a way of specifymg such knowledgeby imposing constraints both on the
architecture of the network and onits weights. In general, such constramts
can be considered as particulartransformations of the parameter spaceBuild-
ing a constramed network for image recogmtton appears to be afeasible task.
We descnbe a small handwritten digit recogmtion problemand show that, even
though the problem is linearly separable, single layernetworks exhibit poor gen-
eralizatton performance. Multtlayer constrainednetworks perform very well
on this task when orgamzed in a hierarchicalstructure with shift invariant
feature detectors. These results confirm the idea that minimizing the number
of freeparameters in the network enhances generalization.

43 1990

43.1 Handwritten digit recognition with a back-propagation
network [150]
43.1.1 Original Abstract

None

44 1992

44.1 Artificial Neural Networks: Concepts and Control
Applications [251]

44.1.1 Original Abstract

None

44.2 A training algorithm for optimal margin classifiers
[30]
44.2.1 Original Abstract

A training algorithm that maximizes the margin between the training pat-
terns and the decision boundary is presented. The technique is applicable to a
wide variety of classifiaction functions, including Perceptrons, polynomials,
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and Radial Basis Functions. The effective number of parameters is adjusted
automatically to match the complexity of the problem. The solution is ex-
pressed as a linear combination of supporting patterns. These are the subset
of training patterns that are closest to the decision boundary. Bounds on the
generalization performance based on the leave-one-out method and the VC-
dimension are given. FExperimental results on optical character recognition
problems demonstrate the good generalization obtained when compared with
other learning algorithms. 1 INTRODUCTION Good generalization perfor-
mance of pattern classifiers is achieved when the capacity of the classification
function is matched to the size of the training set. Classifiers with a large
numb...

44.2.2 Main points

44.3 Connectionist learning of belief networks [181]

44.3.1 Original Abstract

Connectionist learning procedures are presented for “sigmoid” and “noisy-
OR” wvarieties of probabilistic belief networks. These networks have previ-
ously been seen primarily as a means of representing knowledge derived from
experts. Here it 1s shown that the “Gibbs sampling” simulation procedure for
such networks can support maximum-likelihood learning from empirical data
through local gradient ascent. This learning procedure resembles that used for
“Boltzmann machines”, and like it, allows the use of “hidden” variables to
model correlations between visible variables. Due to the directed nature of the
connections in a belief network, however, the “negative phase” of Boltzmann
machine learning is unnecessary. Fxperimental results show that, as a result,
learning in a sigmoid belief network can be faster than in a Boltzmann ma-
chine. These networks have other advantages over Boltzmann machines in
pattern classification and decision making applications, are naturally appli-
cable to unsupervised learning problems, and provide a link between work on
connectionist learning and work on the representation of expert knowledge.
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45 1993

45.1 Al: The tumultuous history of the search for arti-
ficial intelligence [47]

45.1.1 Original Abstract

None

45.2 Mining association rules between sets of items in
large databases [5]

45.2.1 Original Abstract

We are given a large database of customer transactions. Fach transaction
consists of items purchased by a customer in a visit. We present an effi-
cient algorithm that generates all significant association rules between items
in the database. The algorithm incorporates buffer management and novel
estimation and pruning techniques. We also present results of applying this
algorithm to sales data obtained from a large retailing company, which shows
the effectiveness of the algorithm.

45.2.2 Main points

46 1994

46.1 Neural Network Modeling: Statistical Mechanics
and Cybernetic Perspectives [182]

46.1.1 Original Abstract

Neural Network Modeling offers a cohesive approach to the statistical me-
chanics and principles of cybernetics as a basis for neural network modeling.
It brings together neurobiologists and the engineers who design intelligent
automata to understand the physics of collective behavior pertinent to neu-
ral elements and the self-control aspects of neurocybernetics. The theoretical
perspectives and explanatory projections portray the most current informa-
tion in the field, some of which counters certain conventional concepts in the
visualization of neuronal interactions.
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46.2 Neuro-vision systems: A tutorial. [89]

46.2.1 Original Abstract

None

46.3 Neural Networks and Related Methods for Classi-
fication [205]

46.3.1 Original Abstract

Feed-forward neural networks are now widely used in classification problems,
whereas nonlinear methods of discrimination developed in the statistical field
are much less widely known. A general framework for classification is set
up within which methods from statistics, neural networks, pattern recognition
and machine learning can be compared. Neural networks emerge as one of a
class of flexible non-linear regression methods which can be used to classify via
regression. Many interesting issues remain, including parameter estimation,
the assessment of the classifiers and in algorithm development.

46.4 Neural networks: a comprehensive foundation [96]
46.4.1 Original Abstract

None

47 1995

47.1 An information-maximization approach to blind
separation and blind deconvolution [20]

47.1.1 Original Abstract

We derive a new self-organizing learning algorithm that maximizes the in-
formation transferred in a network of nonlinear units. The algorithm does
not assume any knowledge of the input distributions, and is defined here for
the zero-noise limit. Under these conditions, information maximization has
extra properties not found in the linear case (Linsker 1989). The nonlinear-
ities in the transfer function are able to pick up higher-order moments of the
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mput distributions and perform something akin to true redundancy reduc-
tion between units in the output representation. This enables the network to
separate statistically independent components in the inputs: a higher-order
generalization of principal components analysis. We apply the network to
the source separation (or cocktail party) problem, successfully separating un-
known miztures of up to 10 speakers. We also show that a variant on the
network architecture is able to perform blind deconvolution (cancellation of
unknown echoes and reverberation in a speech signal). Finally, we derive
dependencies of information transfer on time delays. We suggest that infor-
mation maximization provides a unifying framework for problems in "blind"
signal processing.

47.1.2 Main points

47.2 Principles of digital image synthesis: Vol. 1 [81]
47.2.1 Original Abstract

None

47.3 Survey and critique of techniques for extracting
rules from trained artificial neural networks [10]

47.3.1 Original Abstract

It is becoming increasingly apparent that, without some form of explanation
capability, the full potential of trained artificial neural networks (ANNs) may
not be realised. This survey gives an overview of techniques developed to
redress this situation. Specifically, the survey focuses on mechanisms, pro-
cedures, and algorithms designed to insert knowledge into ANNs (knowledge
initialisation), extract rules from trained ANNs (rule extraction), and utilise
ANNs to refine existing rule bases (rule refinement). The survey also intro-
duces a new taxonomy for classifying the various techniques, discusses their
modus operandi, and delineates criteria for evaluating their efficacy.
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47.3.2 Main points

47.4 The "wake-sleep" algorithm for unsupervised neu-
ral networks. [100]

47.4.1 Original Abstract

An unsupervised learning algorithm for a multilayer network of stochastic
neurons is described. Bottom-up "recognition” connections convert the input
into representations in successive hidden layers, and top-down "generative”
connections reconstruct the representation in one layer from the representa-
tion in the layer above. In the "wake" phase, neurons are driven by recog-
nition connections, and generative connections are adapted to increase the
probability that they would reconstruct the correct activity vector in the layer
below. In the "sleep” phase, mneurons are driven by generative connections,
and recognition connections are adapted to increase the probability that they
would produce the correct activity vector in the layer above.

47.4.2 Main points

47.5 Convolutional networks for images, speech, and
time series [145]

47.5.1 Original Abstract

INTRODUCTION The ability of multilayer back-propagation networks to
learn complex, high-dimensional, nonlinear mappings from large collections
of examples makes them obuvious candidates for image recognition or speech
recognition tasks (see PATTERN RECOGNITION AND NEURAL NET-
WORKS). In the traditional model of pattern recognition, a hand-designed
feature extractor gathers relevant information from the input and eliminates
wrrelevant variabilities. A trainable classifier then categorizes the resulting
feature vectors (or strings of symbols) into classes. In this scheme, standard,
fully-connected multilayer networks can be used as classifiers. A potentially
more interesting scheme is to eliminate the feature extractor, feeding the net-
work with "raw" inputs (e.g. normalized images), and to rely on backpropa-
gation to turn the first few layers into an appropriate feature extractor. While
this can be done with an ordinary fully connected feed-forward network with
some success for tasks
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48 1996

48.1 On Alan Turing’s anticipation of connectionism
[45]
48.1.1 Original Abstract

It is not widely realised that Turing was probably the first person to consider
building computing machines out of simple, neuron-like elements connected
together into networks in a largely random manner. Turing called his net-
works ‘unorganised machines’. By the application of what he described as
‘appropriate interference, mimicking education’ an unorganised machine can
be trained to perform any task that a Turing machine can carry out, provided
the number of ‘neurons’ is sufficient. Turing proposed simulating both the
behaviour of the network and the training process by means of a computer
program. We outline Turing’s connectionist project of 1948.

48.2 Mean Field Theory for Sigmoid Belief Networks
[213]

48.2.1 Original Abstract

We develop a mean field theory for sigmoid belief networks based on ideas
from statistical mechanics. Our mean field theory provides a tractable approx-
imation to the true probability distribution in these networks; it also yields
a lower bound on the likelihood of evidence. We demonstrate the utility of
this framework on a benchmark problem in statistical pattern recognition—the
classification of handwritten digits.

48.2.2 Main points

Comment: See hitp://www.jair.org/ for any accompanying files
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48.3 Affine / photometric invariants for planar intensity
patterns [87]

48.3.1 Original Abstract

The paper contributes to the viewpoint invariant recognition of planar pat-
terns, especially labels and signs under affine deformations. By their nature,
the information of such ‘eye-catchers’is not contained in the outline or frame
— they often are affinely equivalent like parallelograms and ellipses — but
in the intensity content within. Moment invariants are well suited for their
recognition. They need a closed bounding contour, but this is comparatively
easy to provide for the simple shapes considered. On the other hand, they
characterize the intensity patterns without the need for error prone feature
extraction. This paper uses moments as the basic features, but extends the
literature in two respects: (1) deliberate mizes of different types of moments
to keep the order of the moments (and hence also the sensitivity to noise) low
and yet have a sufficiently large number to safequard discriminant power; and
(2) invariance with respect to photometric changes is incorporated in order
to find the simplest moment invariants that can cope with changing lighting
conditions which can hardly be avoided when changing viewpoint. The paper
gives complete classifications of such affine / photometric moment invariants.
Experiments are described that illustrate the use of some of them.

48.4 Pattern Recognition and Neural Networks [206]
48.4.1 Original Abstract

This 1996 book is a reliable account of the statistical framework for pattern
recognition and machine learning. With unparalleled coverage and a wealth
of case-studies this book gives valuable insight into both the theory and the
enormously diverse applications (which can be found in remote sensing, astro-
physics, engineering and medicine, for example). So that readers can develop
their skills and understanding, many of the real data sets used in the book
are available from the author’s website: www.stats.ox.ac.uk/ ripley/PRbook/ .
For the same reason, many examples are included to illustrate real problems
in pattern recognition. Unifying principles are highlighted, and the author
gives an overview of the state of the subject, making the book wvaluable to
experienced researchers in statistics, machine learning/artificial intelligence
and engineering. The clear writing style means that the book is also a superb
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introduction for non-specialists.

49 1997

49.1 Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference [196]

49.1.1 Original Abstract

Probabilistic Reasoning in Intelligent Systems is a complete and accessible
account of the theoretical foundations and computational methods that un-
derlie plausible reasoning under uncertainty. The author provides a coherent
explication of probability as a language for reasoning with partial belief and
offers a unifying perspective on other Al approaches to uncertainty, such
as the Dempster-Shafer formalism, truth maintenance systems, and non-
monotonic logic. The author distinguishes syntactic and semantic approaches
to uncertainty—and offers techniques, based on belief networks, that provide
a mechanism for making semantics-based systems operational. Specifically,
network-propagation techniques serve as a mechanism for combining the the-
oretical coherence of probability theory with modern demands of reasoning-
systems technology: modular declarative inputs, conceptually meaningful in-
ferences, and parallel distributed computation. Application areas include di-
agnosis, forecasting, image interpretation, multi-sensor fusion, decision sup-
port systems, plan recognition, planning, speech recognition—in short, almost
every task requiring that conclusions be drawn from uncertain clues and in-
complete information. Probabilistic Reasoning in Intelligent Systems will be
of special interest to scholars and researchers in Al, decision theory, statis-
tics, logic, philosophy, cognitive psychology, and the management sciences.
Professionals in the areas of knowledge-based systems, operations research,
engineering, and statistics will find theoretical and computational tools of
immediate practical use. The book can also be used as an excellent text for
graduate-level courses in Al, operations research, or applied probability.

49.2 Elements of artificial neural networks [167]
49.2.1 Original Abstract

None
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49.3 Bain on neural networks [263]
49.3.1 Original Abstract

In his book Mind and body (1873), Bain set out an account in which he
related the processes of associative memory to the distribution of activity in
neural groupings—or neural networks as they are now termed. In the course
of this account, Bain anticipated certain aspects of connectionist ideas that
are normally attributed to 20th-century authors—most notably Hebb (1949).
In this paper we reproduce Bain’s arguments relating neural activity to the
workings of associative memory which include an early version of the prin-
ciples enshrined in Hebb’s neurophysiological postulate. Nonetheless, despite
their prescience, these specific contributions to the connectionist case have
been almost entirely ignored. Eventually, Bain came to doubt the practical-
ity of his own arguments and, in so doing, he seems to have ensured that
his ideas concerning neural groupings exerted little or no influence on the
subsequent course of theorizing in this area.

49.4 Bidirectional recurrent neural networks [217]

49.4.1 Original Abstract

In the first part of this paper, a regular recurrent neural network (RNN)
is extended to a bidirectional recurrent neural network (BRNN). The BRNN
can be trained without the limitation of using input information just up to
a preset future frame. This is accomplished by training it simultaneously in
positive and negative time direction. Structure and training procedure of the
proposed network are explained. In regression and classification experiments
on artificial data, the proposed structure gives better results than other ap-
proaches. For real data, classification experiments for phonemes from the
TIMIT database show the same tendency. In the second part of this paper,
it 1s shown how the proposed bidirectional structure can be easily modified to
allow efficient estimation of the conditional posterior probability of complete
symbol sequences without making any explicit assumption about the shape of
the distribution. For this part, experiments on real data are reported
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49.5 Introduction to multi-layer feed-forward neural net-
works [238]

49.5.1 Original Abstract

None

49.6 Neural Networks for Pattern Recognition. [135]
49.6.1 Original Abstract

None

50 1998

50.1 Reinforcement Learning: An Introduction [237]
50.1.1 Original Abstract

Reinforcement learning, one of the most active research areas in artificial-
intelligence, is a computational approach to learning whereby an agent tries
to maximize the totalamount of reward it receives when interacting with a
complex, uncertain environment. InReinforcement Learning, Richard Sutton
and Andrew Barto provide a clear andsimple account of the key ideas and
algorithms of reinforcement learning. Their discussion rangesfrom the his-
tory of the field’s intellectual foundations to the most recent developments
andapplications. The only necessary mathematical background is familiarity
with elementary concepts ofprobability. The book is divided into three parts.
Part I defines thereinforcement learning problem in terms of Markov decision
processes. Part II provides basicsolution methods: dynamic programming,
Monte Carlo methods, and temporal-difference learning. PartlIl presents a
unified view of the solution methods and incorporates artificial neural net-
works, eligibility traces, and planning; the two final chapters present case
studies and consider thefuture of reinforcement learning.
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50.2 Neural Networks: An Introductory Guide for So-
cial Scientists [77]

50.2.1 Original Abstract

This book provides the first accessible introduction to neural network analysis
as a methodological strategy for social scientists. The author details numer-
ous studies and examples which illustrate the advantages of neural network
analysis over other quantitative and modelling methods in widespread use.
Methods are presented in an accessible style for readers who do not have a
background in computer science. The book provides a history of neural net-
work methods, a substantial review of the literature, detailed applications,
coverage of the most common alternative models and examples of two leading
software packages for neural network analysis.

50.3 Feature detection with automatic scale selection
[155]

50.3.1 Original Abstract

The fact that objects in the world appear in different ways depending on
the scale of observation has important implications if one aims at describ-
ing them. It shows that the notion of scale is of utmost importance when
processing unknown measurement data by automatic methods. In their sem-
inal works, Witkin (1983) and Koenderink (1984) proposed to approach this
problem by representing image structures at different scales in a so-called
scale-space representation. Traditional scale-space theory building on this
work, however, does not address the problem of how to select local appropri-
ate scales for further analysis. This article proposes a systematic method-
ology for dealing with this problem. A framework is presented for generat-
ing hypotheses about interesting scale levels in image data, based on a gen-
eral principle stating that local extrema over scales of different combinations
of -normalized derivatives are likely candidates to correspond to interesting
structures. Specifically, it is shown how this idea can be used as a major
mechanism in algorithms for automatic scale selection, which adapt the local
scales of processing to the local image structure. Support for the proposed ap-
proach is given in terms of a general theoretical investigation of the behaviour
of the scale selection method under rescalings of the input pattern and by in-
tegration with different types of early visual modules, including experiments
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on real-world and synthetic data. Support is also given by a detailed analy-
sis of how different types of feature detectors perform when integrated with a
scale selection mechanism and then applied to characteristic model patterns.
Specifically, it is described in detail how the proposed methodology applies to
the problems of blob detection, junction detection, edge detection, ridge detec-
tion and local frequency estimation. In many computer vision applications,
the poor performance of the low-level vision modules constitutes a major bot-
tleneck. It is arqued that the inclusion of mechanisms for automatic scale
selection is essential if we are to construct vision systems to automatically
analyse complex unknown environments.

50.4 Gradient-based learning applied to document recog-
nition [147]
50.4.1 Original Abstract

Multilayer neural networks trained with the back-propagation algorithm con-
stitute the best example of a successful gradient based learning technique.
Given an appropriate network architecture, gradient-based learning algorithms
can be used to synthesize a complex decision surface that can classify high-
dimensional patterns, such as handwritten characters, with minimal prepro-
cessing. This paper reviews various methods applied to handwritten character
recognition and compares them on a standard handwritten digit recognition
task. Convolutional neural networks, which are specifically designed to deal
with the variability of 2D shapes, are shown to outperform all other tech-
niques. Real-life document recognition systems are composed of multiple mod-
ules including field extraction, segmentation recognition, and language mod-
eling. A new learning paradigm, called graph transformer networks (GTN),
allows such multimodule systems to be trained globally using gradient-based
methods so as to minimize an overall performance measure. Two systems
for online handwriting recognition are described. FExperiments demonstrate
the advantage of global training, and the flexibility of graph transformer net-
works. A graph transformer network for reading a bank cheque is also de-
scribed. It uses convolutional neural network character recognizers combined
with global training techniques to provide record accuracy on business and per-
sonal cheques. It is deployed commercially and reads several million cheques
per day
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50.4.2 Main points
e LeNet-5

e Clarification: In this paper “stride” is not mentioned, but as Krizhevsky2012
et.al. started using it, new implementations of CNN need to define its
value.

e (Conv: Convolutional layer
e Subs: Subsampling layer (summed * coefficient + bias)
o Full: Fully connected network

e FKRBF: Fuclidian Radial Basis Function units

input 32x32 pizel image (original images are 28x28)

— Convl :

x 06Q28128 filter Sxb

x stride 1

x Connections =5 * 5 * 28 % 28 x 6 4+ 6 * 28 x 28 = 122, 304
x Train. param. = 5% 5% 6+ 6 = 156

— Subs2 :
x 0Q14x14 range 2x2
x stride 2
x Connections = 6 % 28 x 28 + 6 x 14 x 14 = 5, 880
x Train. param. = coefficient + bias = 6 + 6 = 156
— Convs :
x 16@10x10 filter 5xb
x stride 1
x Connections =6%5%5x10x10% 10+ 10 % 10 % 16 = 151, 600
x Train. param. = 5%5%3%x64+5%xDx4x9+5x5x6x14+16 = 1,516
x Note:
x This layer is not completly connected, see table 1 for specific
connections
x Erpected Connections = 6% 5% 5% 10%x10%x 164+ 10% 10 % 16 =
241,600
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x Fxpected train. param = 5% 5% 16 % 6 + 16 = 2416
— Subsj :
16@5z5 range 2x2
stride 2
Connections = 16 * 10 x 10 + 16 * 5 % 5 = 2,000
Train. param. = coefficient + bias = 16 + 16 = 32
— Conv) :
x 120Q1x1 filter 5x5
x stride 0
x Connections and train. param. = 16x5x5x120+120 = 48,120
— Full6 : 84 Atanh(Sa)
x Connections and train. param. = 120 % 84 4+ 84 = 10, 164
— ERBF7 : 10

x Connections and train. param. = 84 % 10 = 840

* % X %

50.5 Locating facial region of a head-and-shoulders color
image [38]
50.5.1 Original Abstract

This paper addresses our proposed method to automatically locate the per-
son’s face from a given itmage that consists of a head-and-shoulders view of
the person and a complex background scene. The method involves a fast,
simple and yet robust algorithm that exploits the spatial distribution char-
acteristics of human skin color. It first uses the chrominance component of
the wnput image to detect pizels with skin color appearance. Then, bused on
the spatial distribution of the detected skin-color pixels and their correspond-
ing luminance values, the algorithm employs some regularization processes
to reinforce regions of skin-color pixels that are more likely to belong to the
facial regions and eliminate those that are not. The performance of the face
localization algorithm is illustrated by some simulation results carried out on
various head-and-shoulders test images
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50.5.2 Main points

51 1999

51.1 Alan Turings forgotten ideas in Computer Science
[43]
51.1.1 Original Abstract

None

51.2 Text categorisation: A survey [1]
51.2.1 Original Abstract

None

51.2.2 Main points

51.3 Face segmentation using skin-color map in video-
phone applications [39]

51.3.1 Original Abstract

This paper addresses our proposed method to automatically segment out a
person’s face from a given image that consists of a head-and-shoulders view
of the person and a complex background scene. The method involves a fast,
reliable, and effective algorithm that exploits the spatial distribution charac-
teristics of human skin color. A universal skin-color map is derived and used
on the chrominance component of the input image to detect pixels with skin-
color appearance. Then, based on the spatial distribution of the detected skin-
color pizels and their corresponding luminance values, the algorithm employs
a set of novel reqularization processes to reinforce regions of skin-color pizels
that are more likely to belong to the facial regions and eliminate those that
are not. The performance of the face-segmentation algorithm is illustrated
by some simulation results carried out on various head-and-shoulders test
images. The use of face segmentation for video coding in applications such
as videotelephony is then presented. We explain how the face-segmentation
results can be used to improve the perceptual quality of a videophone sequence
encoded by the H.261-compliant coder
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51.3.2 Main points

51.4 Efficient mining of emerging patterns: Discovering
trends and differences [56]

51.4.1 Original Abstract

None

52 2000

52.1 Principles of Neurocomputing for Science and En-
gineering [90]

52.1.1 Original Abstract

From the Publisher: This exciting new text covers artificial neural networks,but
more specifically,neurocomputing. Neurocomputing is concerned with process-
ing information,which involves a learning process within an artificial neural
network architecture. This neural architecture responds to inputs accord-
ing to a defined learning rule and then the trained network can be used to
perform certain tasks depending on the application. Neurocomputing can
play an tmportant role in solving certain problems such as pattern recogni-
tion,optimization,event classification,control and identification of nonlinear
systems,and statistical analysis. "Principles of Neurocomputing for Science
and Engineering, " unlike other neural networks texts,is written specifically for
scientists and engineers who want to apply neural networks to solve complex
problems. For each neurocomputing concept,a solid mathematical foundation
15 presented along with illustrative examples to accompany that particular ar-
chitecture and associated training algorithm. The book is primarily intended
for graduate-level neural networks courses,but in some instances may be used
at the undergraduate level. The book includes many detailed examples and an
extensive set of end-of-chapter problems.
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52.2 Principles of Neurocomputing for Science and En-
gineering [91]
52.2.1 Original Abstract

From the Publisher: This exciting new text covers artificial neural networks, but
more specifically,neurocomputing. Neurocomputing is concerned with process-
ing information,which involves a learning process within an artificial neural
network architecture. This neural architecture responds to inputs accord-
ing to a defined learning rule and then the trained network can be used to
perform certain tasks depending on the application. Neurocomputing can
play an important role in solving certain problems such as pattern recogni-
tion,optimization,event classification,control and identification of nonlinear
systems,and statistical analysis. "Principles of Neurocomputing for Science
and Engineering, " unlike other neural networks texts,is written specifically for
scientists and engineers who want to apply neural networks to solve complex
problems. For each neurocomputing concept,a solid mathematical foundation
15 presented along with illustrative examples to accompany that particular ar-
chitecture and associated training algorithm. The book is primarily intended
for graduate-level neural networks courses,but in some instances may be used
at the undergraduate level. The book includes many detailed examples and an
extensive set of end-of-chapter problems.

52.3 Emergence of phase-and shift-invariant features by
decomposition of natural images into independent
feature subspaces [114]

52.3.1 Original Abstract

Olshausen and Field (1996) applied the principle of independence maximiza-
tion by sparse coding to extract features from natural images. This leads to
the emergence of oriented linear filters that have simultaneous localization
in space and in frequency, thus resembling Gabor functions and simple cell
receptive fields. In this article, we show that the same principle of indepen-
dence mazximization can explain the emergence of phase- and shift-invariant
features, similar to those found in complex cells. This new kind of emergence
s obtained by maximizing the independence between norms of projections on
linear subspaces (instead of the independence of simple linear filter outputs).
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The norms of the projections on such “independent feature subspaces” then
indicate the values of invariant features.

52.4 Independent component analysis applied to fea-
ture extraction from colour and stereo images. [110]

52.4.1 Original Abstract

Previous work has shown that independent component analysis (ICA) ap-
plied to feature extraction from natural image data yields features resembling
Gabor functions and simple-cell receptive fields. This article considers the ef-
fects of including chromatic and stereo information. The inclusion of colour
leads to features divided into separate red/green, blue/yellow, and bright/dark
channels. Stereo image data, on the other hand, leads to binocular receptive
fields which are tuned to various disparities. The similarities between these
results and the observed properties of simple cells in the primary visual cortex
are further evidence for the hypothesis that visual cortical neurons perform
some type of redundancy reduction, which was one of the original motivations
for ICA in the first place. In addition, ICA provides a principled method for
feature extraction from colour and stereo images; such features could be used
i image processing operations such as denoising and compression, as well
as in pattern recognition.

52.4.2 Main points

52.5 Independent component analysis: algorithms and
applications. [115]

52.5.1 Original Abstract

A fundamental problem in neural network research, as well as in many other
disciplines, is finding a suitable representation of multivariate data, i.e. ran-
dom wectors. For reasons of computational and conceptual simplicity, the
representation is often sought as a linear transformation of the original data.
In other words, each component of the representation is a linear combination
of the original variables. Well-known linear transformation methods include
principal component analysis, factor analysis, and projection pursuit. Inde-
pendent component analysis (ICA) is a recently developed method in which
the goal is to find a linear representation of non-Gaussian data so that the
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components are statistically independent, or as independent as possible. Such
a representation seems to capture the essential structure of the data in many
applications, including feature extraction and signal separation. In this pa-
per, we present the basic theory and applications of ICA, and our recent work
on the subject.

52.6 Fast and inexpensive color image segmentation for
interactive robots [32]

52.6.1 Original Abstract

Vision systems employing region segmentation by color are crucial in real-
time mobile robot applications. With careful attention to algorithm efficiency,
fast color image segmentation can be accomplished using commodity image
capture and CPU hardware. This paper describes a system capable of track-
ing several hundred regions of up to 32 colors at 30 Hz on general purpose
commodity hardware. The software system consists of: a novel implemen-
tation of a threshold classifier, a merging system to form regions through
connected components, a separation and sorting system that gathers various
region features, and a top down merging heuristic to approximate perceptual
grouping. A key to the efficiency of our approach is a new method for ac-
complishing color space thresholding that enables a pixel to be classified into
one or more, up to 32 colors, using only two logical AND operations. The
algorithms and representations are described, as well as descriptions of three
applications in which it has been used

52.6.2 Main points

52.7 A Bayesian approach to skin color classification in
YCbCr color space [37]

52.7.1 Original Abstract

This paper addresses an image classification technique that uses the Bayes
decision rule for minimum cost to classify pizels into skin color and non-skin
color. Color statistics are collected from YCbCr color space. The Bayesian
approach to skin color classification is discussed along with an overview of
YCbCr color space. Ezxperimental results demonstrate that this approach can
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achieve good classification outcomes, and it is robust against different skin
colors

52.7.2 Main points
53 2001

53.1 Saliency, Scale and Image Description [123]
53.1.1 Original Abstract

Many computer vision problems can be considered to consist of two main
tasks: the extraction of image content descriptions and their subsequent match-
ing. The appropriate choice of type and level of description is of course task
dependent, yet it is generally accepted that the low-level or so called early vi-
sion layers in the Human Visual System are context independent. This paper
concentrates on the use of low-level approaches for solving computer vision
problems and discusses three inter-related aspects of this: saliency; scale se-
lection and content description. In contrast to many previous approaches
which separate these tasks, we argue that these three aspects are intrinsically
related. Based on this observation, a multiscale algorithm for the selection
of salient regions of an image is introduced and its application to match-
ing type problems such as tracking, object recognition and image retrieval is
demonstrated.

53.2 The elements of statistical learning [69]
53.2.1 Original Abstract

None

54 2002

54.1 Computer vision: a modern approach [67]
54.1.1 Original Abstract

None
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54.2 Why color management? [129]
54.2.1 Original Abstract

It seems that everywhere you look there is some article or discussion about
color management. Why all the fuss? Do I need to management my col-
ors? We have been creating colored artifacts for a very long time and I don’t
think we have needed color management. So why now? Most of these discus-
sions also refer to the ICC. What is that? These and other questions will be
answered in a straightforward manner in plain English. Adobe Systems has
pioneered the use of desktop computers for color work, and the author has
helped Adobe pick its way down conflicting color paths with confusing road
signs over the last 10 years.

55 2003

55.1 Neural networks in computer intelligence [70]
55.1.1 Original Abstract

None

55.2 Models of distributed associative memory networks
in the brain x [230]

55.2.1 Original Abstract

None

55.3 Best Practices for Convolutional Neural Networks
Applied to Visual Document Analysis [224]

55.3.1 Original Abstract

Neural networks are a powerful technology forclassification of visual inputs
arising from documents. However, there is a confusing plethora of different
neuralnetwork methods that are used in the literature and inindustry. This
paper describes a set of concrete bestpractices that document analysis re-
searchers can use toget good results with neural networks. The mostimportant
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practice is getting a training set as large aspossible: we expand the training set
by adding a newform of distorted data. The next most important practiceis
that convolutional neural networks are better suited forvisual document tasks
than fully connected networks. Wepropose that a simple “do-it-yourself” im-
plementation ofconvolution with a flexible architecture is suitable formany
visual document problems. This simpleconvolutional neural network does
not require complexmethods, such as momentum, weight decay, structure-
dependent learning rates, averaging layers, tangent prop,or even finely-tuning
the architecture. The end result is avery simple yet general architecture which
can yieldstate-of-the-art performance for document analysis. Weillustrate our
claims on the MNIST set of English digitimages.

55.3.2 Main points

e (et a training set as large as possible

e No need of complex methods, such as momentum, weight decay, structure-
dependent learning rates, averaging layers, tangent prop, or even finely-
tuning the architecture

e [ncrement dataset by:

— Affine transformations: translations, scaling, homothety, similar-
ity transformation, reflection, rotation, shear mapping, and com-
POsitions.

— FElastic distortions

o [n this paper the authors justify the use of elastic deformations on
MNIST data corresponding to uncontrolled oscillations of the hand
muscles, dampened by inertia.

o They get the best results on MNIST to date with CNN, affine and elastic
transformations of the dataset (0.4% error).
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56 2004

56.1 Harnessing Nonlinearity: Predicting Chaotic Sys-
tems and Saving Energy in Wireless Communica-
tion [?]

56.1.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications s illustrated by equalizing a communication channel, where the
signal error rate is improved by two orders of magnitude.

56.1.2 Main points

56.2 Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication
[117]

56.2.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications is illustrated by equalizing a communication channel, where the
signal error rate 1s improved by two orders of magnitude.
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56.2.2 Main points

56.3 Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication

7]
56.3.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications is illustrated by equalizing a communication channel, where the
signal error rate is improved by two orders of magnitude.

56.3.2 Main points

56.4 Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication
[117]

56.4.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications is illustrated by equalizing a communication channel, where the
signal error rate is improved by two orders of magnitude.
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56.4.2 Main points

56.5 Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication

7]
56.5.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications is illustrated by equalizing a communication channel, where the
signal error rate is improved by two orders of magnitude.

56.5.2 Main points

56.6 Harnessing Nonlinearity: Predicting Chaotic Sys-
tems and Saving Energy in Wireless Communica-
tion [117]

56.6.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications is illustrated by equalizing a communication channel, where the
signal error rate is improved by two orders of magnitude.
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56.6.2 Main points

56.7 PCA-SIFT: a more distinctive representation for
local image descriptors [126]

56.7.1 Original Abstract

Stable local feature detection and representation is a fundamental compo-
nent of many image registration and object recognition algorithms. Mikola-
jezyk and Schmid (June 2003) recently evaluated a variety of approaches and
identified the SIFT [D. G. Lowe, 1999] algorithm as being the most resis-
tant to common image deformations. This paper examines (and improves
upon) the local image descriptor used by SIFT. Like SIFT, our descriptors
encode the salient aspects of the image gradient in the feature point’s neigh-
borhood; however, instead of using SIFT’s smoothed weighted histograms, we
apply principal components analysis (PCA) to the normalized gradient patch.
Our experiments demonstrate that the PCA-based local descriptors are more
distinctive, more robust to image deformations, and more compact than the
standard SIFT representation. We also present results showing that using
these descriptors in an image retrieval application results in increased accu-
racy and faster matching.

56.8 Robust wide-baseline stereo from maximally stable
extremal regions [165]

56.8.1 Original Abstract

A new set of image elements that are put into correspondence, the so
called extremal regions, is introduced. Fxtremal regions possess highly de-
sirable properties: the set is closed under (1) continuous (and thus projec-
tive) transformation of image coordinates and (2) monotonic transformation
of image intensities. An efficient (near linear complezity) and practically
fast detection algorithm (near frame rate) is presented for an affinely invari-
ant stable subset of extremal regions, the maximally stable extremal regions
(MSER).

A new robust similarity measure for establishing tentative correspondences
s proposed. The robustness ensures that invariants from multiple measure-
ment regions (regions obtained by invariant constructions from extremal re-
gions), some that are significantly larger (and hence discriminative) than the
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MSERs, may be used to establish tentative correspondences.

The high utility of MSERs, multiple measurement regions and the robust
metric is demonstrated in wide-baseline experiments on image pairs from both
indoor and outdoor scenes. Significant change of scale (3.5x ), illumination
conditions, out-of-plane rotation, occlusion, locally anisotropic scale change
and 3D translation of the viewpoint are all present in the test problems. Good
estimates of epipolar geometry (average distance from corresponding points
to the epipolar line below 0.09 of the inter-pizel distance) are obtained. The
wide-baseline stereo problem, i.e. the problem of establishing correspondences
between a pair of itmages taken from different viewpoints is studied.

A new set of image elements that are put into correspondence, the so
called extremal regions, is introduced. Fxtremal regions possess highly de-
sirable properties: the set is closed under (1) continuous (and thus projec-
tive) transformation of image coordinates and (2) monotonic transformation
of image intensities. An efficient (near linear complexity) and practically
fast detection algorithm (near frame rate) is presented for an affinely invari-
ant stable subset of extremal regions, the maximally stable extremal regions
(MSER).

A new robust similarity measure for establishing tentative correspondences
is proposed. The robustness ensures that invariants from multiple measure-
ment regions (regions obtained by invariant constructions from extremal re-
gions), some that are significantly larger (and hence discriminative) than the
MSERs, may be used to establish tentative correspondences.

The high utility of MSERs, multiple measurement regions and the robust
metric is demonstrated in wide-baseline experiments on image pairs from both
indoor and outdoor scenes. Significant change of scale (3.5 ), illumination
conditions, out-of-plane rotation, occlusion, locally anisotropic scale change
and 3D translation of the viewpoint are all present in the test problems. Good
estimates of epipolar geometry (average distance from corresponding points
to the epipolar line below 0.09 of the inter-pizel distance) are obtained.
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56.8.2 Main points

56.9 Scale & affine invariant interest point detectors
[173]

56.9.1 Original Abstract

In this paper we propose a novel approach for detecting interest points in-
variant to scale and affine transformations. Our scale and affine invariant
detectors are based on the following recent results: (1) Interest points ex-
tracted with the Harris detector can be adapted to affine transformations and
give repeatable results (geometrically stable). (2) The characteristic scale of
a local structure is indicated by a local extremum over scale of normalized
derivatives (the Laplacian). (3) The affine shape of a point neighborhood is
estimated based on the second moment matrixz. Our scale invariant detector
computes a multi-scale representation for the Harris interest point detector
and then selects points at which a local measure (the Laplacian) is mazimal
over scales. This provides a set of distinctive points which are invariant to
scale, rotation and translation as well as robust to illumination changes and
limited changes of viewpoint. The characteristic scale determines a scale in-
variant region for each point. We extend the scale invariant detector to affine
invariance by estimating the affine shape of a point neighborhood. An iter-
atiwe algorithm modifies location, scale and neighborhood of each point and
converges to affine invariant points. This method can deal with significant
affine transformations including large scale changes. The characteristic scale
and the affine shape of neighborhood determine an affine invariant region for
each point. We present a comparative evaluation of different detectors and
show that our approach provides better results than existing methods. The
performance of our detector is also confirmed by excellent matching results;
the image is described by a set of scale/affine invariant descriptors computed
on the regions associated with our points.

56.9.2 Main points

56.10 Visual categorization with bags of keypoints [48]
56.10.1 Original Abstract

None
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56.11 Harnessing Nonlinearity: Predicting Chaotic Sys-
tems and Saving Energy in Wireless Communica-
tion [117]

56.11.1 Original Abstract

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved
by a factor of 2400 over previous techniques. The potential for engineering
applications s illustrated by equalizing a communication channel, where the
signal error rate is improved by two orders of magnitude.

56.12 Recognizing human actions: a local SVM approach
[216]

56.12.1 Original Abstract

Local space-time features capture local events in video and can be adapted
to the size, the frequency and the velocity of moving patterns. In this paper,
we demonstrate how such features can be used for recognizing complex motion
patterns. We construct video representations in terms of local space-time fea-
tures and integrate such representations with SVM classification schemes for
recognition. For the purpose of evaluation we introduce a new video database
containing 2391 sequences of siz human actions performed by 25 people in
four different scenarios. The presented results of action recognition justify
the proposed method and demonstrate its advantage compared to other rela-
tive approaches for action recognition.

56.13 Distinctive Image Features from Scale-Invariant
Keypoints [161]

56.13.1 Original Abstract

None
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56.13.2 Main points

56.14 Gaussian processes for machine learning. [218]

56.14.1 Original Abstract

Gaussian processes (GPs) are natural generalisations of multivariate Gaus-
sian random variables to infinite (countably or continuous) index sets. GPs
have been applied in a large number of fields to a diverse range of ends,
and very many deep theoretical analyses of various properties are available.
This paper gives an introduction to Gaussian processes on a fairly elementary
level with special emphasis on characteristics relevant in machine learning.
It draws explicit connections to branches such as spline smoothing models
and support vector machines in which similar ideas have been investigated.
Gaussian process models are routinely used to solve hard machine learning
problems. They are attractive because of their flexible non-parametric nature
and computational simplicity. Treated within a Bayesian framework, very
powerful statistical methods can be implemented which offer valid estimates
of uncertainties in our predictions and generic model selection procedures
cast as nonlinear optimization problems. Their main drawback of heavy com-
putational scaling has recently been alleviated by the introduction of generic
sparse approzimations.13,78,31 The mathematical literature on GPs is large
and often uses deep concepts which are not required to fully understand most
machine learning applications. In this tutorial paper, we aim to present char-
acteristics of GPs relevant to machine learning and to show up precise con-
nections to other "kernel machines"” popular in the community. Our focus
s on a simple presentation, but references to more detailed sources are pro-
vided.
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57 2005

57.1 Computers and Commerce: A Study of Technol-
ogy and Management at Eckert-Mauchly Computer
Company, Engineering Research Associates, and
Remington Rand, 1946 — 1957 [188§]

57.1.1 Original Abstract

Between 1946 and 1957 computing went from a preliminary, developmental
stage to more widespread use accompanied by the beginnings of the digital
computer industry. During this crucial decade, spurred by rapid technological
advances, the computer enterprise became a major phenomenon. In Comput-
ers and Commerce, Arthur Norberg explores the importance of these years in
the history of computing by focusing on technical developments and business
strategies at two tmportant firms, both established in 1946, Engineering Re-
search Associates (ERA) and Eckert-Mauchly Computer Company (EMCC),
from their early activities through their acquisition by Remington Rand.Both
ERA and EMCC had their roots in World War II, and in postwar years both
firms received magjor funding from the United States government. Norberg
analyzes the interaction between the two companies and the government and
examines the impact of this institutional context on technological innovation.
He assesses the technical contributions of such key company figures as J.
Presper Eckert, John Mauchly, Grace Hopper, and William Norris, analyz-
ing the importance of engineering knowledge in converting theoretical designs
into workable machines. Norberg looks at the two firms’ operations after
1951 as independent subsidiaries of Remington Rand, and documents the
management problems that began after Remington Rand merged with Sperry
Gyroscope to form Sperry Rand in 1955.

57.2 A sparse texture representation using local affine
regions [13§]
57.2.1 Original Abstract

This paper introduces a texture representation suitable for recognizing images
of textured surfaces under a wide range of transformations, including view-
point changes and monrigid deformations. At the feature extraction stage,
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a sparse set of affine Harris and Laplacian regions is found in the image.
Each of these regions can be thought of as a texture element having a char-
acteristic elliptic shape and a distinctive appearance pattern. This pattern
is captured in an affine-invariant fashion via a process of shape normaliza-
tion followed by the computation of two novel descriptors, the spin image
and the RIFT descriptor. When affine invariance is not required, the origi-
nal elliptical shape serves as an additional discriminative feature for texture
recognition. The proposed approach is evaluated in retrieval and classification
tasks using the entire Brodatz database and a publicly available collection of
1,000 photographs of textured surfaces taken from different viewpoints.

57.3 A performance evaluation of local descriptors [171]

57.3.1 Original Abstract

In this paper, we compare the performance of descriptors computed for lo-
cal interest regions, as, for example, extracted by the Harris-Affine detector
[Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been
proposed in the literature. It is unclear which descriptors are more appropri-
ate and how their performance depends on the interest region detector. The
descriptors should be distinctive and at the same time robust to changes in
vtewing conditions as well as to errors of the detector. Our evaluation uses as
criterion recall with respect to precision and is carried out for different image
transformations. We compare shape context [Belongie, S, et al., April 2002/,
steerable filters [Freeman, W and Adelson, E, Setp. 1991], PCA-SIF'T [Ke,
Y and Sukthankar, R, 2004/, differential invariants [Koenderink, J and van
Doorn, A, 1987], spin images [Lazebnik, S, et al., 2003], SIFT [Lowe, D. G.,
1999], complex filters [Schaffalitzky, F and Zisserman, A, 2002/, moment in-
variants [Van Gool, L, et al., 1996/, and cross-correlation for different types
of interest regions. We also propose an extension of the SIFT descriptor
and show that it outperforms the original method. Furthermore, we observe
that the ranking of the descriptors is mostly independent of the interest re-
gion detector and that the SIFT-based descriptors perform best. Moments
and steerable filters show the best performance among the low dimensional
descriptors.
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57.3.2 Main points

57.4 A comparison of affine region detectors [172]
57.4.1 Original Abstract

The paper gives a snapshot of the state of the art in affine covariant region
detectors, and compares their performance on a set of test images under vary-
ing tmaging conditions. Six types of detectors are included: detectors based on
affine normalization around Harris (Mikolajczyk and Schmid, 2002; Schaf-
falitzky and Zisserman, 2002) and Hessian points (Mikolajczyk and Schmid,
2002), a detector of ‘mazimally stable extremal regions’, proposed by Matas
et al. (2002); an edge-based region detector (Tuytelaars and Van Gool, 1999)
and a detector based on intensity extrema (Tuytelaars and Van Gool, 2000),
and a detector of ‘salient regions’, proposed by Kadir, Zisserman and Brady
(2004). The performance is measured against changes in viewpoint, scale,
illumination, defocus and image compression. The objective of this paper is
also to establish a reference test set of images and performance software, so
that future detectors can be evaluated in the same framework.

57.5 Learning a similarity metric discriminatively, with
application to face verification [41]]

57.5.1 Original Abstract

We present a method for training a similarity metric from data. The method
can be used for recognition or verification applications where the number of
categories is very large and not known during training, and where the number
of training samples for a single category is very small. The idea is to learn a
function that maps input patterns into a target space such that the L1 norm in
the target space approrimates the "semantic” distance in the input space. The
method s applied to a face verification task. The learning process minimizes
a discriminative loss function that drives the similarity metric to be small for
pairs of faces from the same person, and large for pairs from different persons.
The mapping from raw to the target space is a convolutional network whose
architecture is designed for robustness to geometric distortions. The system
is tested on the Purdue/AR face database which has a very high degree of
variability in the pose, lighting, expression, position, and artificial occlusions
such as dark glasses and obscuring scarves.
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57.6 Local features for object class recognition [170]
57.6.1 Original Abstract

In this paper, we compare the performance of local detectors and descriptors
in the context of object class recognition. Recently, many detectors/descriptors
have been evaluated in the context of matching as well as invariance to view-
point changes (Mikolajczyk and Schmid, 2004). However, it is unclear if these
results can be generalized to categorization problems, which require different
properties of features. We evaluate 5 state-of-the-art scale invariant region
detectors and 5 descriptors. Local features are computed for 20 object classes
and clustered using hierarchical agglomerative clustering. We measure the
quality of appearance clusters and location distributions using entropy as well
as precision. We also measure how the clusters generalize from training set to
novel test data. Our results indicate that attended SIF'T descriptors (Mikola-
jezyk and Schmid, 2005) computed on Hessian-Laplace regions perform best.
Second score is obtained by salient regions (Kadir and Brady, 2001). The re-
sults also show that these two detectors provide complementary features. The
new detectors/descriptors significantly improve the performance of a state-
of-the art recognition approach (Leibe, et al., 2005) in pedestrian detection
task

57.6.2 Main points

57.7 Rank, trace-norm and max-norm [232]
57.7.1 Original Abstract

We study the rank, trace-norm and maz-norm as complexity measures of
matrices, focusing on the problem of fitting a matrix with matrices having
low complexity. We present generalization error bounds for predicting unob-
served entries that are based on these measures. We also consider the possible
relations between these measures. We show gaps between them, and bounds
on the extent of such gaps.
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57.8 On contrastive divergence learning [36]

57.8.1 Original Abstract

Mazximum-likelihood(ML) learning of Markov random fields is challenging
because it requires estimates of averages that have anexponential number
of terms. Markov chain Monte Carlo methods typically take a long time
to converge on unbiased estimates, but Hinton (2002) showed that if the
Markovchain is only run for a few steps, the learning can still work well
and it approximately minimizes a different function called “contrastive di-
vergence”(CD). CD learning has been successfully applied to various types of
random fields. Here, we study the properties of CD learning and show that it
provides biased estimates in general, but that the bias is typically very small.
Fast CD learning can therefore be used to get close to an ML solution and
slow ML learning can then be used to fine-tune the CD solution.

57.8.2 Main points
cited: 193 (01/06/2014)

57.9 Toward automatic phenotyping of developing em-
bryos from videos. [187]

57.9.1 Original Abstract

We describe a trainable system for analyzing videos of developing C. elegans
embryos. The system automatically detects, segments, and locates cells and
nucler in microscopic images. The system was designed as the central com-
ponent of a fully automated phenotyping system. The system contains three
modules 1) a convolutional network trained to classify each pizel into five cat-
egories: cell wall, cytoplasm, nucleus membrane, nucleus, outside medium;
2) an energy-based model, which cleans up the output of the convolutional
network by learning local consistency constraints that must be satisfied by
label images; 3) a set of elastic models of the embryo at various stages of
development that are matched to the label images.
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57.9.2 Main points

57.10 Object Recognition with Features Inspired by Vi-
sual Cortex [221]

57.10.1 Original Abstract

We introduce a novel set of features for robust object recognition. Fach el-
ement of this set is a complex feature obtained by combining position- and
scale-tolerant edge-detectors over neighboring positions and multiple orien-
tations. QOur system’s architecture is motivated by a quantitative model of
visual cortex. We show that our approach exhibits excellent recognition per-
formance and outperforms several state-of-the-art systems on a variety of
image datasets including many different object categories. We also demon-
strate that our system is able to learn from very few examples. The perfor-
mance of the approach constitutes a suggestive plausibility proof for a class
of feedforward models of object recognition in cortex.

57.11 Skin segmentation using color pixel classification:
analysis and comparison [199]

57.11.1 Original Abstract

This work presents a study of three important issues of the color pizel classi-
fication approach to skin segmentation: color representation, color quantiza-
tion, and classification algorithm. Our analysis of several representative color
spaces using the Bayesian classifier with the histogram technique shows that
skin segmentation based on color pizel classification is largely unaffected by
the choice of the color space. However, segmentation performance degrades
when only chrominance channels are used in classification. Furthermore, we
find that color quantization can be as low as 64 bins per channel, although
higher histogram sizes give better segmentation performance. The Bayesian
classifier with the histogram technique and the multilayer perceptron classi-
fier are found to perform better compared to other tested classifiers, including
three piecewise linear classifiers, three unimodal Gaussian classifiers, and a
Gaussian mixture classifier.
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57.11.2 Main points

57.12 Histograms of oriented gradients for human de-
tection [51]

57.12.1 Original Abstract

We study the question of feature sets for robust visual object recognition;
adopting linear SVM based human detection as a test case. After review-
ing existing edge and gradient based descriptors, we show experimentally that
grids of histograms of oriented gradient (HOG) descriptors significantly out-
perform existing feature sets for human detection. We study the influence
of each stage of the computation on performance, concluding that fine-scale
gradients, fine orientation binning, relatively coarse spatial binning, and high-
quality local contrast normalization in overlapping descriptor blocks are all
important for good results. The new approach gives near-perfect separation
on the original MIT pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with a large range of
pose variations and backgrounds.

57.12.2 Main points
58 2006

58.1 The legacy of John von Neumann [82]
58.1.1 Original Abstract

The ideas of John von Neumann have had a profound influence on modern
mathematics and science. One of the great thinkers of our century, von
Neumann initiated magjor branches of mathematics—from operator algebras
to game theory to scientific computing—and had a fundamental impact on
such areas as self-adjoint operators, ergodic theory and the foundations of
quantum mechanics, and numerical analysis and the design of the modern
computer. This volume contains the proceedings of an AMS Symposium in
Pure Mathematics, held at Hofstra University, in May 1988. The symposium
brought together some of the foremost researchers in the wide range of areas
in which von Neumann worked. These articles illustrate the sweep of von
Neumann’s ideas and thinking and document their influence on contemporary
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mathematics. In addition, some of those who knew von Neumann when he
was alive have presented here personal reminiscences about him. This book is
directed to those interested in operator theory, game theory, ergodic theory,
and scientific computing, as well as to historians of mathematics and others
having an interest in the contemporary history of the mathematical sciences.
This book will give readers an appreciation for the workings of the mind of
one of the mathematical giants of our time.

58.2 Philosophy of Psychology and Cognitive Science:
A Volume of the Handbook of the Philosophy of
Science Series [75]

58.2.1 Original Abstract
FELSEVIER SALE - ALL SCIENCE AND TECHNOLOGY BOOKS 50

58.3 Mind as machine: A history of cognitive science
[27]
58.3.1 Original Abstract

The development of cognitive science is one of the most remarkable and fasci-
nating intellectual achievements of the modern era. The quest to understand
the mind is as old as recorded human thought; but the progress of modern sci-
ence has offered new methods and techniques which have revolutionized this
enquiry. Oxford University Press now presents a masterful history of cogni-
tive science, told by one of its most eminent practitioners. Cognitive science
15 the project of understanding the mind by modeling its workings. Psychol-
oqy 1is its heart, but it draws together various adjoining fields of research,
including artificial intelligence; neuroscientific study of the brain; philosophi-
cal investigation of mind, language, logic, and understanding; computational
work on logic and reasoning; linguistic research on grammar, semantics, and
communication; and anthropological explorations of human similarities and
differences. Fach discipline, in its own way, asks what the mind is, what
it does, how it works, how it developed - how it is even possible. The key
distinguishing characteristic of cognitive science, Boden suggests, compared
with older ways of thinking about the mind, is the notion of understanding the
mind as a kind of machine. She traces the origins of cognitive science back to
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Descartes’s revolutionary ideas, and follows the story through the eighteenth
and nineteenth centuries, when the pioneers of psychology and computing
appear. Then she guides the reader through the complex interlinked paths
along which the study of the mind developed in the twentieth century. Cog-
nitive science, in Boden’s broad conception, covers a wide range of aspects of
mind: not just ‘cognition’ in the sense of knowledge or reasoning, but emo-
tion, personality, social communication, and even action. In each area of
tnvestigation, Boden introduces the key ideas and the people who developed
them. No one else could tell this story as Boden can: she has been an ac-
tive participant in cognitive science since the 1960s, and has known many of
the key figures personally. Her narrative is written in a lively, swift-moving
style, enriched by the personal touch of someone who knows the story at first
hand. Her history looks forward as well as back: it is her conviction that
cognitive science today—and tomorrow—cannot be properly understood without
a historical perspective. Mind as Machine will be a rich resource for anyone
working on the mind, in any academic discipline, who wants to know how
our understanding of our mental activities and capacities has developed.

58.3.2 Main points

58.4 Pattern recognition and machine learning. [26]
58.4.1 Original Abstract

None

58.4.2 Main points

58.5 A convolutional neural network approach for ob-
jective video quality assessment [35]

58.5.1 Original Abstract

This paper describes an application of neural networks in the field of objective
measurement method designed to automatically assess the perceived quality of
digital videos. This challenging issue aims to emulate human judgment and
to replace very complexr and time consuming subjective quality assessment.
Several metrics have been proposed in literature to tackle this issue. They are
based on a general framework that combines different stages, each of them
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addressing complex problems. The ambition of this paper is not to present
a global perfect quality metric but rather to focus on an original way to use
neural networks in such a framework in the context of reduced reference (RR)
quality metric. Especially, we point out the interest of such a tool for com-
bining features and pooling them in order to compute quality scores. The
proposed approach solves some problems inherent to objective metrics that
should predict subjective quality score obtained using the single stimulus con-
tinuous quality evaluation (SSCQE) method. This latter has been adopted
by video quality expert group (VQEG) in its recently finalized reduced ref-
erenced and no reference (RRNR-TV) test plan. The originality of such
approach compared to previous attempts to use neural networks for quality
assessment, relies on the use of a convolutional neural network (CNN) that
allows a continuous time scoring of the video. Objective features are extracted
on a frame-by-frame basis on both the reference and the distorted sequences;
they are derived from a perceptual-based representation and integrated along
the temporal azis using a time-delay neural network (TDNN). Experiments
conducted on different MPEG-2 videos, with bit rates ranging 2-6 Mb/s, show
the effectiveness of the proposed approach to get a plausible model of temporal
pooling from the human vision system (HVS) point of view. More specifically,
a linear correlation criteria, between objective and subjective scoring, up to
0.92 has been obtained on a- - set of typical TV videos

58.6 Extreme learning machine: Theory and applica-
tions [111]

58.6.1 Original Abstract

None

58.7 A fast learning algorithm for deep belief nets [101]
58.7.1 Original Abstract

None
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58.7.2 Main points

58.8 Reducing the dimensionality of data with neural
networks [103]

58.8.1 Original Abstract

High-dimensional data can be converted to low-dimensional codes by training
a multilayer neural network with a small central layer to reconstruct high-
dimensional input vectors. Gradient descent can be used for fine-tuning the
weights in such “autoencoder” networks, but this works well only if the ini-
tial weights are close to a good solution. We describe an effective way of
matializing the weights that allows deep autoencoder networks to learn low-
dimensional codes that work much better than principal components analysis
as a tool to reduce the dimensionality of data.

58.9 A fast learning algorithm for deep belief nets [102]
58.9.1 Original Abstract

We show how to use “complementary priors” to eliminate the explaining-
away effects thatmake inference difficult in densely connected belief nets that
have many hidden layers. Using complementary priors, we derive a fast,
greedy algorithm that can learn deep, directed belief networks one layer at
a time, provided the top two layers form an undirected associative memory.
The fast, greedy algorithm is used to initialize a slower learning procedure that
fine-tunes the weights using a contrastive version of thewake-sleep algorithm.
After fine-tuning, a networkwith three hidden layers forms a very good gen-
erative model of the joint distribution of handwritten digit tmages and their
labels. This generative model gives better digit classification than the best
discriminative learning algorithms. The low-dimensional manifolds on which
the digits lie are modeled by long ravines in the free-energy landscape of the
top-level associative memory, and it is easy to explore these ravines by using
the directed connections to displaywhat the associativememory has in mind.
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58.9.2 Main points

58.10 Surf: Speeded up robust features [19]
58.10.1 Original Abstract

None

59 2007

59.1 The mathematical biophysics of Nicolas Rashevsky
[49]
59.1.1 Original Abstract

N. Rashevsky (1899-1972) was one of the pioneers in the application of

mathematics to biology. With the slogan: mathematical biophysics : biology
. mathematical physics : physics, he proposed the creation of a quantita-
tive theoretical biology. Here, we will give a brief biography, and consider
Rashevsky’s contributions to mathematical biology including neural nets and
relational biology. We conclude that Rashevsky was an important figure in
the introduction of quantitative models and methods into biology.

59.2 Classifier fusion for SVM-based multimedia seman-
tic indexing [14]
59.2.1 Original Abstract

None

59.2.2 Main points

59.3 Local features and kernels for classification of tex-
ture and object categories: A comprehensive study
[273]

59.3.1 Original Abstract

Recently, methods based on local image features have shown promise for
texture and object recognition tasks. This paper presents a large-scale eval-
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uation of an approach that represents images as distributions (signatures or
histograms) of features extracted from a sparse set of keypoint locations and
learns a Support Vector Machine classifier with kernels based on two effective
measures for comparing distributions, the Earth Mover’s Distance and the 2
distance. We first evaluate the performance of our approach with different
keypoint detectors and descriptors, as well as different kernels and classifiers.
We then conduct a comparative evaluation with several state-of-the-art recog-
nition methods on four texture and five object databases. On most of these
databases, our implementation exceeds the best reported results and achieves
comparable performance on the rest. Finally, we investigate the influence of
background correlations on recognition performance via extensive tests on the
PASCAL database, for which ground-truth object localization information is
available. Our experiments demonstrate that image representations based on
distributions of local features are surprisingly effective for classification of
texture and object images under challenging real-world conditions, including
significant intra-class variations and substantial background clutter.

59.4 Human action recognition using a modified convo-
lutional neural network [128]

59.4.1 Original Abstract

In this paper, a human action recognition method using a hybrid neural net-
work is presented. The method consists of three stages: preprocessing, feature
extraction, and pattern classification. For feature extraction, we propose a
modified convolutional neural network (CNN) which has a three-dimensional
receptive field. The CNN generates a set of feature maps from the action de-
scriptors which are derived from a spatiotemporal volume. A weighted fuzzy
min-maz (WEMM) neural network is used for the pattern classification stage.
We introduce a feature selection technique using the WFMM model to reduce
the dimensionality of the feature space. Two kinds of relevance factors be-
tween features and pattern classes are defined to analyze the salient features.
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59.5 Scaling learning algorithms towards Al [22]
59.5.1 Original Abstract

One long-term goal of machine learning research is to produce methods
thatare applicable to highly complex tasks, such as perception (vision, au-
dition), reasoning, intelligent control, and other artificially intelligent behav-
tors. We argue that in order to progress toward this goal, the Machine Learn-
ing community mustendeavor to discover algorithms that can learn highly
complex functions, with minimal need for prior knowledge, and with mini-
mal human intervention. We present mathematical and empirical evidence
suggesting that many popular approaches to non-parametric learning, par-
ticularly kernel methods, are fundamentally limited in their ability to learn
complex high-dimensional functions. Our analysis focuses on two problems.
First, kernel machines are shallow architectures, in which one large layer
of simple template matchers is followed by a single layer of trainable coeffi-
cients. We argue that shallow architectures can be very inefficient in terms of
required number of computational elements and examples. Second, we ana-
lyze a limitation of kernel machines with a local kernel, linked to the curse of
dimensionality, that applies to supervised, unsupervised (manifold learning)
and semi-supervised kernel machines. Using empirical results on invariant
image recognition tasks, kernel methods are compared with deep architectures,
in which lower-level features or concepts are progressively combined into more
abstract and higher-level representations. We arque that deep architectures
have the potential to generalize in non-local ways, i.e., beyond tmmediate
neighbors, and that this is crucial in order to make progress on the kind of
complex tasks required for artificial intelligence

59.5.2 Main points

<m:note/>

59.6 An empirical evaluation of deep architectures on
problems with many factors of variation [137]

59.6.1 Original Abstract

Recently, several learning algorithms relying on models with deep architec-
tures have been proposed. Though they have demonstrated impressive perfor-
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mance, to date, they have only been evaluated on relatively simple problems
such as digit recognition in a controlled environment, for which many ma-
chine learning algorithms already report reasonable results. Here, we present
a series of experiments which indicate that these models show promise in solv-
ing harder learning problems that exhibit many factors of variation. These
models are compared with well-established algorithms such as Support Vector
Machines and single hidden-layer feed-forward neural networks.

59.6.2 Main points

<m:note/ >

59.7 Unsupervised Learning of Invariant Feature Hier-
archies with Applications to Object Recognition
[201]

59.7.1 Original Abstract

We present an unsupervised method for learning a hierarchy of sparse feature
detectors that are invariant to small shifts and distortions. The resulting
feature extractor consists of multiple convolution filters, followed by a feature-
pooling layer that computes the max of each filter output within adjacent
windows, and a point-wise sigmoid non-linearity. A second level of larger
and more invariant features is obtained by training the same algorithm on
patches of features from the first level. Training a supervised classifier on
these features yields 0.64

59.8 Robust object recognition with cortex-like mecha-
nisms. [222]

59.8.1 Original Abstract

We introduce a new general framework for the recognition of complex wvi-
sual scenes, which 1s motivated by biology: We describe a hierarchical system
that closely follows the organization of visual cortexr and builds an increas-
ngly complex and invariant feature representation by alternating between a
template matching and a maximum pooling operation. We demonstrate the
strength of the approach on a range of recognition tasks: From invariant
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single object recognition in clutter to multiclass categorization problems and
complex scene understanding tasks that rely on the recognition of both shape-
based as well as texture-based objects. Given the biological constraints that
the system had to satisfy, the approach performs surprisingly well: It has the
capability of learning from only a few training examples and competes with
state-of-the-art systems. We also discuss the existence of a universal, redun-
dant dictionary of features that could handle the recognition of most object
categories. In addition to its relevance for computer vision, the success of
this approach suggests a plausibility proof for a class of feedforward models
of object recognition in cortex.

59.9 To recognize shapes, first learn to generate images
[105]

59.9.1 Original Abstract

The uniformity of the cortical architecture and the ability of functions to
move to different areas of cortex following early damage strongly suggest
that there is a single basic learning algorithm for extracting underlying struc-
ture from richly structured, high-dimensional sensory data. There have been
many attempts to design such an algorithm, but until recently they all suffered
from serious computational weaknesses. This chapter describes several of the
proposed algorithms and shows how they can be combined to produce hybrid
methods that work efficiently in networks with many layers and millions of
adaptive connections.

59.9.2 Main points

60 2008

60.1 Connectionism: A Hands-on Approach [53]
60.1.1 Original Abstract

"Connectionism” is a "hands on" introduction to connectionist modeling
through practical exercises in different types of connectionist architectures.
explores three different types of connectionist architectures - distributed asso-
ciative memory, perceptron, and multilayer perceptron provides a brief overview
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of each architecture, a detailed introduction on how to use a program to ex-
plore this network, and a series of practical exercises that are designed to high-
light the advantages, and disadvantages, of each accompanied by a website at
hitp: //www.bep.psych.ualberta.ca/ mike/Book3/ that includes practice ex-
ercises and software, as well as the files and blank exercise sheets required
for performing the exercises designed to be used as a stand-alone volume or
alongside "Minds and Machines: Connectionism and Psychological Model-
ing" (by Michael R.W. Dawson, Blackwell 2004)

60.1.2 Main points

60.2 The matrix cookbook [19§]
60.2.1 Original Abstract

None

60.3 Learning realistic human actions from movies [136]
60.3.1 Original Abstract

The atm of this paper is to address recognition of natural human actions
in diverse and realistic video settings. This challenging but important sub-
ject has mostly been ignored in the past due to several problems one of which
is the lack of realistic and annotated video datasets. Our first contribution
15 to address this limitation and to investigate the use of movie scripts for
automatic annotation of human actions in videos. We evaluate alternative
methods for action retrieval from scripts and show benefits of a text-based
classifier. Using the retrieved action samples for visual learning, we next turn
to the problem of action classification in video. We present a new method for
video classification that builds upon and extends several recent ideas including
local space-time features, space-time pyramids and multi-channel non-linear
SVMs. The method is shown to improve state-of-the-art results on the stan-
dard K'TH action dataset by achieving 91.8

110



60.4 Representational power of restricted boltzmann ma-
chines and deep belief networks. [143]

60.4.1 Original Abstract

Deep belief networks (DBN) are generative neural network models with many
layers of hidden explanatory factors, recently introduced by Hinton, Osin-
dero, and Teh (2006) along with a greedy layer-wise unsupervised learning
algorithm. The building block of a DBN s a probabilistic model called a
restricted Boltzmann machine (RBM), used to represent one layer of the
model. Restricted Boltzmann machines are interesting because inference is
easy in them and because they have been successfully used as building blocks
for training deeper models. We first prove that adding hidden units yields
strictly improved modeling power, while a second theorem shows that RBMs
are universal approximators of discrete distributions. We then study the ques-
tion of whether DBNs with more layers are strictly more powerful in terms
of representational power. This suggests a new and less greedy criterion for
training RBMs within DBNs.

60.4.2 Main points

<m:note/>

60.5 Unsupervised Learning of Human Action Categories
Using Spatial-Temporal Words [185]

60.5.1 Original Abstract

We present a novel unsupervised learning method for human action cate-
gories. A wideo sequence is represented as a collection of spatial-temporal
words by extracting space-time interest points. The algorithm automatically
learns the probability distributions of the spatial-temporal words and the in-
termediate topics corresponding to human action categories. This is achieved
by using latent topic models such as the probabilistic Latent Semantic Anal-
ysis (pLSA) model and Latent Dirichlet Allocation (LDA). Our approach
can handle noisy feature points arisen from dynamic background and mov-
ing cameras due to the application of the probabilistic models. Given a novel
video sequence, the algorithm can categorize and localize the human action(s)
contained in the video. We test our algorithm on three challenging datasets:
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the KTH human motion dataset, the Weizmann human action dataset, and
a recent dataset of figure skating actions. Our results reflect the promise of
such a simple approach. In addition, our algorithm can recognize and local-
1ze multiple actions in long and complex video sequences containing multiple
motions.

60.6 Action snippets: How many frames does human
action recognition require? [214]

60.6.1 Original Abstract

Visual recognition of human actions in video clips has been an active field
of research in recent years. However, most published methods either anal-
yse an entire video and assign it a single action label, or use relatively large
look-ahead to classify each frame. Contrary to these strategies, human vision
proves that simple actions can be recognised almost instantaneously. In this
paper, we present a system for action recognition from very short sequences
(ldquosnippetsrdquo) of 1-10 frames, and systematically evaluate it on stan-
dard data sets. It turns out that even local shape and optic flow for a single
frame are enough to achieve ap90

60.7 Deep learning via semi-supervised embedding [260]
60.7.1 Original Abstract

We show how nonlinear semi-supervised embedding algorithms popular for
use with “shallow” learning techniques such as kernel methods can be easily
applied to deep multi-layer architectures, either as a regularizer at the output
layer, or on each layer of the architecture. Compared to standard supervised
backpropagation this can give significant gains. This trick provides a sim-
ple alternative to existing approaches to semi-supervised deep learning whilst
yielding competitive error rates compared to those methods, and existing shal-
low semi-supervised techniques.
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60.7.2 Main points

60.8 Speeded-up robust features (SURF) [1§]
60.8.1 Original Abstract

This article presents a novel scale- and rotation-invariant detector and de-
scriptor, coined SURF (Speeded-Up Robust Features). SURF approximates
or even outperforms previously proposed schemes with respect to repeatabil-
ity, distinctiveness, and robustness, yet can be computed and compared much
faster. This is achieved by relying on integral images for image convolutions;
by building on the strengths of the leading existing detectors and descriptors
(specifically, using a Hessian matriz-based measure for the detector, and a
distribution-based descriptor); and by simplifying these methods to the es-
sential. This leads to a combination of novel detection, description, and
matching steps. The paper encompasses a detailed description of the detector
and descriptor and then explores the effects of the most important parame-
ters. We conclude the article with SURF’s application to two challenging,
yet converse goals: camera calibration as a special case of image registration,
and object recognition. Our experiments underline SURF’s usefulness in a
broad range of topics in computer vision.

60.8.2 Main points

61 2009

61.1 Evaluation of local spatio-temporal features for ac-
tion recognition [258]

61.1.1 Original Abstract

Local space-time features have recently become a popular video represen-
tation for action recognition. Several methods for feature localization and
description have been proposed in the literature and promising recognition re-
sults were demonstrated for a number of action classes. The comparison of
existing methods, however, is often limited given the different experimental
settings used. The purpose of this paper is to evaluate and compare previously
proposed space-time features in a common experimental setup. In particular,
we consider four different feature detectors and six local feature descriptors
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and use a standard bag-of-features SVM approach for action recognition. We
investigate the performance of these methods on a total of 25 action classes
distributed over three datasets with varying difficulty. Among interesting con-
clusions, we demonstrate that reqular sampling of space-time features consis-
tently outperforms all tested space-time interest point detectors for human
actions in realistic settings. We also demonstrate a consistent ranking for
the majority of methods over different datasets and discuss their advantages
and limitations.

61.1.2 Main points

e Detectors

— Harris3D
— Cuboid
— Hessian

— Dense sampling

e Descriptors

— HOG/HOF
— HOG3D
— ESURF (extended SURF)

e Datasets

— KTH actions
* 6 human action classes
x walking, jogging, running, boxing, waving and clapping
x 25 subjects
* 4 scenarios
*

2391 video samples

*

http://www.nada.kth.se/cvap/actions/
— UCF sport actions

* 10 human action classes
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x winging, diving, kicking, weight-lifting, horse-riding, running,
skateboarding, swinging, golf swinging and walking
* 150 video samples

x http://crcv.ucf.edu/data/UCF_Sports_Action.php
— Hollywood2 actions

* 12 action classes

x answering the hone, driving car, eating, fighting, geting out
of the car, hand shaking, hugging, kissing, running, sitting
down, sitting up, and standing up.

* 69 Hollywood movies

x 1707 video samples

* http://www.di.ens.fr/"laptev/actions/hollywood2/

61.2 Evaluation of local spatio-temporal features for ac-
tion recognition [?]

61.2.1 Original Abstract

Local space-time features have recently become a popular video represen-
tation for action recognition. Several methods for feature localization and
description have been proposed in the literature and promising recognition re-
sults were demonstrated for a number of action classes. The comparison of
existing methods, however, is often limited given the different experimental
settings used. The purpose of this paper is to evaluate and compare previously
proposed space-time features in a common experimental setup. In particular,
we consider four different feature detectors and six local feature descriptors
and use a standard bag-of-features SVM approach for action recognition. We
investigate the performance of these methods on a total of 25 action classes
distributed over three datasets with varying difficulty. Among interesting con-
clusions, we demonstrate that reqular sampling of space-time features consis-
tently outperforms all tested space-time interest point detectors for human
actions in realistic settings. We also demonstrate a consistent ranking for
the magjority of methods over different datasets and discuss their advantages
and limitations.

115


http://crcv.ucf.edu/data/UCF_Sports_Action.php
http://www.di.ens.fr/~laptev/actions/hollywood2/

61.2.2 Main points

<m:note/ >

61.3 Actions in context [163]
61.3.1 Original Abstract

This paper exploits the context of natural dynamic scenes for human action
recognition in video. Human actions are frequently constrained by the pur-
pose and the physical properties of scenes and demonstrate high correlation
with particular scene classes. For example, eating often happens in a kitchen
while running s more common outdoors. The contribution of this paper is
three-fold: (a) we automatically discover relevant scene classes and their cor-
relation with human actions, (b) we show how to learn selected scene classes
from video without manual supervision and (c) we develop a joint framework
for action and scene recognition and demonstrate improved recognition of both
in natural video. We use movie scripts as a means of automatic supervision
for training. For selected action classes we identify correlated scene classes
in text and then retrieve video samples of actions and scenes for training
using script-to-video alignment. QOur visual models for scenes and actions
are formulated within the bag-of-features framework and are combined in a
joint scene-action SVM-based classifier. We report experimental results and
validate the method on a new large dataset with twelve action classes and ten
scene classes acquired from 69 movies.

61.4 Computational Intelligence: The Legacy of Alan
Turing and John von Neumann [177]

61.4.1 Original Abstract

In this chapter fundamental problems of collaborative computational intelli-
gence are discussed. The problems are distilled from the seminal research of
Alan Turing and John von Neumann. For Turing the creation of machines
with human-like intelligence was only a question of programming time. In
his research he identified the most relevant problems concerning evolutionary
computation, learning, and structure of an artificial brain. Many problems
are still unsolved, especially efficient higher learning methods which Turing
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called initiative. Von Neumann was more cautious. He doubted that human-
like intelligent behavior could be described unambiguously in finite time and
finite space. Von Neumann focused on self-reproducing automata to create
more complex systems out of simpler ones. An early proposal from John Hol-
land 1s analyzed. It centers on adaptability and population of programs. The
early research of Newell, Shaw, and Simon is discussed. They use the logical
calculus to discover proofs in logic. Only a few recent research projects have
the broad perspectives and the ambitious goals of Turing and von Neumann.
As examples the projects Cyc, Cog, and JANUS are discussed.

61.5 Natural Image Statistics [116]
61.5.1 Original Abstract

None

61.6 A Novel Connectionist System for Unconstrained
Handwriting Recognition [88]
61.6.1 Original Abstract

Recognizing lines of unconstrained handwritten text is a challenging task.
The difficulty of segmenting cursive or overlapping characters, combined with
the need to exploit surrounding context, has led to low recognition rates for
even the best current recognizers. Most recent progress in the field has been
made either through improved preprocessing or through advances in language
modeling. Relatively little work has been done on the basic recognition al-
gorithms. Indeed, most systems rely on the same hidden Markov models
that have been used for decades in speech and handwriting recognition, de-
spite their well-known shortcomings. This paper proposes an alternative ap-
proach based on a novel type of recurrent neural network, specifically designed
for sequence labeling tasks where the data is hard to segment and contains
long-range bidirectional interdependencies. In experiments on two large un-
constrained handwriting databases, our approach achieves word recognition
accuracies of 79.7 percent on online data and 74.1 percent on offline data,
significantly outperforming a state-of-the-art HMM-based system. In addi-
tion, we demonstrate the network’s robustness to lexicon size, measure the
indiwvidual influence of its hidden layers, and analyze its use of context. Last,
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we provide an in-depth discussion of the differences between the network and
HMMs, suggesting reasons for the network’s superior performance.

61.6.2 Main points

61.7 What is the best multi-stage architecture for ob-
ject recognition? [118]
61.7.1 Original Abstract

In many recent object recognition systems, feature extraction stages are gen-
erally composed of a filter bank, a non-linear transformation, and some sort
of feature pooling layer. Most systems use only one stage of feature extraction
in which the filters are hard-wired, or two stages where the filters in one or
both stages are learned in supervised or unsupervised mode. This paper ad-
dresses three questions: 1. How does the non-linearities that follow the filter
banks influence the recognition accuracy? 2. does learning the filter banks in
an unsupervised or supervised manner improve the performance over random
filters or hardwired filters? 3. Is there any advantage to using an architecture
with two stages of feature extraction, rather than one? We show that using
non-linearities that include rectification and local contrast normalization is
the single most important ingredient for good accuracy on object recognition
benchmarks. We show that two stages of feature extraction yield better ac-
curacy than one. Most surprisingly, we show that a two-stage system with
random filters can yield almost 63

61.7.2 Main points

e 1. Differences in non-linearities

— Rectifying non-linearity is the most important factor

x The polarization does not seem important

x Or the possible cancelations are counterproductive
e 2. unsupervised, supervised, random, and hardwired filters

— Hardwired filters have the worst performance

— Random filters achieve good performance
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e 3. Deep vs shallow
— Two stages are better than one
e Background

— Common approach steps:

x Feature extraction with some filter banks
- oriented edges
- gabor filters
* non-linear operation on the original features
- Quantization
- winner-take-all
- sparsification
- normalization
- point-wise saturation
* pooling operation
- max pooling
- average pooling
- histogramming
x Classify with supervised method

— Example:

x SIFT
- apply oriented edges to some region
- determines dominant orientation

- agregate different regions
— Feature extraction

Gabor wavelets
SIFT
HoG

statistics of input data on natural images creates gabor-like
filters

Random filters
x learn the filters with gradient descent

EE S

*
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e Method

— Layers
x Filter Bank Layer Frsa

- Convolution filter

- Sigmoid /tanh non-linearity

- Gain coefficients
Rectification Layer R,
Local Contrast Normalization Layer N
Average Pooling and Subscampling Layer P,

* Xk KX X

Max Pooling and Subscampling Layer Py,
— Architectures
* Fose — Pa
* Fosqg — Raps — Pa
* Fosg — Raps — N — Py
* Fogag— N
— Training protocols
x Random Features and Supervised Classifier - R and RR
x Unsupervised Features, Supervised Classifier - U and UU
x Random Features, Global Supervised Refinement - R+ and

R+R+
x Unsupervised Feature, Global Supervised Refinement - U+
and U+U+
— Generation of Unsupervised filters using Predictive Sparse Decom-
position

e Results

— Random filters achieve good performance
— Supervised Refinement improves
— Two stages are better than one

— Unsupervised pretraining achieves better results, but in case of
using rectification and normalization the improvement is about

1%
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— Rectification is very important
— One stage + PMK SVM gives good results

— Using handmade Gabbor filters goot worst results than random
filters

61.8 Unsupervised feature learning for audio classifi-
cation using convolutional deep belief networks.
[152]

61.8.1 Original Abstract

In recent years, deep learning approaches have gained significant interest as
a way of building hierarchical representations from unlabeled data. However,
to our knowledge, these deep learning approaches have not been extensively
studied for auditory data. In this paper, we apply convolutional deep belief
networks to audio data and empirically evaluate them on various audio clas-
sification tasks. In the case of speech data, we show that the learned features
correspond to phones/phonemes. In addition, our feature representations
learned from unlabeled audio data show very good performance for multiple
audio classification tasks. We hope that this paper will inspire more research
on deep learning approaches applied to a wide range of audio recognition
tasks.

61.9 Actions in context [163]
61.9.1 Original Abstract

This paper exploits the context of natural dynamic scenes for human action
recognition in video. Human actions are frequently constrained by the pur-
pose and the physical properties of scenes and demonstrate high correlation
with particular scene classes. For example, eating often happens in a kitchen
while running s more common outdoors. The contribution of this paper is
three-fold: (a) we automatically discover relevant scene classes and their cor-
relation with human actions, (b) we show how to learn selected scene classes
from wvideo without manual supervision and (c) we develop a joint framework
for action and scene recognition and demonstrate improved recognition of both
in natural video. We use mouvie scripts as a means of automatic supervision
for training. For selected action classes we identify correlated scene classes
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in text and then retrieve video samples of actions and scenes for training
using script-to-video alignment. Qur visual models for scenes and actions
are formulated within the bag-of-features framework and are combined in a
joint scene-action SVM-based classifier. We report experimental results and
validate the method on a new large dataset with twelve action classes and ten
scene classes acquired from 69 mouies.

61.10 Evaluation of local spatio-temporal features for
action recognition [258]

61.10.1 Original Abstract

Local space-time features have recently become a popular video represen-
tation for action recognition. Several methods for feature localization and
description have been proposed in the literature and promising recognition re-
sults were demonstrated for a number of action classes. The comparison of
existing methods, however, is often limited given the different experimental
settings used. The purpose of this paper is to evaluate and compare previously
proposed space-time features in a common experimental setup. In particular,
we consider four different feature detectors and six local feature descriptors
and use a standard bag-of-features SVM approach for action recognition. We
investigate the performance of these methods on a total of 25 action classes
distributed over three datasets with varying difficulty. Among interesting con-
clusions, we demonstrate that reqular sampling of space-time features consis-
tently outperforms all tested space-time interest point detectors for human
actions in realistic settings. We also demonstrate a consistent ranking for
the magority of methods over different datasets and discuss their advantages
and limitations.

61.10.2 Main points
e Detectors
— Harris3D
— Cuboid

— Hessian

— Dense sampling
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e Descriptors

— HOG/HOF
— HOG3D
— ESURF (extended SURF)

e Datasets

— KTH actions

6 human action classes

walking, jogging, running, boxing, waving and clapping
25 subjects

4 scenarios

* % Xk X X

2391 video samples

*

http://www.nada.kth.se/cvap/actions/
— UCF sport actions
* 10 human action classes
*x winging, diving, kicking, weight-lifting, horse-riding, running,
skateboarding, swinging, golf swinging and walking
* 150 video samples
x http://crcv.ucf.edu/data/UCF_Sports_Action.php
— Hollywood2 actions
* 12 action classes
x answering the hone, driving car, eating, fighting, geting out
of the car, hand shaking, hugging, kissing, running, sitting
down, sitting up, and standing up.
* 69 Hollywood movies
x 1707 video samples
* http://www.di.ens.fr/"laptev/actions/hollywood2/

61.11 Stacks of convolutional restricted Boltzmann ma-
chines for shift-invariant feature learning [189)]

61.11.1 Original Abstract

In this paper we present a method for learning class-specific features for
recognition. Recently a greedy layer-wise procedure was proposed to initialize
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weights of deep belief networks, by viewing each layer as a separate restricted
Boltzmann machine (RBM). We develop the convolutional RBM (C-RBM),
a variant of the RBM model in which weights are shared to respect the spatial
structure of images. This framework learns a set of features that can gener-
ate the 1mages of a specific object class. QOur feature extraction model is a
four layer hierarchy of alternating filtering and mazimum subsampling. We
learn feature parameters of the first and third layers viewing them as separate
C-RBMs. The outputs of our feature extraction hierarchy are then fed as in-
put to a discriminative classifier. It is experimentally demonstrated that the
extracted features are effective for object detection, using them to obtain per-
formance comparable to the state of the art on handwritten digit recognition
and pedestrian detection.

61.11.2 Main points
e New Convolutional Restricted Boltzmann Machine (C-RBM)

e Comparable state-of-the-art on handwritten digit recognition and pedes-
trian detection

e RBM

— Probabilistic model
— hidden variables independent given observerd data

— Not capture explicitly spacial structure of images
e C-RBM

— Include spatial locality and weight sharing

— Favors filters with high response on training images
— Unsupervised learning using Contrastive Divergence
— Layerwise training for stacks of RBMs

— Convolutional connections are employed in a generative Markov
Random Field architecture

— Hidden units divided into K feature maps

— Convolution problems
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* X % ¥

Boundary units are withinb a smaller number of subwindows
compared to the interior pixels

middle pixels may contribute to K, features

Separation of boundary variables (v°) from middle variables
(v™)

Problems sampling from boundary pixels (not have nough fea-
tures)

Over completeness because of K-features

Sampling creates images very similar to the original ones
Need of more Gibbs sampling steps

Their solution is to fix hidden bias terms ¢ during training

e Multilayer C-RBMs

— Subsampling takes maximum conditional feature probability over
non-overlapping subwindows of feature maps

— Architecture

* % ¥ X X X

discriminative layer (SVM)
max pooling

convolution

max pooling

convolution

input

— On pedestrians also HOG is used in discriminative layer

e MNIST dataset

— Discriminative layer with RBF kernel

— 10 one-vs-rest binary SVMs

— 1st layer 15 feature maps

2nd layer 2x2 non-overlapping subwindos

3rd layer 15 feature maps

— 4th layer

e Comparison with Large CNN
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— C-RBM is better when training is small

e Pedestrian dataset

1st layer 7x7 15 feature maps

2nd layer 4x4 subsampling

— 3rd layer 15x5x5 30 feature maps
— 4th layer 2x2 subsampling

— + HOG

— Discriminative layer with linear kernel

61.12 Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representa-
tions [151]

61.12.1 Original Abstract

There has been much interest in unsupervised learning of hierarchical gener-
atiwe models such as deep belief networks. Scaling such models to full-sized,
high-dimensional images remains a difficult problem. To address this prob-
lem, we present the convolutional deep belief network, a hierarchical gener-
ative model which scales to realistic image sizes. This model is translation-
wmwvariant and supports efficient bottom-up and top-down probabilistic infer-
ence. Key to our approach is probabilistic maz-pooling, a movel technique
which shrinks the representations of higher layers in a probabilistically sound
way. Our experiments show that the algorithm learns useful high-level visual
features, such as object parts, from unlabeled images of objects and natural
scenes. We demonstrate excellent performance on several visual recognition
tasks and show that our model can perform hierarchical (bottom-up and top-
down) inference over full-sized images.

61.12.2 Main points

e Probabilistic max-pooling
e Scale DBN to real-sized images

— Computationally intractable
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— Need invariance in representation
e RBM

— Binary valued: Independent Bernoulli random variables
— Real valued: Gaussian with diagonal covariance
— Training:
x Stochastic gradient ascent on log-likelihood of training data

x Contrastive divergence approximation
e Convolutional RBM

— detection layers: convolving feature maps
— pooling layers: shrink the representation

x Block: CxC from bottom layer

* Max-pooling : minimizes energy subject to only one unit can
be active.

— Sparsity regularization: hidden units have a mean activation close
to a small constant

e Convolutional Deep belief network

— Stacking CRBM on top of one another
— Training:
x Gibbs sampling
« Mean-field (5 iterations in this paper)

61.13 Learning Deep Architectures for AI [21]
61.13.1 Original Abstract

Theoretical results suggest that in order to learn the kind of complicated func-
tions that can represent high-level abstractions (e.g., in vision, language, and
other Al-level tasks), one may need deep architectures. Deep architectures are
composed of multiple levels of non-linear operations, such as in neural nets
with many hidden layers or in complicated propositional formulae re-using
many sub-formulae. Searching the parameter space of deep architectures is
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a difficult task, but learning algorithms such as those for Deep Belief Net-
works have recently been proposed to tackle this problem with notable success,
beating the state-of-the-art in certain areas. This monograph discusses the
motivations and principles regarding learning algorithms for deep architec-
tures, in particular those exploiting as building blocks unsupervised learning
of single-layer models such as Restricted Boltzmann Machines, used to con-
struct deeper models such as Deep Belief Networks.

61.14 Journal of Statistical Software [153]
61.14.1 Original Abstract

None

62 2010

62.1 Wilcoxon-Mann-Whitney or t-test? On assump-
tions for hypothesis tests and multiple interpreta-
tions of decision rules [64]

62.1.1 Original Abstract

In a mathematical approach to hypothesis tests, we start with a clearly de-
fined set of hypotheses and choose the test with the best properties for those
hypotheses. In practice, we often start with less precise hypotheses. For ex-
ample, often a researcher wants to know which of two groups generally has the
larger responses, and either a t-test or a Wilcoxon-Mann- Whitney (WMW)
test could be acceptable. Although both t-tests and WMW tests are usually
associated with quite different hypotheses, the decision rule and p-value from
either test could be associated with many different sets of assumptions, which
we call perspectives. It is useful to have many of the different perspectives to
which a decision rule may be applied collected in one place, since each per-
spective allows a different interpretation of the associated p-value. Here we
collect many such perspectives for the two-sample t-test, the WMW test and
other related tests. We discuss validity and consistency under each perspec-
tive and discuss recommendations between the tests in light of these many
different perspectives. Finally, we briefly discuss a decision rule for testing
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genetic neutrality where knowledge of the many perspectives is vital to the
proper interpretation of the decision rule.

62.1.2 Main points

62.2 High dynamic range imaging: acquisition, display,
and image-based lighting [203]

62.2.1 Original Abstract

This landmark book is the first to describe HDRI technology in its entirety
and covers a wide-range of topics, from capture devices to tone reproduction
and image-based lighting. The techniques described enable you to produce
images that have a dynamic range much closer to that found in the real
world, leading to an unparalleled visual experience. As both an introduction
to the field and an authoritative technical reference, it is essential to anyone
working with images, whether in computer graphics, film, video, photography,
or lighting design. New material includes chapters on High Dynamic Range
Video Encoding, High Dynamic Range Image Encoding, and High Dynam-
mic Range Display Devices Written by the inventors and initial implementors
of High Dynamic Range ImagingCovers the basic concepts (including just
enough about human vision to explain why HDR images are necessary), im-
age capture, image encoding, file formats, display techniques, tone mapping
for lower dynamic range display, and the use of HDR images and calculations
i 3D renderingRange and depth of coverage is good for the knowledgeable re-
searcher as well as those who are just starting to learn about High Dynamic
Range imaging

62.3 Computer vision: algorithms and applications [241]
62.3.1 Original Abstract

Humans perceive the three-dimensional structure of the world with apparent
ease. However, despite all of the recent advances in computer vision research,
the dream of having a computer interpret an image at the same level as a ...
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62.4 Computer Vision-ECCV 2010 [52]
62.4.1 Original Abstract

None

62.5 Tiled convolutional neural networks. [141]
62.5.1 Original Abstract

Convolutional neural networks (CNNs) have been successfully applied to
many tasks such as digit and object recognition. Using convolutional (tied)
weights significantly reduces the number of parameters that have to be learned,
and also allows translational invariance to be hard-coded into the architec-
ture. In this paper, we consider the problem of learning invariances, rather
than relying on hardcoding. We propose tiled convolution neural networks
(Tiled CNNs), which use a reqular “tiled ” pattern of tied weights that does
not require that adjacent hidden units share identical weights, but instead
requires only that hidden units k steps away from each other to have tied
weights. By pooling over neighboring units, this architecture is able to learn
complex invariances (such as scale and rotational invariance) beyond trans-
lational invariance. Further, it also enjoys much of CNNs’ advantage of hav-
ing a relatively small number of learned parameters (such as ease of learning
and greater scalability). We provide an efficient learning algorithm for Tiled
CNNs based on Topographic ICA, and show that learning complex invariant
features allows us to achieve highly competitive results for both the NORB
and CIFAR-10 datasets.

62.6 Convolutional Deep Belief Networks on CIFAR-10
[133]

62.6.1 Original Abstract

We describe how to train a two-layer convolutional Deep Belief Network
(DBN) on the 1.6 million tiny imagesdataset. When training a convolutional
DBN, one must decide what to do with the edge pixels of teh images. As-
the pixels near the edge of an image contribute to the fewest convolutional
filter outputs, the model maysee it fit to tailor its few convolutional filters
to better model the edge pixels. This is undesirable becaue itusually comes
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at the expense of a good model for the interior parts of the image. We in-
vestigate several waysof dealing with the edge pixels when training a convo-
lutional DBN. Using a combination of locally-connectedconvolutional units
and globally-connected units, as well as a few tricks to reduce the effects of
overfitting,we achieve state-of-the-art performance in the classification task
of the CIFAR-10 subset of the tiny imagesdataset.

62.6.2 Main points
e Detectors
— Harris3D
Cuboid

Hessian

— Dense sampling
e Descriptors

— HOG/HOF
— HOG3D
— ESURF (extended SURF)

e Datasets

— KTH actions

6 human action classes

walking, jogging, running, boxing, waving and clapping

*
*

x 25 subjects
* 4 scenarios
*

2391 video samples

*

http : / Jwww.nada.kth.se/cvap/actions/
— UCF sport actions

* 10 human action classes

x winging, diving, kicking, weight-lifting, horse-riding, running,
skateboarding, swinging, golf swinging and walking

x 150 video samples
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x hitp : //crev.ucf.edu/data/UC Fgports action.php
— Hollywood2 actions

* 12 action classes

x answering the hone, driving car, eating, fighting, geting out
of the car, hand shaking, hugging, kissing, running, sitting
down, sitting up, and standing up.

x 69 Hollywood movies

x 1707 video samples

x http : //www.di.ens.fr/ laptev/actions/hollywood2/

62.7 Convolutional learning of spatio-temporal features
[243]

62.7.1 Original Abstract

We address the problem of learning good features for understanding video
data. We introduce a model that learns latent representations of image se-
quences from pairs of successive images. The convolutional architecture of
our model allows it to scale to realistic image sizes whilst using a compact
parametrization. In experiments on the NORB dataset, we show our model
extracts latent “flow fields” which correspond to the transformation between
the pair of input frames. We also use our model to extract low-level motion
features in a multi-stage architecture for action recognition, demonstrating
competitive performance on both the KTH and Hollywood2 datasets.

62.7.2 Main points

62.8 Learning Convolutional Feature Hierarchies for Vi-
sual Recognition [125]

62.8.1 Original Abstract

We propose an unsupervised method for learning multi-stage hierarchies of
sparseconvolutional features. While sparse coding has become an increasingly
popularmethod for learning visual features, it is most often trained at the
patch level. Applying the resulting filters convolutionally results in highly re-
dundant codesbecause overlapping patches are encoded in isolation. By train-
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ing convolutionallyover large image windows, our method reduces the redu-
dancy between featurevectors at neighboring locations and improves the ef-
ficiency of the overall repre-sentation. In addition to a linear decoder that
reconstructs the image from sparsefeatures, our method trains an efficient
feed-forward encoder that predicts quasi-sparse features from the input. While
patch-based training rarely produces any-thing but oriented edge detectors,
we show that convolutional training produceshighly diverse filters, including
center-surround filters, corner detectors, cross de-tectors, and oriented grat-
ing detectors. We show that using these filters in multi-stage convolutional
network architecture improves performance on a number ofvisual recognition
and detection tasks

62.9 Tiled convolutional neural networks [184]
62.9.1 Original Abstract

Convolutional neural networks (CNNs) have been successfully applied to
manytasks such as digit and object recognition. Using convolutional (tied)
weightssignificantly reduces the number of parameters that have to be learned,
and alsoallows translational invariance to be hard-coded into the architecture.
In this pa-per, we consider the problem of learning invariances, rather than
relying on hard-coding. We propose tiled convolution neural networks (Tiled
CNNs), which usea reqular “tiled” pattern of tied weights that does not require
that adjacent hiddenunits share identical weights, but instead requires only
that hidden units k stepsaway from each other to have tied weights. By pool-
ing over neighboring units,this architecture is able to learn complex invari-
ances (such as scale and rotationalinvariance) beyond translational invari-
ance. Further, it also enjoys much of CNNs’ advantage of having a relatively
small number of learned parameters (such as easeof learning and greater scal-
ability). We provide an efficient learning algorithm forTiled CNNs based on
Topographic ICA, and show that learning complex invariantfeatures allows
us to achieve highly competitive results for both the NORB andCIFAR-10
datasets.
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62.10 Why does unsupervised pre-training help deep
learning? [58]
62.10.1 Original Abstract

Much recent research has been devoted to learning algorithms for deep archi-
tectures such as Deep Belief Networks and stacks of auto-encoder variants,
with impressive results obtained in several areas, mostly on vision and lan-
guage data sets. The best results obtained on supervised learning tasks involve
an unsupervised learning component, usually in an unsupervised pre-training
phase. Even though these new algorithms have enabled training deep models,
many questions remain as to the nature of this difficult learning problem.
The main question investigated here is the following: how does unsupervised
pre-training work? Answering this questions is important if learning in deep
architectures is to be further improved. We propose several explanatory hy-
potheses and test them through extensive simulations. We empirically show
the influence of pre-training with respect to architecture depth, model capac-
ity, and number of training examples. The experiments confirm and clarify
the advantage of unsupervised pre-training. The results suggest that unsuper-
vised pre-training gquides the learning towards basins of attraction of minima
that support better generalization from the training data set; the evidence
from these results supports a reqularization explanation for the effect of pre-
training.

62.11 Rectified linear units improve restricted boltz-
mann machines [179]

62.11.1 Original Abstract

Restricted Boltzmann machines were developed using binary stochastic hid-
den units. These can be generalized by replacing each binary unit by an in-
finite number of copies that all have the same weights but have progressively
more negative biases. The learning and inference rules for these “Stepped Sig-
moid Units 7 are unchanged. They can be approximated efficiently by noisy,
rectified linear units. Compared with binary units, these units learn features
that are better for object recognition on the NORB dataset and face verifica-
tion on the Labeled Faces in the Wild dataset. Unlike binary units, rectified
linear units preserve information about relative intensities as information
travels through multiple layers of feature detectors. 1.
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62.11.2 Main points

63 2011

63.1 Kernel Adaptive Filtering: A Comprehensive In-
troduction [158]

63.1.1 Original Abstract

Online learning from a signal processing perspective There is increased in-
terest in kernel learning algorithms in neural networks and a growing need
for nonlinear adaptive algorithms in advanced signal processing, communica-
tions, and controls. "Kernel Adaptive Filtering" is the first book to present a
comprehensive, unifying introduction to online learning algorithms in repro-
ducing kernel Hilbert spaces. Based on research being conducted in the Com-
putational Neuro-Engineering Laboratory at the University of Florida and in
the Cognitive Systems Laboratory at McMaster University, Ontario, Canada,
this unique resource elevates the adaptive filtering theory to a new level, pre-
senting a new design methodology of nonlinear adaptive filters. Covers the
kernel least mean squares algorithm, kernel affine projection algorithms, the
kernel recursive least squares algorithm, the theory of Gaussian process re-
gression, and the extended kernel recursive least squares algorithmPresents
a powerful model-selection method called mazimum marginal likelihoodAd-
dresses the principal bottleneck of kernel adaptive filters—their growing struc-
tureFeatures twelve computer-oriented experiments to reinforce the concepts,
with MATLAB codes downloadable from the authors” Web siteConcludes each
chapter with a summary of the state of the art and potential future directions
for original research"Kernel Adaptive Filtering” is ideal for engineers, com-
puter scientists, and graduate students interested in nonlinear adaptive sys-
tems for online applications (applications where the data stream arrives one
sample at a time and incremental optimal solutions are desirable). It is also a
useful guide for those who look for nonlinear adaptive filtering methodologies
to solve practical problems.
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63.2 Structured learning and prediction in computer vi-
sion [191]
63.2.1 Original Abstract

Powerful statistical models that can be learned efficiently from large amounts
of data are currently revolutionizing computer vision. These models possess a
rich internal structure reflecting task-specific relations and constraints. This
monograph introduces the reader to the most popular classes of structured
models in computer vision. Qur focus is discrete undirected graphical mod-
els which we cover in detail together with a description of algorithms for
both probabilistic inference and maximum a posteriori inference. We discuss
separately recently successful techniques for prediction in general structured
models. In the second part of this monograph we describe methods for pa-
rameter learning where we distinguish the classic mazimum likelihood based
methods from the more recent prediction-based parameter learning methods.
We highlight developments to enhance current models and discuss kernelized
models and latent variable models. To make the monograph more practical
and to provide links to further study we provide examples of successful appli-
cation of many methods in the computer vision literature.

63.3 Action recognition by dense trajectories [257]
63.3.1 Original Abstract

Feature trajectories have shown to be efficient for representing videos. Typi-
cally, they are extracted using the KLT tracker or matching SIFT descriptors
between frames. However, the quality as well as quantity of these trajecto-
ries 1s often not sufficient. Inspired by the recent success of dense sampling
in 1mage classification, we propose an approach to describe videos by dense
trajectories. We sample dense points from each frame and track them based
on displacement information from a dense optical flow field. Given a state-
of-the-art optical flow algorithm, our trajectories are robust to fast irreqular
motions as well as shot boundaries. Additionally, dense trajectories cover the
motion information in videos well. We, also, investigate how to design de-
scriptors to encode the trajectory information. We introduce a novel descrip-
tor based on motion boundary histograms, which is robust to camera motion.
This descriptor consistently outperforms other state-of-the-art descriptors, in
particular in uncontrolled realistic videos. We evaluate our video description

136



in the context of action classification with a bag-of-features approach. Exper-
imental results show a significant improvement over the state of the art on
four datasets of varying difficulty, i.e. K'TH, YouTube, Hollywood2 and UCF

Sports.

63.4 Face Recognition in Unconstrained Videos with
Matched Background Similarity [268]

63.4.1 Original Abstract

Recognizing faces in unconstrained videos is a task of mounting importance.
While obuviously related to face recognition in still images, it has its own
unique characteristics and algorithmic requirements. Qver the years several
methods have been suggested for this problem, and a few benchmark data sets
have been assembled to facilitate its study. However, there is a sizable gap
between the actual application needs and the current state of the art. In this
paper we make the following contributions. (a) We present a comprehensive
database of labeled videos of faces in challenging, uncontrolled conditions (i.e.,
‘“in the wild’), the ‘YouTube Faces’ database, along with benchmark, pair-
matching testsl. (b) We employ our benchmark to survey and compare the
performance of a large variety of existing video face recognition techniques.
Finally, (c) we describe a novel set-to-set similarity measure, the Matched
Background Similarity (MBGS). This similarity is shown to considerably im-
prove performance on the benchmark tests.

63.5 Are sparse representations really relevant for im-
age classification? [204]

63.5.1 Original Abstract

Recent years have seen an increasing interest in sparse representations for
image classification and object recognition, probably motivated by evidence
from the analysis of the primate visual cortex. It is still unclear, however,
whether or not sparsity helps classification. In this paper we evaluate its
impact on the recognition rate using a shallow modular architecture, adopting
both standard filter banks and filter banks learned in an unsupervised way. In
our experiments on the CIFAR-10 and on the Caltech-101 datasets, enforcing
sparsity constraints actually does not improve recognition performance. This
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has an important practical impact in image descriptor design, as enforcing
these constraints can have a heavy computational cost.

63.5.2 Main points

<m:note/ >

63.6 Adaptive deconvolutional networks for mid and
high level feature learning [271]

63.6.1 Original Abstract

We present a hierarchical model that learns tmage decompositions via alter-
nating layers of convolutional sparse coding and max pooling. When trained
on natural images, the layers of our model capture image information in a
variety of forms: low-level edges, muid-level edge junctions, high-level object
parts and complete objects. To build our model we rely on a novel inference
scheme that ensures each layer reconstructs the input, rather than just the
output of the layer directly beneath, as is common with existing hierarchical
approaches. This makes it possible to learn multiple layers of representation
and we show models with 4 layers, trained on images from the Caltech-101
and 256 datasets. When combined with a standard classifier, features ez-
tracted from these models outperform SIFT, as well as representations from
other feature learning methods

63.7 Learning hierarchical invariant spatio-temporal fea
tures for action recognition with independent sub-
space analysis [139)]

63.7.1 Original Abstract

Previous work on action recognition has focused on adapting hand-designed
local features, such as SIFT or HOG, from static images to the video domain.
In this paper, we propose using unsupervised feature learning as a way to learn
features directly from video data. More specifically, we present an extension
of the Independent Subspace Analysis algorithm to learn invariant spatio-
temporal features from unlabeled video data. We discovered that, despite its
simplicity, this method performs surprisingly well when combined with deep
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learning techniques such as stacking and convolution to learn hierarchical rep-
resentations. By replacing hand-designed features with our learned features,
we achieve classification results superior to all previous published results on
the Hollywood2, UCF, KTH and YouTube action recognition datasets. On
the challenging Hollywood2 and YouTube action datasets we obtain 53.3

63.7.2 Main points

<m:note/>

63.8 Audio-based music classification with a pretrained
convolutional network [55]

63.8.1 Original Abstract

Recently the ‘Million Song Dataset’, containing audio features and metadata

for one million songs, was made available. In this paper, we build a con-
volutional network that is then trained to perform artist recognition, genre
recognition and key detection. The network is tailored to summarize the au-
dio features over musically significant timescales. It is infeasible to train the
network on all available data in a supervised fashion, so we use unsupervised
pretraining to be able to harness the entire dataset: we train a convolutional
deep belief network on all data, and then use the learnt parameters to ini-
tialize a convolutional multilayer perceptron with the same architecture. The
MLP is then trained on a labeled subset of the data for each task. We also
train the same MLP with randomly initialized weights. We find that our con-
volutional approach improves accuracy for the genre recognition and artist
recognition tasks. Unsupervised pretraining improves convergence speed in
all cases. For artist recognition it tmproves accuracy as well.

63.9 Learning hierarchical invariant spatio-temporal fea
tures for action recognition with independent sub-
space analysis [140]

63.9.1 Original Abstract

Previous work on action recognition has focused on adapting hand-designed
local features, such as SIFT or HOG, from static images to the video domain.
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In this paper, we propose using unsupervised feature learning as a way to learn
features directly from video data. More specifically, we present an extension
of the Independent Subspace Analysis algorithm to learn invariant spatio-
temporal features from unlabeled video data. We discovered that, despite its
simplicity, this method performs surprisingly well when combined with deep
learning techniques such as stacking and convolution to learn hierarchical rep-
resentations. By replacing hand-designed features with our learned features,
we achieve classification results superior to all previous published results on
the Hollywood2, UCF, KTH and YouTube action recognition datasets. On
the challenging Hollywood2 and YouTube action datasets we obtain 53.3

63.10 Stacked convolutional auto-encoders for hierar-
chical feature extraction [164]

63.10.1 Original Abstract

We present a novel convolutional auto-encoder (CAE) for unsupervised fea-
ture learning. A stack of CAEs forms a convolutional neural network (CNN).
FEach CAE is trained using conventional on-line gradient descent without ad-
ditional regqularization terms. A maz-pooling layer is essential to learn biolog-
ically plausible features consistent with those found by previous approaches.
Initializing a CNN with filters of a trained CAFE stack yields superior perfor-
mance on a digit (MNIST) and an object recognition (CIFAR10) benchmark.

63.11 Building high-level features using large scale un-
supervised learning [142]

63.11.1 Original Abstract

We consider the problem of building high-level, class-specific feature detectors
from only unlabeled data. For example, is it possible to learn a face detector
using only unlabeled images? To answer this, we train a deep sparse autoen-
coder on a large dataset of images (the model has 1 billion connections, the
dataset has 10 million 200x 200 pizel images downloaded from the Internet).
We train this network using model parallelism and asynchronous SGD on a
cluster with 1,000 machines (16,000 cores) for three days. Contrary to what
appears to be a widely-held intuition, our experimental results reveal that it is
possible to train a face detector without having to label images as containing
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a face or not. Control experiments show that this feature detector is robust
not only to translation but also to scaling and out-of-plane rotation. We also
find that the same network is sensitive to other high-level concepts such as
cat faces and human bodies. Starting from these learned features, we trained
our network to recognize 22,000 object categories from ImageNet and achieve
a leap of 70

63.11.2 Main points

63.12 Generating text with recurrent neural networks
[236]

63.12.1 Original Abstract

None

64 2012

64.1 Alan Turing’s Electronic Brain: The Struggle to
Build the ACE, the World’s Fastest Computer [44]

64.1.1 Original Abstract

The mathematical genius Alan Turing, now well known for his crucial wartime
role in breaking the ENIGMA code, was the first to conceive of the funda-
mental principle of the modern computer-the idea of controlling a computing
machine’s operations by means of a program of coded instructions, stored in
the machine’s ‘'memory’. In 1945 Turing drew up his revolutionary design for
an electronic computing machine-his Automatic Computing Engine ("ACE’).
A pilot model of the ACE ran its first program in 1950 and the produc-
tion version, the "DEUCE’, went on to become a cornerstone of the fledgling
British computer industry. The first ‘personal’ computer was based on Tur-
ing’s ACE. Alan Turing’s Automatic Computing Engine describes Turing’s
struggle to build the modern computer. The first detailed history of Turing’s
contributions to computer science, this text is essential reading for anyone
interested in the history of the computer and the history of mathematics.
It contains first hand accounts by Turing and by the pioneers of comput-
ing who worked with him. As well as relating the story of the invention of
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the computer, the book clearly describes the hardware and software of the
ACE-including the very first computer programs. The book is intended to be
accessible to everyone with an interest in computing, and contains numerous
diagrams and illustrations as well as original photographs. The book contains
chapters describing Turing’s path-breaking research in the fields of Artificial
Intelligence (AI) and Artificial Life (A-Life). The book has an extensive sys-
tem of hyperlinks to The Turing Archive for the History of Computing, an
on-line library of digital facsimiles of typewritten documents by Turing and
the other scientists who pioneered the electronic computer.

64.1.2 Main points

64.2 Connectionism [78]
64.2.1 Original Abstract

Connectionism is a movement in cognitive science which hopes toexplain hu-
man intellectual abilities using artificial neural networks(also known as ‘neu-
ral networks’ or ‘neuralnets’). Neural networks are simplified models of the
braincomposed of large numbers of units (the analogs of neurons) together-
with weights that measure the strength of connections between theunits. These
weights model the effects of the synapses that link oneneuron to another. Ez-
periments on models of this kind have demonstratedan ability to learn such
skills as face recognition, reading, and thedetection of simple grammatical
structure., Philosophers have become interested in connectionism because it-
promises to provide an alternative to the classical theory of the mind:the
widely held view that the mind is something akin to a digitalcomputer pro-
cessing a symbolic language. Ezxactly how and to what extentthe connectionist
paradigm constitutes a challenge to classicism hasbeen a matter of hot debate
1 recent years.

64.2.2 Main points

64.3 Computer Vision - ECCV 2012 [66]
64.3.1 Original Abstract

None
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64.4 Combining gradient histograms using orientation
tensors for human action recognition [197]

64.4.1 Original Abstract

We present a method for human action recognition based on the combination
of Histograms of Gradients into orientation tensors. It uses only information
from HOG3D: no features or points of interest are extracted. The resulting
raw histograms obtained per frame are combined into an orientation tensor,
making it a simple, fast to compute and effective global descriptor. The ad-
dition of new videos and/or new action cathegories does not require any re-
computation or changes to the previously computed descriptors. Our method
reaches 92.01

64.5 Unsupervised and Transfer Learning Challenge: a
Deep Learning Approach. [16§]

64.5.1 Original Abstract

Learning good representations from a large set of unlabeled data is a partic-
ularlychallenging task. Recent work (see Bengio (2009) for a review) shows
that training deep architectures is a good way to extract such representa-
tions, by extractingand disentangling gradually higher-level factors of varia-
tion characterizing the inputdistribution. In this paper, we describe different
kinds of layers we trained for learning representations in the setting of the
Unsupervised and Transfer Learning Challenge. The strategy of our team
won the final phase of the challenge. It combined andstacked different one-
layer unsupervised learning algorithms, adapted to each of thefive datasets
of the competition. This paper describes that strategy and the particularone-
layer learning algorithms feeding a simple linear classifier with a tiny number
oflabeled training samples (1 to 64 per class).

64.6 Attribute learning for understanding unstructured
social activity [72]

64.6.1 Original Abstract
The rapid development of social video sharing platforms has created a huge

demand for automatic video classification and annotation techniques, in par-
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ticular for videos containing social activities of a group of people (e.g. YouTube
video of a wedding reception). Recently, attribute learning has emerged as a
promising paradigm for transferring learning to sparsely labelled classes in ob-
ject or single-object short action classification. In contrast to existing work,
this paper for the first time, tackles the problem of attribute learning for un-
derstanding group social activities with sparse labels. This problem is more
challenging because of the complex multi-object nature of social activities, and
the unstructured nature of the activity context. To solve this problem, we (1)
contribute an unstructured social activity attribute (USAA) dataset with both
visual and audio attributes, (2) introduce the concept of semi-latent attribute
space and (8) propose a novel model for learning the latent attributes which
alleviate the dependence of existing models on exact and exhaustive manual
specification of the attribute-space. We show that our framework is able to
exploit latent attributes to outperform contemporary approaches for address-
g a variety of realistic multi-media sparse data learning tasks including:
multi-task learning, N-shot transfer learning, learning with label noise and
importantly zero-shot learning.

64.7 TRECVid 2012 Semantic Video Concept Detec-
tion by NTT-MD-DUT [235]

64.7.1 Original Abstract

In this paper, we describe the TRECVid 2012 videoconcept detection sys-
tem first developed at the NTTMedia Intelligence Laboratories in collabora-
tionwith Dalian University of Technology. For thisyear’s task, we adopted
a subspace partition basedscheme for classifier learning, with emphasis on
thereduction of classifier complexity, aiming atimproving the training effi-
ciency and boosting theclassifier performance. As the wvideo corpus used
forTRECVid evaluation is ever increasing, two practicalissues are becoming
more and more challenging forbuilding concept detection systems. The first
one isthe time-consuming training and testing procedures,which have taken up
most of the evaluation activities,preventing the design and testing of novel al-
gorithms. The second and the more important issue is thatwhen using whole
data for classifier training, thederived separating hyperplanes would be rather-
complex and thus degrade the classificationperformance. To address these
issues, we propose toadopt the “divide-and-conquer” strateqy for conceptde-
tector construction as follows. We first partitionthe whole training feature
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space into multiplesub-space with a scalable clustering method, andthen build
sub-classifiers on these sub-spacesseparately for each concept. The decision of
a testingsample is the fusion of the results a few firedsub-classifiers. Experi-
mental results demonstrate theefficiency and effectiveness of our proposedap-
proach.

64.8 AXES at TRECVid 2012: KIS, INS, and MED [11]
64.8.1 Original Abstract

The AXES project participated in the interactive instance search task (INS),
the known-item search task (KIS), and the multimedia event detection task
(MED) for TRECVid 2012. As in our TRECVid 2011 system, we used
nearly identical search systems and user interfaces for both INS and KIS. Our
interactive INS and KIS systems focused this year on using classifiers trained
at query time with positive examples collected from external search engines.
Participants in our KIS experiments were media professionals from the BBC;
our INS experiments were carried out by students and researchers at Dublin
City University. We performed comparatively well in both experiments. Qur
best KIS run found 13 of the 25 topics, and our best INS runs outperformed
all other submitted runs in terms of PQ100. For MED, the system presented
was based on a minimal number of low-level descriptors, which we chose
to be as large as computationally feasible. These descriptors are aggregated
to produce high-dimensional video-level signatures, which are used to train
a set of linear classifiers. Our MED system achieved the second-best score
of all submitted runs in the main track, and best score in the ad-hoc track,
suggesting that a simple system based on state-of-the-art low-level descriptors
can give relatively high performance. This paper describes in detail our KIS,
INS, and MED systems and the results and findings of our experiments.

64.9 Deep Neural Networks for Acoustic Modeling in
Speech Recognition [106]

64.9.1 Original Abstract

Most current speech recognition systems use hidden Markov models (HMMs)
to deal with the temporal variability of speech and Gaussian mixture models
(GMMs) to determine how well each state of each HMM fits a frame or a
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short window of frames of coefficients that represents the acoustic input. An
alternative way to evaluate the fit is to use a feed-forward neural network that
takes several frames of coefficients as input and produces posterior probabil-
ities over HMM states as oulput. Deep neural networks (DNNs) that have
many hidden layers and are trained using new methods have been shown to
outperform GMMs on a variety of speech recognition benchmarks, sometimes
by a large margin. This article provides an overview of this progress and rep-
resents the shared views of four research groups that have had recent successes
in using DNNs for acoustic modeling in speech recognition.

64.9.2 Main points

<m:note/ >

64.10 Local-feature-map Integration Using Convolutional
Neural Networks for Music Genre Classification
[180]

64.10.1 Original Abstract

None

64.11 Applying convolutional neural networks concepts
to hybrid NN-HMM model for speech recognition

2]
64.11.1 Original Abstract

Convolutional Neural Networks (CNN) have showed success in achieving
translation invariance for many image processing tasks. The success is largely
attributed to the use of local filtering and maz-pooling in the CNN architec-
ture. In this paper, we propose to apply CNN to speech recognition within
the framework of hybrid NN-HMM model. We propose to use local filter-
ing and max-pooling in frequency domain to normalize speaker variance to
achieve higher multi-speaker speech recognition performance. In our method,
a pair of local filtering layer and max-pooling layer is added at the lowest
end of neural network (NN) to normalize spectral variations of speech sig-
nals. In our experiments, the proposed CNN architecture is evaluated in a
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speaker independent speech recognition task using the standard TIMIT data
sets. Experimental results show that the proposed CNN method can achieve
over 10

64.11.2 Main points

<m:note/ >

64.12 Recognizing 50 human action categories of web
videos [202]

64.12.1 Original Abstract

Action recognition on large categories of unconstrained videos taken from the
web is a very challenging problem compared to datasets like KTH (6 actions),
IXMAS (18 actions), and Weizmann (10 actions). Challenges like camera
motion, different viewpoints, large interclass variations, cluttered background,
occlusions, bad illumination conditions, and poor quality of web videos cause
the magority of the state-of-the-art action recognition approaches to fail. Also,
an increased number of categories and the inclusion of actions with high con-
fuston add to the challenges. In this paper, we propose using the scene context
information obtained from moving and stationary pizels in the key frames,
in congunction with motion features, to solve the action recognition problem
on a large (50 actions) dataset with videos from the web. We perform a com-
bination of early and late fusion on multiple features to handle the very large
number of categories. We demonstrate that scene context is a very important
feature to perform action recognition on very large datasets. The proposed
method does not require any kind of video stabilization, person detection, or
tracking and pruning of features. Our approach gives good performance on a
large number of action categories; it has been tested on the UCF50 dataset
with 50 action categories, which is an extension of the UCF YouTube Ac-
tion (UCF11) dataset containing 11 action categories. We also tested our
approach on the KTH and HMDB51 datasets for comparison.

64.12.2 Main points
Test on UCF50
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64.13 Improving neural networks by preventing co-adaptation
of feature detectors [104]

64.13.1 Original Abstract

When a large feedforward neural network is trained on a small training set,
it typically performs poorly on held-out test data. This "overfitting" is greatly
reduced by randomly omitting half of the feature detectors on each training
case. This prevents complex co-adaptations in which a feature detector is only
helpful in the context of several other specific feature detectors. Instead, each
neuron learns to detect a feature that is generally helpful for producing the
correct answer given the combinatorially large variety of internal contexts in
which it must operate. Random "dropout” gives big improvements on many
benchmark tasks and sets new records for speech and object recognition.

64.13.2 Main points

e Paper about Dropout
e Standard way to reduce test error

— averaging different models

— Computationally expensive in training and test
e Dropout

— Small training set
— Prevents “overfitting”
— They use 50%

— Instead of L2 norm, they set an upper bound for each individual
neuron.

— Mean network : At test time divide all the outgoing weights by 2
to compensate dropout

— Specific case

x Single hidden layer network
* N hidden units
x “Softmax” output
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Figure 1: Visualization of features learned by first layer hidden units
left without dropout and right using dropout

x 50% dropout
* during test using mean network

x Exactly equivalent to taking the geometric mean of the prob-
ability distributions over labels predicted by all 2V possible
networks

e Results

— MNIST

No dropout : 160 errors
Dropbout : 130 errors
Dropout + rm random 20% pixels : 110 errors

* % %X %

Deep Boltzmann machine : 88 errors
* + Dropout : 79 errors

— TIMIT
4 Fully-connected hidden layers 4000 units per layer

*
x -+ 185 “softmax” output units
* Without dropout : 22.7%
Dropout on hidden units : 19.7%
— CIFAR-10

* Best published : 18.5%

*
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x 3 Conv-+Max-pool 1 Fully : 16.6%
* -+ Dropout in last hidden layer : 15.6%
— ImageNet
Average of 6 separate models : 47.2%
state-of-the-art : 45.7%
5 Conv-+Max-pool
+ 2 Fully
-+ 1000 “softmax”
Without dropout : 48.6%
Dropout in the 6th : 42.4%
— Reuters
x 2 fully of 2000 hidden units
* Without dropout : 31.05%
* Dropout : 29.62%

O S R R T S

64.14 Gated boltzmann machine in texture modeling
[92]
64.14.1 Original Abstract

In this paper, we consider the problem of modeling complex texture infor-
mation using undirected probabilistic graphical models. Texture is a special
type of data that one can better understand by considering its local structure.
For that purpose, we propose a convolutional variant of the Gaussian gated
Boltzmann machine (GGBM) [12], inspired by the co-occurrence matrixz in
traditional texture analysis. We also link the proposed model to a much sim-
pler Gaussian restricted Boltzmann machine where convolutional features are
computed as a preprocessing step. The usefulness of the model is illustrated
in texture classification and reconstruction experiments.

64.15 ImageNet Classification with Deep Convolutional
Neural Networks [134]

64.15.1 Original Abstract

We trained a large, deep convolutional neural network to classify the 1.2
miallionhigh-resolution 1mages in the ImageNet LSVRC-2010 contest into the

150



1000 dif-ferent classes. On the test data, we achieved top-1 and top-5 error
rates of 37.5

64.15.2 Main points
e CNN architecture:

— 650.000 neurons (60 million parameters)

— 5 convolutional layers

— Some of them followed by a max-pooling layer
— 3 fully-connected layers

— 1 1000-way softmax

e Dropout regularization method to reduce overfitting in 3 fully-connected
layers
e Training time: 5-6 days on two GTX 580 3GB GPUs
e Dataset:
— ILSVRC-2010
— Down-sampled images to a fixed resolution of 256x256
— Substract the mean activity ofver training set from each pixel
e ReLU:

— f(z) = max(0, x)
— Faster than tanh
— ReLU: 6 epochs

— tanh: 36 more epochs to achieve same performance

Local Response Normalization

— 1.2 and 1.4% error reduction

— Helps generalization

' 4 min(N—1,4+n/2) ) p
- bm,y = aw,y/ k+a Z (a:]z,y)

j=max(0,i—n/2)
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—k=2,n=5a=1074, and 8 =0.75
e Overlapping Pooling

— 0.3 and 0.4% error reduction

— grid 3[]3

— stride = 2

— Overlap each pooling one column pixel

e Overall Architecture

— 224x224x3 (RGB image)
Conv 96 kernels of size 11x11x3 with stride of 4 pixels

Response-Normalized and max-pooling

— Conv 256 kernels of size 5x5x48 with stride of 7 pixels
— Response-Normalized and max-pooling

— Conv 384 kernels of size 3x3x256

— Conv 384 kernels of size 3x3x192

— Conv 256 kernels of size 3x3x192

— (Response-Normalized? and Max-pooling

— Fully connected 4096

— Fully connected 4096

— Fully connected 1000

— Softmax

e Data augmentation

— 0.1 error reduction
— Original images escaled scaled and croped to 256x256
— Extract 5 images of 224x224 from corners plus center
— Mirror horizontally and get 5 more images
— Augment data altering RGB channels:

x Perform PCA on RGB throughout the training set
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Figure 2: Architecture of the CNN

x Fach training image add multiples of PCs with gaussian noise
e Dropout

— Put to zero the output of neurons with probability 0.5
— At test time multiply the outputs by 0.5

— Two first fully-connected layers

— Solves overfitting

— Dobules the number of iterations required to ocnverge
e Details of learning

— batch size = 128

— momentum 0.9

— weight decay 0.0005

— Initial weights from zero-mean Gaussian std=0.01

— biases = 1 on second, fourth, fifth Conv and fully-connected

— biases = 0 on the rest
e Evaluation

— Consider the feature activations induced by an image at the last,
4096-dimensional hidden layer
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64.16 The Stanford / Technicolor / Fraunhofer HHI
Video [12]
64.16.1 Original Abstract

Video search has become a very important tool, with the ever-growing size of
multimedia collections. This work introduces our Video Semantic Indexing
system. Our experiments show that Residual Vectors provide an efficient way
of aggregat- ing local descriptors, with complementary gain with respect to
BoVW. Also, we show that systems using a limited number of descriptors and
machine learning techniques can still be quite effective. QOur first participation
at the TRECVID evaluation has been very fruitful: our team was ranked 6th
in the light version of the Semantic Indexing task.

64.17 Learning hierarchical features for scene labeling
[61]
64.17.1 Original Abstract

Scene labeling consists of labeling each pixel in an image with the category of
the object it belongs to. We propose a method that uses a multiscale convo-
lutional network trained from raw pizels to extract dense feature vectors that
encode regions of multiple sizes centered on each pixel. The method alleviates
the need for engineered features, and produces a powerful representation that
captures texture, shape, and contextual information. We report results using
multiple postprocessing methods to produce the final labeling. Among those,
we propose a technique to automatically retrieve, from a pool of segmentation
components, an optimal set of components that best explain the scene; these
components are arbitrary, for example, they can be taken from a segmenta-
tion tree or from any family of oversegmentations. The system yields record
accuracies on the SIFT Flow dataset (33 classes) and the Barcelona dataset
(170 classes) and near-record accuracy on Stanford background dataset (eight
classes), while being an order of magnitude faster than competing approaches,
producing a 320% 240 image labeling in less than a second, including feature
extraction.
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64.18 Machine learning: a probabilistic perspective [178]
64.18.1 Original Abstract

None

64.19 Differential feedback modulation of center and
surround mechanisms in parvocellular cells in the
visual thalamus [122]

64.19.1 Original Abstract

Many cells in both the central visual system and other sensory systems exhibit
a center surround organization in their receptive field, where the response to
a centrally placed stimulus is modified when a surrounding area is also stim-
ulated. This can follow from laterally directed connections in the local circuit
at the level of the cell in question but could also involve more complex inter-
actions. In the lateral geniculate nucleus (LGN), the cells relaying the retinal
input display a concentric, center surround organization that in part follows
from the similar organization characterizing the retinal cells providing their
mput. Howewver, local thalamic inhibitory interneurons also play a role, and
as we examine here, feedback from the visual cortex too. Here, we show in
the primate (macaque) that spatially organized cortical feedback provides a
clear and differential influence serving to enhance both responses to stimula-
tion within the center of the receptive field and the ability of the nonclassical
surround mechanism to attenuate this. In short, both center and surround
mechanisms are influenced by the feedback. This dynamically sharpens the
spatial focus of the receptive field and introduces nonlinearities from the cor-
tical mechanism into the LGN.
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64.19.2 Main points
65 2013

65.1 Discrete geometry and optimization [25]
65.1.1 Original Abstract

?Optimization has long been a source of both inspiration and applications
for geometers, and conversely, discrete and conver geometry have provided
the foundations for many optimization techniques, leading to a rich interplay
between these subjects. The purpose of the Workshop on Discrete Geometry,
the Conference on Discrete Geometry and Optimization, and the Workshop
on Optimization, held in September 2011 at the Fields Institute, Toronto,
was to further stimulate the interaction between geometers and optimizers.
This volume reflects the interplay between these areas. The inspiring Fejes
Toth Lecture Series, delivered by Thomas Hales of the University of Pitts-
burgh, exemplified this approach. While these fields have recently witnessed
a lot of activity and successes, many questions remain open. For example,
Fields medalist Stephen Smale stated that the question of the existence of a
strongly polynomial time algorithm for linear optimization is one of the most
important unsolved problems at the beginning of the 21st century. The broad
range of topics covered in this volume demonstrates the many recent and
fruitful connections between different approaches, and features novel results
and state-of-the-art surveys as well as open problems.

65.1.2 Main points

65.2 Maxout Networks [83]
65.2.1 Original Abstract

We consider the problem of designing models to leverage a recently introduced
approzimate model averaging technique called dropout. We define a simple
new model called maxout (so named because its output is the max of a set
of inputs, and because it is a natural companion to dropout) designed to both
facilitate optimization by dropout and improve the accuracy of dropout’s fast
approzimate model averaging technique. We empirically verify that the model
successfully accomplishes both of these tasks. We use mazxout and dropout to
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demonstrate state of the art classification performance on four benchmark

datasets: MNIST, CIFAR-10, CIFAR-100, and SVHN.

65.2.2 Main points

65.3 Deep Generative Stochastic Networks Trainable
by Backprop [23]

65.3.1 Original Abstract

We introduce a novel training principle for probabilistic models that is an
alternative to maximum likelihood. The proposed Generative Stochastic Net-
works (GSN) framework is based on learning the transition operator of a
Markov chain whose stationary distribution estimates the data distribution.
The transition distribution of the Markov chain is conditional on the previous
state, generally involving a small move, so this conditional distribution has
fewer dominant modes, being unimodal in the limit of small moves. Thus,
it 1s easier to learn because it is easier to approximate its partition function,
more like learning to perform supervised function approximation, with gradi-
ents that can be obtained by backprop. We provide theorems that generalize
recent work on the probabilistic interpretation of denoising autoencoders and
obtain along the way an interesting justification for dependency networks and
generalized pseudolikelihood, along with a definition of an appropriate joint
distribution and sampling mechanism even when the conditionals are not con-
sistent. GSNs can be used with missing inputs and can be used to sample
subsets of variables given the rest. We validate these theoretical results with
experiments on two image datasets using an architecture that mimics the
Deep Boltzmann Machine Gibbs sampler but allows training to proceed with
simple backprop, without the need for layerwise pretraining.

65.4 Improving Deep Neural Networks with Probabilis-
tic Maxout Units [231]

65.4.1 Original Abstract

We present a probabilistic variant of the recently introduced mazxout unit.
The success of deep neural networks utilizing maxout can partly be attributed
to favorable performance under dropout, when compared to rectified linear
units. It however also depends on the fact that each mazout unit performs
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a pooling operation over a group of linear transformations and is thus par-
tially invariant to changes in its input. Starting from this observation we ask
the question: Can the desirable properties of mazxout units be preserved while
improving their invariance properties ¢ We argue that our probabilistic maz-
out (probout) units successfully achieve this balance. We quantitatively verify
this claim and report classification performance matching or exceeding the

current state of the art on three challenging image classification benchmarks
(CIFAR-10, CIFAR-100 and SVHN).

65.4.2 Main points

65.5 Network In Network [154]
65.5.1 Original Abstract

We propose a novel deep network structure called "Network In Network”
(NIN) to enhance model discriminability for local patches within the recep-
tive field. The conventional convolutional layer uses linear filters followed by
a nonlinear activation function to scan the input. Instead, we build micro
neural networks with more complex structures to abstract the data within the
receptive field. We instantiate the micro neural network with a multilayer
perceptron, which is a potent function approximator. The feature maps are
obtained by sliding the micro networks over the input in a similar manner as
CNN; they are then fed into the next layer. Deep NIN can be implemented by
stacking mutiple of the above described structure. With enhanced local mod-
eling via the micro network, we are able to utilize global average pooling over
feature maps in the classification layer, which is easier to interpret and less
prone to overfitting than traditional fully connected layers. We demonstrated
the state-of-the-art classification performances with NIN on CIFAR-10 and
CIFAR-100, and reasonable performances on SVHN and MNIST datasets.

65.6 An Empirical Investigation of Catastrophic For-
geting in Gradient-Based Neural Networks [806]

65.6.1 Original Abstract

Catastrophic forgetting is a problem faced by many machine learning models
and algorithms. When trained on one task, then trained on a second task,
many machine learning models "forget” how to perform the first task. This is
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widely believed to be a serious problem for neural networks. Here, we investi-
gate the extent to which the catastrophic forgetting problem occurs for modern
neural networks, comparing both established and recent gradient-based train-
ing algorithms and activation functions. We also examine the effect of the
relationship between the first task and the second task on catastrophic forget-
ting. We find that it s always best to train using the dropout algorithm—the
dropout algorithm is consistently best at adapting to the new task, remember-
ing the old task, and has the best tradeoff curve between these two extremes.
We find that different tasks and relationships between tasks result in very dif-
ferent rankings of activation function performance. This suggests the choice
of actiwvation function should always be cross-validated.

65.7 Multi-digit Number Recognition from Street View
Imagery using Deep Convolutional Neural Networks
[84]

65.7.1 Original Abstract

Recognizing arbitrary multi-character text in unconstrained natural pho-
tographs is a hard problem. In this paper, we address an equally hard sub-
problem in this domain viz. recognizing arbitrary multi-digit numbers from
Street View tmagery. Traditional approaches to solve this problem typically
separate out the localization, segmentation, and recognition steps. In this pa-
per we propose a unified approach that integrates these three steps via the use
of a deep convolutional neural network that operates directly on the image
pizels. We employ the DistBelief implementation of deep neural networks
in order to train large, distributed neural networks on high quality images.
We find that the performance of this approach increases with the depth of
the convolutional network, with the best performance occurring in the deepest
architecture we trained, with eleven hidden layers. We evaluate this approach
on the publicly available SVHN dataset and achieve over 96

65.8 Coloring Action Recognition in Still Images [127]
65.8.1 Original Abstract

In this article we investigate the problem of human action recognition in
static images. By action recognition we intend a class of problems which in-
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cludes both action classification and action detection (i.e. simultaneous local-
ization and classification). Bag-of-words image representations yield promis-
ing results for action classification, and deformable part models perform very
well object detection. The representations for action recognition typically use
only shape cues and ignore color information. Inspired by the recent success of
color in image classification and object detection, we investigate the potential
of color for action classification and detection in static images. We perform
a comprehensive evaluation of color descriptors and fusion approaches for
action recognition. FExperiments were conducted on the three datasets most
used for benchmarking action recognition in still images: Willow, PASCAL
VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating
color information considerably tmproves recognition performance, and that a
descriptor based on color names outperforms pure color descriptors. Qur
experiments demonstrate that late fusion of color and shape information out-
performs other approaches on action recognition. Finally, we show that the
different color—shape fusion approaches result in complementary information
and combining them yields state-of-the-art performance for action classifica-
tion.

65.8.2 Main points

<m:note/ >

65.9 Do Deep Nets Really Need to be Deep? [15]
65.9.1 Original Abstract

Currently, deep neural networks are the state of the art on problems such as
speech recognition and computer vision. In this extended abstract, we show
that shallow feed-forward networks can learn the complex functions previously
learned by deep nets and achieve accuracies previously only achievable with
deep models. Moreover, in some cases the shallow neural nets can learn these
deep functions using a total number of parameters similar to the original
deep model. We evaluate our method on the TIMIT phoneme recognition
task and are able to train shallow fully-connected nets that perform similarly
to complex, well-engineered, deep convolutional architectures. Qur success
i training shallow neural nets to mimic deeper models suggests that there
probably exist better algorithms for training shallow feed-forward nets than
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those currently available.

65.10 Intriguing properties of neural networks [240]
65.10.1 Original Abstract

Deep neural networks are highly expressive models that have recently achieved
state of the art performance on speech and visual recognition tasks. While
their expressiveness is the reason they succeed, it also causes them to learn
uninterpretable solutions that could have counter-intuitive properties. In this
paper we report two such properties. First, we find that there is no distinction
between individual high level units and random linear combinations of high
level units, according to various methods of unit analysis. It suggests that it
is the space, rather than the individual units, that contains of the semantic
information in the high layers of neural networks. Second, we find that deep
neural networks learn input-output mappings that are fairly discontinuous to
a significant extend. We can cause the network to misclassify an image by ap-
plying a certain imperceptible perturbation, which is found by maximizing the
network’s prediction error. In addition, the specific nature of these perturba-
tions is not a random artifact of learning: the same perturbation can cause
a different network, that was trained on a different subset of the dataset, to
misclassify the same input.

65.11 3D convolutional neural networks for human ac-
tion recognition. [119]

65.11.1 Original Abstract

We consider the automated recognition of human actions in surveillance
videos. Most current methods build classifiers based on complex handcrafted
features computed from the raw inputs. Convolutional neural networks (CNNs)
are a type of deep model that can act directly on the raw inputs. However,
such models are currently limited to handling 2D inputs. In this paper, we
develop a novel 3D CNN model for action recognition. This model extracts
features from both the spatial and the temporal dimensions by performing 3D
convolutions, thereby capturing the motion information encoded in multiple
adjacent frames. The developed model generates multiple channels of infor-
mation from the input frames, and the final feature representation combines
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information from all channels. To further boost the performance, we propose
reqularizing the outputs with high-level features and combining the predictions
of a variety of different models. We apply the developed models to recognize
human actions in the real-world environment of airport surveillance videos,
and they achieve superior performance in comparison to baseline methods.

65.11.2 Main points
e Participated on TRECVID 2009

e Videos with static camera
e 3D - CNN

— input 7@Q60x40
— Hardwired 33@60x40
x Gray

* gradient-x
x gradient-y
x opticalflow-x
x opticalflow-y

— Convolution 7x7x3
— C2 = 23*2@54x34
— Subsampling 2x2
— S3 = 23*2@27x17
— Convolution 7x6x3
— C4 = 13*6@21x12
— Subsampling 3x3
— SH = 13*6Q7x4

— Convolution 7x4
— C6 = 128@7x4

— Fully connected layer

e Datasets

162



— Surveillance Event Detection
— Action classes

* CellToEar
x ObjectPut

* Pointing

* method
- Humman detector to locate human head

- Create a bounding box with 7 time frames and 60x40
spatial pixels

* Best results on three tasks
— KTH

x Comptetitive performance

65.12 Learned versus Hand-Designed Feature Represen-
tations for 3d Agglomeration [2§]

65.12.1 Original Abstract

For image recognition and labeling tasks, recent results suggest that machine
learning methods that rely on manually specified feature representations may
be outperformed by methods that automatically derive feature representations
based on the data. Yet for problems that involve analysis of 3d objects, such as
mesh segmentation, shape retrieval, or neuron fragment agglomeration, there
remains a strong reliance on hand-designed feature descriptors. In this pa-
per, we evaluate a large set of hand-designed 3d feature descriptors alongside
features learned from the raw data using both end-to-end and unsupervised
learning techniques, in the context of agglomeration of 3d neuron fragments.
By combining unsupervised learning techniques with a novel dynamic pool-
ing scheme, we show how pure learning-based methods are for the first time
competitive with hand-designed 3d shape descriptors. We investigate data
augmentation strategies for dramatically increasing the size of the training
set, and show how combining both learned and hand-designed features leads
to the highest accuracy.
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65.13 Comparison of Artificial Neural Networks ; and
training an Extreme Learning Machine [246]

65.13.1 Original Abstract

None

65.14 Mitosis detection in breast cancer histology im-
ages with deep neural networks [42]

65.14.1 Original Abstract

We use deep maz-pooling convolutional neural networks to detect mitosis in
breast histology images. The networks are trained to classify each pixel in the
images, using as context a patch centered on the pizel. Simple postprocessing
15 then applied to the network output. Our approach won the ICPR 2012 mi-
tosis detection competition, outperforming other contestants by a significant
margin.

65.14.2 Main points

65.15 Action and event recognition with Fisher vectors
on a compact feature set [192]

65.15.1 Original Abstract

Action recognition in uncontrolled video is an important and challenging
computer vision problem. Recent progress in this area is due to new local fea-
tures and models that capture spatio-temporal structure between local features,
or human-object interactions. Instead of working towards more complex mod-
els, we focus on the low-level features and their encoding. We evaluate the use
of Fisher vectors as an alternative to bag-of-word histograms to aggregate a
small set of state-of-the-art low-level descriptors, in combination with linear
classifiers. We present a large and varied set of evaluations, considering (i)
classification of short actions in five datasets, (ii) localization of such actions
in feature-length movies, and (i) large-scale recognition of complex events.
We find that for basic action recognition and localization MBH features alone
are enough for state-of-the-art performance. For complex events we find that
SIFT and MFCC features provide complementary cues. On all three problems
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we obtain state-of-the-art results, while using fewer features and less complex
models.

65.16 Semi-supervised Learning of Feature Hierarchies
for Object Detection in a Video [269)]

65.16.1 Original Abstract

We propose a novel approach to boost the performance of generic object
detectors on wvideos by learning video-specific features using a deep neural
network. The insight behind our proposed approach is that an object appear-
ing in different frames of a video clip should share similar features, which
can be learned to bwild better detectors. Unlike many supervised detector
adaptation or detection-by-tracking methods, our method does not require
any extra annotations or utilize temporal correspondence. We start with the
high-confidence detections from a generic detector, then iteratively learn new
video-specific features and refine the detection scores. In order to learn dis-
criminative and compact features, we propose a new feature learning method
using a deep neural network based on auto en-coders. It differs from the ex-
isting unsupervised feature learning methods in two ways: first it optimizes
both discriminative and generative properties of the features simultaneously,
which gives our features better discriminative ability, second, our learned
features are more compact, while the unsupervised feature learning methods
usually learn a redundant set of over-complete features. Extensive experimen-
tal results on person and horse detection show that significant performance
improvement can be achieved with our proposed method.

65.17 MediaMill at TRECVID 2013: Searching Con-
cepts, Objects, Instances and Events in Video
[229]

65.17.1 Original Abstract

In this paper we summarize our TRECVID 2013 video retrieval experiments.
The MediaMill team participated in four tasks: concept detection, object lo-
calization, in- stance search, and event recognition. For all tasks the starting
point is our top-performing bag-of-words system of TRECVID 2008-2012,
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which uses color SIFT descrip- tors, average and difference coded into code-
books with spa- tial pyramids and kernel-based machine learning. New this
year are concept detection with deep learning, concept detec- tion without an-
notations, object localization using selective search, instance search by rerank-
ing, and event recognition based on concept vocabularies. QOur experiments
focus on es- tablishing the video retrieval value of the innovations. The 2013
edition of the TRECVID benchmark has again been a fruitful participation for
the MediaMill team, resulting in the best result for concept detection, concept
detection with- out annotation, object localization, concept pair detection, and
visual event recognition with few examples.

65.18 TRECVID 2013 - An Introduction to the Goals
, Tasks , Data , Evaluation Mechanisms , and
Metrics [193]

65.18.1 Original Abstract

None

65.19 Quaero at TRECVid 2013 : Semantic Indexing
[212]

65.19.1 Original Abstract

The Quaero group is a consortium of French and German organizations
working on Multimedia Indexing and Retrieval. LIG, INRIA and KIT partic-
ipated to the semantic indexing task and LIG participated to the organization
of this task. This paper describes these participations. For the semantic in-
dexing task, our approach uses a siz-stages processing pipelines for computing
scores for the likelithood of a video shot to contain a target concept. These
scores are then used for producing a ranked list of images or shots that are
the most likely to contain the target concept. The pipeline is composed of the
following steps: descriptor extraction, descriptor optimization, classi cation,
fusion of descriptor variants, higher-level fusion, and re-ranking. We used
a number of di erent descriptors and a hierarchical fusion strategy. We also
used conceptual feedback by adding a vector of classi cation score to the pool
of descriptors. The best Quaero run has a Mean Inferred Average Precision
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of 0.2692, which ranked us 3rd out of 16 participants. We also organized the
TRECVwd SIN 2012 collaborative annotation.

65.20 Understanding Deep Architectures using a Re-
cursive Convolutional Network [57]

65.20.1 Original Abstract

A key challenge in designing convolutional network models is sizing them ap-

propriately. Many factors are involved in these decisions, including number
of layers, feature maps, kernel sizes, etc. Complicating this further is the fact
that each of these influence not only the numbers and dimensions of the acti-
vation units, but also the total number of parameters. In this paper we focus
on assessing the independent contributions of three of these linked variables:
The numbers of layers, feature maps, and parameters. To accomplish this,
we employ a recursive convolutional network whose weights are tied between
layers; this allows us to vary each of the three factors in a controlled setting.
We find that while increasing the numbers of layers and parameters each have
clear benefit, the number of feature maps (and hence dimensionality of the
representation) appears ancillary, and finds most of its benefit through the
introduction of more weights. Our results (i) empirically confirm the notion
that adding layers alone increases computational power, within the context
of convolutional layers, and (ii) suggest that precise sizing of convolutional
feature map dimensions is itself of little concern; more attention should be
paid to the number of parameters in these layers instead.

65.20.2 Main points

e Deeper models are preferred over shallow ones

e Performance is independent of the number of units, when depth and
parameters remains constant

e Recurrent Neural Network:

— Convolutional architecture
— all layers same number of feature maps

— weights are tied across layers
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— ReLU in all layers

— Max-pooling with non-overlaping windows

65.21 Visualizing and Understanding Convolutional Net-
works [272]

65.21.1 Original Abstract

Large Convolutional Network models have recently demonstrated impressive
classification performance on the ImageNet benchmark. However there is
no clear understanding of why they perform so well, or how they might be
improved. In this paper we address both issues. We introduce a novel visu-
alization technique that gives insight into the function of intermediate fea-
ture layers and the operation of the classifier. We also perform an ablation
study to discover the performance contribution from different model layers.
This enables us to find model architectures that outperform Krizhevsky et.al.
on the ImageNet classification benchmark. We show our ImageNet model
generalizes well to other datasets: when the softmax classifier is retrained,
it convincingly beats the current state-of-the-art results on Caltech-101 and
Caltech-256 datasets.

65.22 Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps
[225]

65.22.1 Original Abstract

This paper addresses the visualisation of image classification models, learnt
using deep Convolutional Networks (ConvNets). We consider two visuali-
sation techniques, based on computing the gradient of the class score with
respect to the input tmage. The first one generates an image, which max-
imises the class score [Erhan et al., 2009/, thus visualising the notion of
the class, captured by a ConuNet. The second technique computes a class
saliency map, specific to a given image and class. We show that such maps
can be employed for weakly supervised object segmentation using classification
ConuNets. Finally, we establish the connection between the gradient-based
ConvNet visualisation methods and deconvolutional networks [Zeiler et al.,

2013,
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65.23 Challenges in Representation Learning: A report
on three machine learning contests [85]

65.23.1 Original Abstract

The ICML 2013 Workshop on Challenges in Representation Learning fo-
cused on three challenges: the black box learning challenge, the facial ex-
pression recognition challenge, and the multimodal learning challenge. We
describe the datasets created for these challenges and summarize the results
of the competitions. We provide suggestions for organizers of future chal-
lenges and some comments on what kind of knowledge can be gained from
machine learning competitions.

65.24 Caffe: An open source convolutional architecture
for fast feature embeding. [120]

65.24.1 Original Abstract

None

65.25 Deep Fisher networks for large-scale image clas-
sification [2206]

65.25.1 Original Abstract

As massively parallel computations have become broadly available with mod-
ern GPUs, deep architectures trained on very large datasets have risen in
popularity. Discriminatively trained convolutional neural networks, in par-
ticular, were recently shown to yield state-of-the-art performance in challeng-
ing 1mage classification benchmarks such as ImageNet. However, elements
of these architectures are similar to standard hand-crafted representations
used in computer vision. In this paper, we explore the extent of this analogy,
proposing a version of the state-of-the-art Fisher vector image encoding that
can be stacked in multiple layers. This architecture significantly improves
on standard Fisher vectors, and obtains competitive results with deep convo-
lutional networks at a significantly smaller computational cost. Our hybrid
architecture allows us to measure the performance improvement brought by
a deeper image classification pipeline, while staying in the realms of conven-
tional SIF'T features and F'V encodings.
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65.26 Human vs. Computer in Scene and Object Recog-
nition [29]
65.26.1 Original Abstract

Several decades of research in computer and primate vision have resulted in
many models (some specialized for one problem, others more general) and
inwvaluable experimental data. Here, to help focus research efforts onto the
hardest unsolved problems, and bridge computer and human vision, we de-
fine a battery of 5 tests that measure the gap between human and machine
performances in several dimensions (generalization across scene categories,
generalization from images to edge maps and line drawings, invariance to ro-
tation and scaling, local/global information with jumbled images, and object
recognition performance). We measure model accuracy and the correlation
between model and human error patterns. Experimenting over 7 datasets,
where human data is available, and gauging 14 well-established models, we
find that none fully resembles humans in all aspects, and we learn from each
test which models and features are more promising in approaching humans in
the tested dimension. Across all tests, we find that models based on local edge
histograms consistently resemble humans more, while several scene statistics
or "qgist" models do perform well with both scenes and objects. While com-
puter vision has long been inspired by human vision, we believe systematic
efforts, such as this, will help better identify shortcomings of models and find
new paths forward.

65.26.2 Main points
66 2014

66.1 Simultaneous Detection and Segmentation [93]
66.1.1 Original Abstract

We aim to detect all instances of a category in an image and, for each
instance, mark the pizels that belong to it. We call this task Simultaneous
Detection and Segmentation (SDS). Unlike classical bounding box detection,
SDS requires a segmentation and not just a box. Unlike classical semantic
segmentation, we require individual object instances. We build on recent work
that uses convolutional neural networks to classify category-independent re-
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gion proposals (R-CNN [16]), introducing a novel architecture tailored for
SDS. We then use category-specific, top-down figure-ground predictions to
refine our bottom-up proposals. We show a 7 point boost (16

66.1.2 Main points

Segment one instance in a given image

Work on top of region proposal R-CNN
Dataset MSRC

Mark each pixel belonging to the detected instance

Algorithm: Simultaneous Detection and Segmentation

— Proposal generation: 2.000 region candidates using MCG

— Feature extraction: Extract features with pretrained CNN (Alexnet)
with two paths, with and without background.

+ A : Extract CNN features from box and another with back-
ground masked

x B : Second CNN is finetuned croping the box and removing
background

* C : Finetune both networks, one with the background and the
other without

x C + ref : refining the regions obtained from C
— Region classification: linear SVM using fc6
— Region refinement: non-maximum suppression on candidates and
CNN for refinement
e Results
— SegDPM detection PASCAL VOC2010: C-ref increases mean AP
from 31.3 to 50.3

— Pixel IU on VOC11: advance state-of-the-art about 5 points 10%
relative
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66.2 Part-based R-CNNs for fine-grained category de-
tection [274]

66.2.1 Original Abstract

Semantic part localization can facilitate fine-grained categorization by ex-
plicitly isolating subtle appearance differences associated with specific object
parts. Methods for pose-normalized representations have been proposed, but
generally presume bounding box annotations at test time due to the difficulty
of object detection. We propose a model for fine-grained categorization that
overcomes these limitations by leveraging deep convolutional features com-
puted on bottom-up region proposals. Our method learns whole-object and
part detectors, enforces learned geometric constraints between them, and pre-
dicts a fine-grained category from a pose-normalized representation. Fxper-
iments on the Caltech-UCSD bird dataset confirm that our method outper-
forms state-of-the-art fine-grained categorization methods in an end-to-end
evaluation without requiring a bounding box at test time.

66.2.2 Main points

e fine-grained category detection: detection and classification intra-class
(Example: face recognition, dog breeds, and others)

e Got state-of-the-art without bounding box at test time

e Other approaches use Deformable Parts Model (DPM) plus engineered
features (Example: HOG)

e Use of R-CNN to localize objects and generalizes to localize parts

e Use of Alexnet CNN pretrained with ImageNet and finetuned for de-
tection

— Substitute last fc8 1000 to 200

— learning rate global = original:10

— learning rate of fc8 globalx10

— Decrease global by 10 during learning

e They add learned non-parametric geometric constraints

172



— Mixture of Gaussians with 4 components and o = 0.1
— K nearest neighbors with K = 20
— All hyperparameters found by 5 folds cross-validation

Use of the fc6 to train the R-CNN object and part detector

Use the pool5 for the geometric constraints

Results

— Caltech-UCSD bird with K-nearest Finetuning increases from 68.1%
to 76%

— Without bounding box at test time from 66% to 73.89%

conclusion

— For fine-grained discrimination is very useful pose and locality
information

— Future exploration on automatically discover and model parts as
latent variables

66.3 Analyzing the performance of multilayer neural
networks for object recognition [4]

66.3.1 Original Abstract

In the last two years, convolutional neural networks (CNNs) have achieved an
impressive suite of results on standard recognition datasets and tasks. CNN-
based features seem poised to quickly replace engineered representations, such
as SIFT and HOG. However, compared to SIFT and HOG, we understand
much less about the nature of the features learned by large CNNs. In this
paper, we experimentally probe several aspects of CNN feature learning in
an attempt to help practitioners gain useful, evidence-backed intuitions about
how to apply CNNs to computer vision problems.

66.3.2 Main points
e Analysis of CNN (Alexnet)
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e Findings

— Effects of fine-tuning and pre-training;:

x Supervised pre-training is beneficial

* Fine-tuning seems more significant for fc6 and fc7
— ImageNet Pre-training does not Overfit:

x pre-training time increases performance, and seems to not in-
crease generalization error

* For generalization quite quick 15k - 50k iterations (80%-90%
of final performance)

Grandmother cells and distributed codes:

x there are some “grandmother cells” for bicycle, person, cars
and cats (from 15 to 30 filters)

* but most of the features are distributed (from 30 to 40 filters)
— Importance of feature location and magnitude:
* CNN encoding:

- Filters with non-zero response
- Magnitude of the response
- Spatial layout
x spatial location critical for detection, but not for classification

* Binarization gives similar results on fc6 and fc7 but not in
early conv layers

x Loosing spatial information drops performance on detection
e Datasets

— PASCAL VOC 2007
— SUN dataset
— ImageNet (pretraining)
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66.4 Rich feature hierarchies for accurate object detec-
tion and semantic segmentation [79]

66.4.1 Original Abstract

Object detection performance, as measured on the canonical PASCAL VOC
dataset, has plateaued in the last few years. The best-performing methods
are complexr ensemble systems that typically combine multiple low-level im-
age features with high-level context. In this paper, we propose a simple and
scalable detection algorithm that improves mean average precision (mAP) by
more than 30

66.4.2 Main points
e Region proposals using CNN (R-CNN)
e Object detection in three steps:

Region proposal using selective search

Feature extraction using Alexnet for 4096-dimentional feature vec-
tors in each region (Caffe implementation)

Classification using one-vs-all linear SVMs
e Pretraining Alexnet architecture

— Changed last softmax layer from 1000 to 21 size (ILSVRC 2012
vs PASCAL)

— Fine-tuning with PASCAL
— mini-batch 128 (32 positive vs 96 background)

e Results on PASCAL VOC 2010-12

— Compared to UVA system from Uijlings et. al. “Selective search
for object recognition” Uijlings2013

— Improved from 35.1% to 53.7% mAP
e Analysis of pretrained Alexnet

— FC6 generalizes better than FC7
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— Good results if remove FC6 and FC7 (that only keeps 6% of the
parameters)

e “[...] classical tools from computer vision and deep learning |...]| the
two are natural and inevitable partners.”

66.5 Caffe: Convolutional architecture for fast feature
embedding [121]

66.5.1 Original Abstract

Caffe provides multimedia scientists and practitioners with a clean and mod-

ifiable framework for state-of-the-art deep learning algorithms and a collec-
tion of reference models. The framework is a BSD-licensed C++ library with
Python and MATLAB bindings for training and deploying general-purpose
convolutional neural networks and other deep models efficiently on commod-
ity architectures. Caffe fits industry and internet-scale media needs by CUDA
GPU computation, processing over 40 million images a day on a single K40 or
Titan GPU (=~ 2.5 ms per image). By separating model representation from
actual implementation, Caffe allows experimentation and seamless switching
among platforms for ease of development and deployment from prototyping
machines to cloud environments. Caffe is maintained and developed by the
Berkeley Vision and Learning Center (BVLC) with the help of an active
community of contributors on GitHub. It powers ongoing research projects,
large-scale industrial applications, and startup prototypes in wvision, Speech,
and multimedia.

66.5.2 Main points
Comment: Tech report for the Caffe software at http://github.com/BVLC/Caffe/

66.6 Efficient Object Localization Using Convolutional
Networks [245]

66.6.1 Original Abstract

Recent state-of-the-art performance on human-body pose estimation has been
achieved with Deep Convolutional Networks (ConvNets). Traditional Con-
vNet architectures include pooling layers which reduce computational require-
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ments, introduce invariance and prevent over-training. These benefits of pool-
ing come at the cost of reduced localization accuracy. We introduce a novel
architecture which includes an efficient ’position refinement’ model that is
trained to estimate the joint offset location within a small region of the im-
age. This refinement model is jointly trained in cascade with a state-of-the-art
ConvNet model to achieve improved accuracy in human joint location esti-
mation. We show that the variance of our detector approaches the variance
of human annotations on the FLIC dataset and outperforms all existing ap-
proaches on the MPII-human-pose dataset.

66.6.2 Main points

Comment: 8 pages with 1 page of citations

66.7 Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition [97]

66.7.1 Original Abstract

Ezisting deep convolutional neural networks (CNNs) require a fized-size (e.g.,
224x224) input image. This requirement is "artificial” and may reduce the
recognition accuracy for the images or sub-images of an arbitrary size/scale.
In this work, we equip the networks with a more principled pooling strat-
eqy, "spatial pyramid pooling”, to eliminate the above requirement. The new
network structure, called SPP-net, can generate a fixed-length representation
regardless of image size/scale. Pyramid pooling is also robust to object de-
formations. With these advantages, SPP-net should in general improve all
CNN-based 1mage classification methods. On the ImageNet 2012 dataset, we
demonstrate that SPP-net boosts the accuracy of a variety of published CNN
architectures despite their different designs. On the Pascal VOC 2007 and
Caltech101 datasets, SPP-net achieves state-of-the-art classification results
using a single full-image representation and no fine-tuning. The power of
SPP-net is also significant in object detection. Using SPP-net, we compute
the feature maps from the entire image only once, and then pool features
in arbitrary regions (sub-images) to generate fized-length representations for
training the detectors. This method avoids repeatedly computing the con-
volutional features. In processing test images, our method computes convo-
lutional features 30-170x faster than the recent and most accurate method
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R-CNN (and 24-64z faster overall), while achieving better or comparable ac-
curacy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2014, our methods rank 2 in object detection and 3 in
image classification among all 38 teams. This manuscript also introduces the
improvement made for this competition.

66.7.2 Main points

Comment: This manuscript (v2) is an extended technical report of our
ECCV 2014 paper. This manuscript introduces the details of our methods
for ILSVRC 2014 (rank 2 in DET and 3 in CLS)

66.8 Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting [233]

66.8.1 Original Abstract

Deep neural nets with a large number of parameters are very powerful ma-
chine learning systems. However, overfitting is a serious problem in such
networks. Large networks are also slow to use, making it difficult to deal
with overfitting by combining the predictions of many different large neural
nets at test time. Dropout is a technique for addressing this problem. The
key idea is to randomly drop units (along with their connections) from the
neural network during training. This prevents units from co-adapting too
much. During training, dropout samples from an exponential number of dif-
ferent “thinned” networks. At test time, it is easy to approximate the effect
of averaging the predictions of all these thinned networks by simply using a
single unthinned network that has smaller weights. This significantly reduces
overfitting and gives major improvements over other reqularization methods.
We show that dropout improves the performance of neural networks on super-
vised learning tasks in vision, speech recognition, document classification and
computational biology, obtaining state-of-the-art results on many benchmark
data sets.
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66.9 DeepFace: Closing the Gap to Human-Level Per-
formance in Face Verification [242]

66.9.1 Original Abstract

None

66.10 Return of the Devil in the Details: Delving Deep
into Convolutional Nets [40]

66.10.1 Original Abstract

The latest generation of Convolutional Neural Networks (CNN) have achieved
impressive results in challenging benchmarks on image recognition and object
detection, significantly raising the interest of the community in these methods.
Nevertheless, it is still unclear how different CNN methods compare with each
other and with previous state-of-the-art shallow representations such as the
Bag-of-Visual-Words and the Improved Fisher Vector. This paper conducts a
rigorous evaluation of these new techniques, exploring different deep architec-
tures and comparing them on a common ground, identifying and disclosing
important implementation details. We identify several useful properties of
CNN-based representations, including the fact that the dimensionality of the
CNN output layer can be reduced significantly without having an adverse ef-
fect on performance. We also identify aspects of deep and shallow methods
that can be successfully shared. A particularly significant one is data augmen-
tation, which achieves a boost in performance in shallow methods analogous
to that observed with CNN-based methods. Finally, we are planning to pro-
vide the configurations and code that achieve the state-of-the-art performance
on the PASCAL VOC Classification challenge, along with alternative config-
urations trading-off performance, computation speed and compactness.

66.11 Deep Learning in Neural Networks: An Overview
[215]

66.11.1 Original Abstract

In recent years, deep artificial neural networks (including recurrent ones)
have won numerous contests in pattern recognition and machine learning.
This historical survey compactly summarises relevant work, much of it from
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the previous millennium. Shallow and deep learners are distinguished by the
depth of their credit assignment paths, which are chains of possibly learnable,
causal links between actions and effects. I review deep supervised learning
(also recapitulating the history of backpropagation), unsupervised learning,
reinforcement learning

evolutionary computation, and indirect search for short programs encoding
deep and large networks.

66.12 Deep Learning: Methods and Applications [?]
66.12.1 Original Abstract

This book is aimed to provide an overview of general deep learning method-
ology and its applications to a variety of signal and information processing
tasks. The application areas are chosen with the following three criteria:
1) expertise or knowledge of the authors; 2) the application areas that have
already been transformed by the successful use of deep learning technology,
such as speech recognition and computer vision; and 3) the application areas
that have the potential to be impacted significantly by deep learning and that
have gained concentrated research efforts, including natural language and text
processing, information retrieval, and multimodal information processing em-
powered by multi-task deep learning. In Chapter 1, we provide the background
of deep learning, as intrinsically connected to the use of multiple layers of
nonlinear transformations to derive features from the sensory signals such
as speech and visual tmages. In the most recent literature, deep learning is
embodied also as representation learning, which involves a hierarchy of fea-
tures or concepts where higher-level representations of them are defined from
lower-level ones and where the same lower-level representations help to define
higher-level ones. In Chapter 2, a brief historical account of deep learning is
presented. In particular, selected chronological development of speech recog-
nition 1s used to illustrate the recent impact of deep learning that has become
a dominant technology in speech recognition industry within only a few years
since the start of a collaboration between academic and industrial researchers
in applying deep learning to speech recognition. In Chapter 3, a three-way
classification scheme for a large body of work in deep learning is developed.
We classify a growing number of deep learning techniques into unsupervised,
supervised, and hybrid categories, and present qualitative descriptions and a
literature survey for each category. From Chapter 4 to Chapter 6, we discuss
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in detail three popular deep networks and related learning methods, one in
each category. Chapter 4 is devoted to deep autoencoders as a prominent
example of the unsupervised deep learning techniques. Chapter 5 gives a ma-
jor example in the hybrid deep network category, which is the discriminative
feed-forward neural network for supervised learning with many layers initial-
1zed using layer-by-layer generative, unsupervised pre-training. In Chapter
6, deep stacking networks and several of the variants are discussed in detail,
which exemplify the discriminative or supervised deep learning techniques in
the three-way categorization scheme. In Chapters 7-11, we select a set of
typical and successful applications of deep learning in diverse areas of signal
and information processing and of applied artificial intelligence. In Chapter
7, we review the applications of deep learning to speech and audio processing,
with emphasis on speech recognition organized according to several prominent
themes. In Chapters 8, we present recent results of applying deep learning
to language modeling and natural language processing. Chapter 9 is devoted
to selected applications of deep learning to information retrieval including
Web search. In Chapter 10, we cover selected applications of deep learn-
ing to image object recognition in computer vision. Selected applications of
deep learning to multi-modal processing and multi-task learning are reviewed
in Chapter 11. Finally, an epilogue is given in Chapter 12 to summarize
what we presented in earlier chapters and to discuss future challenges and
directions.

66.13 Learning Multi-modal Latent Attributes |71
66.13.1 Original Abstract

The rapid development of social media sharing has created a huge demand for
automatic media classification and annotation techniques. Attribute learn-
ing has emerged as a promising paradigm for bridging the semantic gap and
addressing data sparsity via transferring attribute knowledge in object recog-
nition and relatively simple action classification. In this paper, we address
the task of attribute learning for understanding multimedia data with sparse
and incomplete labels. In particular, we focus on videos of social group ac-
tivities, which are particularly challenging and topical examples of this task
because of their multimodal content and complex and unstructured nature rel-
ative to the density of annotations. To solve this problem, we 1) introduce a
concept of semilatent attribute space, expressing user-defined and latent at-
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tributes in a unified framework, and 2) propose a novel scalable probabilistic
topic model for learning multimodal semilatent attributes, which dramatically
reduces requirements for an erhaustive accurate attribute ontology and expen-
sive annotation effort. We show that our framework is able to exploit latent
attributes to outperform contemporary approaches for addressing a variety of
realistic multimedia sparse data learning tasks including: multitask learning,
learning with label noise, N-shot transfer learning, and importantly zero-shot
learning.

66.14 On the saddle point problem for non-convex op-
timization [195]
66.14.1 Original Abstract

A central challenge to many fields of science and engineering involves mini-
mizing non-convex error functions over continuous, high dimensional spaces.
Gradient descent or quasi-Newton methods are almost ubiquitously used to
perform such mainimizations, and it is often thought that a main source of
difficulty for the ability of these local methods to find the global minimum
s the proliferation of local minima with much higher error than the global
minimum. Here we argue, based on results from statistical physics, random
matriz theory, and neural network theory, that a deeper and more profound
difficulty originates from the proliferation of saddle points, not local minima,
especially in high dimensional problems of practical interest. Such saddle
points are surrounded by high error plateaus that can dramatically slow down
learning, and give the illusory impression of the existence of a local minimum.
Motivated by these arguments, we propose a new algorithm, the saddle-free
Newton method, that can rapidly escape high dimensional saddle points, un-
like gradient descent and quasi-Newton methods. We apply this algorithm to
deep neural network training, and provide preliminary numerical evidence for
its superior performance.
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66.15 Feature selection and hierarchical classifier design
with applications to human motion recognition

[68]
66.15.1 Original Abstract

The performance of a classifier is affected by a number of factors includ-
ing classifiertype, the input features and the desired output. This thesis
examines the impact of featureselection and classification problem division
on classification accuracy and complexity. Proper feature selection can reduce
classifier size and improve classifier performanceby minimizing the impact of
noisy, redundant and correlated features. Noisy features cancause false asso-
ciation between the features and the classifier output. Redundant andcorre-
lated features increase classifier complexity without adding additional infor-
mation. Qutput selection or classification problem division describes the divi-
sion of a large clas-sification problem into a set of smaller problems. Problem
division can improve accuracyby allocating more resources to more difficult
class divisions and enabling the use of morespecific feature sets for each sub-
problem. The first part of this thesis presents two methods for creating feature-
selected hierarchi-cal classifiers. The feature-selected hierarchical classifica-
tion method jointly optimizes thefeatures and classification tree-design using
genetic algorithms. The multi-modal binarytree (MBT) method performs the
class division and feature selection sequentially and tol-erates misclassifica-
tions in the higher nodes of the tree. This yields a piecewise separationfor
classes that cannot be fully separated with a single classifier. Experiments
show thatthe accuracy of MBT is comparable to other multi-class extensions,
but with lower testtime. Furthermore, the accuracy of MBT 1is significantly
higher on multi-modal data sets. The second part of this thesis focuses on input
feature selection measures. A numberof filter-based feature subset evaluation
measures are evaluated with the goal of assessingtheir performance with re-
spect to specific classifiers. Although there are many featureselection measures
proposed in literature, it is unclear which feature selection measuresare appro-
priate for use with different classifiers. Sixteen common filter-based measures
aretested on 20 real and 20 artificial data sets, which are designed to probe
for specific featureselection challenges. The strengths and weaknesses of each
measure are discussed withrespect to the specific feature selection challenges
in the artificial data sets, correlationwith classifier accuracy and their ability
to identify known informative features. The results indicate that the best filter
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measure 1s classifier-specific. K-nearest neigh-bours classifiers work well with
subset-based RELIEF, correlation feature selection or con-ditional mutual in-
formation maximization, whereas Fisher’s interclass separability criterionand
conditional mutual information mazximization work better for support vector
machines. Based on the results of the feature selection experiments, two new
filter-based measuresare proposed based on conditional mutual information
mazximization, which performs well but cannot identify dependent features in
a set and does not include a check for corre-lated features. Both new measures
explicitly check for dependent features and the secondmeasure also includes a
term to discount correlated features. Both measures correctly iden-tify known
informative features in the artificial data sets and correlate well with classi-
fieraccuracy. The final part of this thesis examines the use of feature selection
for time-series databy using feature selection to determine important individ-
ual time windows or key framesin the series. Time-series feature selection
is used with the MBT algorithm to createclassification trees for time-series
data. The feature selected MBT algorithm is tested ontwo human motion
recognition tasks: full-body human motion recognition from joint angledata
and hand gesture recognition from electromyography data. Results indicate
that thefeature selected MBT is able to achieve high classification accuracy
on the time-series datawhile maintaining a short test time.

66.16 Deep Learning: Methods and Applications [54]
66.16.1 Original Abstract

This book is armed to provide an overview of general deep learning method-
ology and its applications to a variety of signal and information processing
tasks. The application areas are chosen with the following three criteria:
1) expertise or knowledge of the authors; 2) the application areas that have
already been transformed by the successful use of deep learning technology,
such as speech recognition and computer vision; and 3) the application areas
that have the potential to be impacted significantly by deep learning and that
have gained concentrated research efforts, including natural language and text
processing, information retrieval, and multimodal information processing em-
powered by multi-task deep learning. In Chapter 1, we provide the background
of deep learning, as intrinsically connected to the use of multiple layers of
nonlinear transformations to derive features from the sensory signals such
as speech and visual 1tmages. In the most recent literature, deep learning is
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embodied also as representation learning, which involves a hierarchy of fea-
tures or concepts where higher-level representations of them are defined from
lower-level ones and where the same lower-level representations help to define
higher-level ones. In Chapter 2, a brief historical account of deep learning is
presented. In particular, selected chronological development of speech recog-
nition 1s used to illustrate the recent impact of deep learning that has become
a dominant technology in speech recognition industry within only a few years
since the start of a collaboration between academic and industrial researchers
in applying deep learning to speech recognition. In Chapter 3, a three-way
classification scheme for a large body of work in deep learning is developed.
We classify a growing number of deep learning techniques into unsupervised,
supervised, and hybrid categories, and present qualitative descriptions and a
literature survey for each category. From Chapter J to Chapter 6, we discuss
in detail three popular deep networks and related learning methods, one in
each category. Chapter 4 is devoted to deep autoencoders as a prominent
example of the unsupervised deep learning techniques. Chapter 5 gives a ma-
jor example in the hybrid deep network category, which is the discriminative
feed-forward neural network for supervised learning with many layers initial-
ized using layer-by-layer generative, unsupervised pre-training. In Chapter
6, deep stacking networks and several of the variants are discussed in detail,
which exemplify the discriminative or supervised deep learning techniques in
the three-way categorization scheme. In Chapters 7-11, we select a set of
typical and successful applications of deep learning in diverse areas of signal
and information processing and of applied artificial intelligence. In Chapter
7, we review the applications of deep learning to speech and audio processing,
with emphasis on speech recognition organized according to several prominent
themes. In Chapters 8, we present recent results of applying deep learning
to language modeling and natural language processing. Chapter 9 is devoted
to selected applications of deep learning to information retrieval including
Web search. In Chapter 10, we cover selected applications of deep learn-
ing to tmage object recognition in computer vision. Selected applications of
deep learning to multi-modal processing and multi-task learning are reviewed
in Chapter 11. Finally, an epilogue is given in Chapter 12 to summarize
what we presented in earlier chapters and to discuss future challenges and
directions.
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66.17 Large-scale Video Classification with Convolutional
Neural Networks [124]

66.17.1 Original Abstract

Convolutional Neural Networks (CNNs) have been es-tablished as a powerful
class of models for image recog-nition problems. Encouraged by these results,
we pro-vide an extensive empirical evaluation of CNNs on large- scale video
classification using a new dataset of 1 millionYouTube videos belonging to
487 classes. We study mul-tiple approaches for extending the connectivity of
a CNNin time domain to take advantage of local spatio-temporalinformation
and suggest a multiresolution, foveated archi-tecture as a promising way of
speeding up the training. Our best spatio-temporal networks display significant
per-formance improvements compared to strong feature-basedbaselines (55.3

66.17.2 Main points

e Compare different CNN architectures for video classification

e Create a new dataset with 1 million of YouTube sport videos and 487
classes

e They required one month of training

e Multiresolution CNNs: New CNN with low resolution context and high
resolution center
— Context stream: seems to learn color filters

— Fovea stream: learns grayscale features
e Compare with and without pretraining on other dataset UCF-101
e Architectures (increasing spatio-temporal relations)

— Single frame: Classify with one single shot
— Late Fusion: Classify with separate-in-time shots

— Early Fusion: Classify with adjacent shots merging on first con-
volution layer

— Slow Fusion: Classify with adjacent shots progressively mergin in
upper layers
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Results (best models):

— clip Hit, Video Hit, Video Hit topb
— 42.4 60.0 78.5 Single-Frame -+ Multiresolution
— 41.9 60.9 80.2 Slow Fusion

Results on UCF-101 with pretraining:

— 41.3 No pretraining

— 64.1 Fine-tune top layer

— 65.4 Fine-tune top 3 layers
— 62.2 Fine-tune all layers

Conclusions:

— From video classification can be derived that camera movements
deteriorate the predictions

— Single frame gives very good results

Further work:

— Apply some filter for camera movements

— Explore RNN from clip-level into video-level

66.18 Spectral Networks and Deep Locally Connected
Networks on Graphs [33]

66.18.1 Original Abstract

Convolutional Neural Networks are extremely efficient architectures in im-
age and audio recognition tasks, thanks to their ability to exploit the local
translational invariance of signal classes over their domain. In this paper
we consider possi- ble generalizations of CNNs to signals defined on more
general domains without the action of a translation group. In particular, we
propose two constructions, one based upon a hierarchical clustering of the
domain, and another based on the spectrum of the graph Laplacian. We show
through experiments that for low- dimensional graphs it is possible to learn
convolutional layers with a number of parameters independent of the input
size, resulting in efficient deep architectures.
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66.19 Towards Real-Time Image Understanding with
Convolutional Networks [62]

66.19.1 Original Abstract

One of the open questions of artificial computer vision is how to produce good
internal representations of the visual world. What sort of internal represen-
tation would allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination, conforma- tion,
and clutter? More interestingly, how could an artificial vision system learn
appropriate internal representations automatically, the way antmals and hu-
mans seem to learn by simply looking at the world? Another related question
1s that of computational tractability, and more precisely that of computa-
tional effictency. Given a good visual represen- tation, how efficiently can
it be trained, and used to encode new sensorial data. Efficiency has sev-
eral dimensions: power requirements, processing speed, and memory usage.
In this thesis I present three new contributions to the field of computer vi-
sion: (1) a multiscale deep convolutional network architecture to easily cap-
ture long-distance relationships between input variables in image data, (2)
a tree-based algorithm to efficiently explore multiple segmentation can- di-
dates, to produce maximally confident semantic segmentations of images, (3)
a custom dataflow computer architecture optimized for the computation of
convolutional networks, and similarly dense image processing models. All
three contributions were produced with the common goal of getting us closer
to real-time image understanding. Scene parsing consists in labeling each
pizel in an image with the category of the object it belongs to. In the first
part of this thesis, I propose a method that uses a multiscale convolutional
network trained from raw pixels to extract dense feature vectors that encode
regions of multiple sizes centered on each pizel. The method alleviates the
need for engineered features. Inparallel to feature extraction, a tree of seg-
ments is computed from a graph of pixel dissimilarities. The feature vectors
associated with the segments covered by each node in the tree are aggregated
and fed to a classifier which produces an estimate of the distribution of object
categories contained in the segment. A subset of tree nodes that cover the
image are then selected so as to maximize the average “purity” of the class
distributions, hence mazimizing the overall likelihood that each segment con-
tains a single object. The system yields record accuracies on several public
benchmarks. The computation of convolutional networks, and related models
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heavily relies on a set of basic operators that are particularly fit for dedi-
cated hardware implementations. In the second part of this thesis I intro-
duce a scalable dataflow hardware architecture optimized for the computation
of general-purpose vision algorithms—neuFlow —and a dataflow compiler—
luaFlow —that transforms high-level flow-graph representations of these al-
gorithms into machine code for neuFlow. This system was designed with the
goal of providing real-time detection, categorization and localization of objects
i complex scenes, while consuming 10 Watts when implemented on a Xilinx
Virtex 6 FPGA platform, or about ten times less than a lap- top computer,
and producing speedups of up to 100 times in real-world applications (results
from 2011).

66.20 Learning Deep Face Representation [59]
66.20.1 Original Abstract

Face representation is a crucial step of face recognition systems. An optimal

face representation should be discriminative, robust, compact, and very easy-
to-implement. While numerous hand-crafted and learning-based representa-
tions have been proposed, considerable room for improvement is still present.
In this paper, we present a very easy-to-implement deep learning framework
for face representation. Our method bases on a new structure of deep network
(called Pyramid CNN). The proposed Pyramid CNN adopts a greedy-filter-
and-down-sample operation, which enables the training procedure to be very
fast and computation-efficient. In addition, the structure of Pyramid CNN
can naturally incorporate feature sharing across multi-scale face representa-
tions, increasing the discriminative ability of resulting representation. Our
basic network is capable of achieving high recognition accuracy (85.8

66.20.2 Main points

e New deep structure Pyramid CNN
e Labeled Faces in the Wild (LFW)

— > 13.000 faces
— 1680 of the people have two or more distinct photos
— Detected by Viola-Jones detector
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— http://vis-www.cs.umass.edu/lfw/
e State-of-the-art performance on LFW benchmark (97.3%)
e Good face representation

— Identity-preserving: Same person pictures close in feature space

— Abstract and Compact: from high to low dimensionality

— Uniform and Automatic: NO hand-crafted and hard-wired parts
e Pyramid CNN

— ID-preserving Representation Learning: Loss functions measures

distance in output feature space
— Convolutions and Down-sampling
— Deeper give best results, but increases rapidly the training time

— Each CNN own private output layer and gets the input from the
previous shared layer

Only the output of the last level network is used for the represet-
nation

— The rest of the outputs is just for training
e Results

— 164 incorrect predictions

— Some of them are incorrectly labeled

Others are very difficult for humans, because of the age or pose

— On LFW benchmark achieves state-of-the-art and close to human
on croped images

e With ROC curve as a mesure there is an improvement of 0.07-0.12 with
Baseline

e Face recognition does not contemplate affine transformations or per-
spectives,

e Can be difficult to apply in task such as ImageNet, where the object
can be in any place and position
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66.21 OverFeat: Integrated Recognition, Localization
and Detection using Convolutional Networks [220]

66.21.1 Original Abstract

We present an integrated framework for using Convolutional Networks for
classification, localization and detection. We show how a multiscale and slid-
ing window approach can be efficiently implemented within a ConvNet. We
also introduce a novel deep learning approach to localization by learning to
predict object boundaries. Bounding boxes are then accumulated rather than
suppressed in order to increase detection confidence. We show that differ-
ent tasks can be learned simultaneously using a single shared network. This
integrated framework is the winner of the localization task of the ImageNet
Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) and obtained
very competitive results for the detection and classifications tasks. In post-
competition work, we establish a new state of the art for the detection task.
Finally, we release a feature extractor from our best model called OverFeat.

66.21.2 Main points

e Framework for using CNN

— classification
— localization

— detection
e Winner on localization task of ILSVRC2013

ConvNets are trained enterily with the raw pixels

Other approaches for detection and localization

e appling a sliding window over multiples scales
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66.22 LSDA: Large Scale Detection through Adapta-
tion [107]
66.22.1 Original Abstract

A magor challenge in scaling object detection is the difficulty of obtaining
labeled images for large numbers of categories. Recently, deep convolutional
neural networks (CNNs) have emerged as clear winners on object classifica-
tion benchmarks, in part due to training with 1.2M+ labeled classification
images. Unfortunately, only a small fraction of those labels are available for
the detection task. It is much cheaper and easier to collect large quantities
of image-level labels from search engines than it is to collect detection data
and label it with precise bounding boxes. In this paper, we propose Large
Scale Detection through Adaptation (LSDA), an algorithm which learns the
difference between the two tasks and transfers this knowledge to classifiers for
categories without bounding box annotated data, turning them into detectors.
Our method has the potential to enable detection for the tens of thousands of
categories that lack bounding box annotations, yet have plenty of classification
data. Evaluation on the ImageNet LSVRC-2013 detection challenge demon-
strates the efficacy of our approach. This algorithm enables us to produce a
>7.6K detector by using available classification data from leaf nodes in the
ImageNet tree. We additionally demonstrate how to modify our architecture
to produce a fast detector (running at 2fps for the 7.6K detector). Models
and software are available at

66.22.2 Main points

e Converting a classifier into a detector

ImageNet only contains 200 annotated classes for detection

Other approaches Multiple Instance Learning

Take Alexnet change last layer to desired number of classes and finetune

Finetune for detection using also background class

Compute category score as score.ategory—scoreyackground Experiment

e ILSVRC2013 detection dataset
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1.000 images per class

200 categories

vall : 100 categories with bounding box for detection training

val2 : 100 categories for evaluation
Results
e full LSDA 50% relative mAP boost over only classifier
e Classifier only focus on most discriminative parts (Ex: face of an animal)
e After detection finetuning detects all the body
e False positive errors
— localization errors (Loc):

— confusion with background (BG):
— other (Oth): Most of errors because confusion of the class

They released the 7.6K model for detection in lsda.berkeleyvision.org

minimize the gap between classifiers and detectors

66.23 Deformable part models are convolutional neural
networks [80]

66.23.1 Original Abstract

Deformable part models (DPMs) and convolutional neural networks (CNNs)
are two widely used tools for visual recognition. They are typically viewed
as distinct approaches: DPMs are graphical models (Markov random fields),
while CNNs are "black-box" non-linear classifiers. In this paper, we show
that a DPM can be formulated as a CNN, thus providing a novel synthesis
of the two ideas. Our construction involves unrolling the DPM inference al-
gorithm and mapping each step to an equivalent (and at times novel) CNN
layer. From this perspective, it becomes natural to replace the standard image
features used in DPM with a learned feature extractor. We call the resulting
model DeepPyramid DPM and experimentally validate it on PASCAL VOC.
DeepPyramid DPM significantly outperforms DPMs based on histograms of
oriented gradients features (HOG) and slightly outperforms a comparable ver-
sion of the recently introduced R-CNN detection system, while running an
order of magnitude faster.
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66.23.2 Main points

A DPM can be expresed as a CNN

when using the new distance transform pooling that generalizes max
pooling

and maxout units

DeepPyramid DPM takes an image pyramid and produces a pyramid
of object detectors

Instead of using HOG uses a CNN

— from pretrained Alexnet (CNN)

— remove fc6, fc7, fc8 and poolb

— only interested on convb (256 feature channels)

— Each pixel on convb feature map corresponds to 16 pixels in the
original image

Create the image pyramid

— Resize image largest dimension to 1.713 pixels

— Convb sees 108 cells in longest side

— 7 pyramid levels with scale factor 1/sqrt(2)

— total of 25k output cells per image

— For comparison: 1k5 in OverFeat and 250k commonly with HOG

Results

— Convb only fires to certain scales per class

— On the other hand, HOG in all scales

66.24 Do Convnets Learn Correspondence? [160]
66.24.1 Original Abstract

Convolutional neural nets (convnets) trained from massive labeled datasets
have substantially improved the state-of-the-art in image classification and
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object detection. However, visual understanding requires establishing corre-
spondence on a finer level than object category. Given their large pooling
regions and training from whole-image labels, it is not clear that convnets de-
rive their success from an accurate correspondence model which could be used
for precise localization. In this paper, we study the effectiveness of conuvnet
activation features for tasks requiring correspondence. We present evidence
that convnet features localize at a much finer scale than their receptive field
sizes, that they can be used to perform intraclass aligment as well as con-
ventional hand-engineered features, and that they outperform conventional
features in keypoint prediction on objects from PASCAL VOC 2011.

66.25 Two-stream convolutional networks for action recog-
nition in videos [227]

66.25.1 Original Abstract

We investigate architectures of discriminatively trained deep Convolutional
Networks (ConuNets) for action recognition in video. The challenge is to
capture the complementary information on appearance from still frames and
motion between frames. We also aim to incorporate into the network de-
sign aspects of the best performing hand-crafted features. QOur contribution
is three-fold. First, we propose a two-stream ConuvNet architecture which
incorporates spatial and temporal networks. Second, we demonstrate that a
ConvNet trained on multi-frame dense optical flow is able to achieve very good
performance in spite of limited training data. Finally, we show that multi-
task learning, applied to two different action classification datasets, can be
used to increase the amount of training data and improve the performance on
both. Our architecture is trained and evaluated on the standard video actions
benchmarks of UCF-101 and HMDB-51, where it matches the state of the
art. It also exceeds by a large margin previous attempts to use deep nets for
video classification.

66.25.2 Main points

e Action recognition using two paths on a CNN
e First one using only frames

e Second one using optical flow
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e Datasets

— ImageNet ILSVRC-2012 (pretraining)
— UCF-101: 9.5K videos
— HMDB-15: 3.7K videos

e Biological inspiration by two paths on our visual cortex

— Ventral stream performs object recognition

— Dorsal stream recognises motion
e Action recognition approaches commonly use

— High dimensional encodings of spatio-temporal features
— Classification with shallow methods
— Some of the features extracted by:

« Histogram of Oriented Gradients (HOG)
« Histogram of Optical Flow (HOF)

Then features merged with Bag Of Features (BoF)

— Final classification using SVM
state-of-the-art Motion Boundary Histogram (MBH)

— Compensation of camera motion is very important

— Fisher vector encodings (deep version on [220]
e Two methods for merging the two CNN softmax layers

— Averaging their outputs

— Training a multi-class linear SVM
e The two CNN

— Spatial stream ConvNet:

* Individual frames

x It can be pretrained with image datasets (Ex: ImageNet)

— Optical flow ConvNet options:
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x Optical flow stacking: From L frames extract 41 optical flow
input channels

x Trajectory stacking: This follows the optical flows as following
the different objects. -> —> —> -> —>

x Bi-directional optical flow: Like mirroring in images, it is pos-
sible to use Forward and Backward optical flows (data aug-
mentation?)

x Mean flow subtraction: To center the inputs on the non-
linearity center. Accentuated sometimes by camera motion.
They solve this problem subtracting the mean of each dis-
placement, this is less computational costly, but also less pre-
cise

e Multi-task learning

— On top of the CNN two softmax layers are added
— One is only trained for HMDB-51 while the other on UCF-101

e Training

— Random crop

— Random mirroring

— Random RGB jittering

— learning rate: 0.01, 0.001, 0.0001

e Results

— Pretraining with ILSVRC-2012 improves results

— Optical flow in general works better than extracting this informa-
tion from pairs of images

— Temporal and spatial information is complementary
— Augmenting the data is very beneficial

— Pretraining with large amounts of images improves the general-
ization
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66.26 Deep Networks with Internal Selective Attention
through Feedback Connections [234]

66.26.1 Original Abstract

Traditional convolutional neural networks (CNN) are stationary and feed-
forward. They neither change their parameters during evaluation nor use
feedback from higher to lower layers. Real brains, however, do. So does
our Deep Attention Selective Network (dasNet) architecture. DasNet’s feed-
back structure can dynamically alter its convolutional filter sensitivities dur-
ing classification. It harnesses the power of sequential processing to improve
classification performance, by allowing the network to iteratively focus its
internal attention on some of its convolutional filters. Feedback is trained
through direct policy search in a huge million-dimensional parameter space,
through scalable natural evolution strategies (SNES). On the CIFAR-10 and
CIFAR-100 datasets, dasNet outperforms the previous state-of-the-art model
on unaugmented datasets.

66.26.2 Main points

66.27 How transferable are features in deep neural net-
works? [270]

66.27.1 Original Abstract

Many deep neural networks trained on natural images exhibit a curious phe-
nomenon in common: on the first layer they learn features similar to Gabor
filters and color blobs. Such first-layer features appear not to be specific to
a particular dataset or task, but general in that they are applicable to many
datasets and tasks. Features must eventually transition from general to spe-
cific by the last layer of the network, but this transition has not been studied
extensively. In this paper we experimentally quantify the generality versus
specificity of neurons in each layer of a deep convolutional neural network
and report a few surprising results. Transferability is negatively affected by
two distinct issues: (1) the specialization of higher layer neurons to their
original task at the expense of performance on the target task, which was ex-
pected, and (2) optimization difficulties related to splitting networks between
co-adapted neurons, which was not expected. In an example network trained
on ImageNet, we demonstrate that either of these two issues may dominate,
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depending on whether features are transferred from the bottom, middle, or
top of the network. We also document that the transferability of features de-
creases as the distance between the base task and target task increases, but
that transferring features even from distant tasks can be better than using
random features. A final surprising result is that initializing a network with
transferred features from almost any number of layers can produce a boost to
generalization that lingers even after fine-tuning to the target dataset.

66.28 Histograms of pattern sets for image classification
and object recognition [256]

66.28.1 Original Abstract

This paper introduces a novel image representation capturing feature de-
pendencies through the mining of meaningful combinations of visual features.
This representation leads to a compact and discriminative encoding of images
that can be used for image classification, object detection or object recogni-
tion. The method relies on (i) multiple random projections of the input space
followed by local binarization of projected histograms encoded as sets of items,
and (i) the representation of images as Histograms of Pattern Sets (HoPS).
The approach is validated on four publicly available datasets (Daimler Pedes-
trian, Ozford Flowers, KTH Texture and PASCAL VOC2007), allowing com-
parisons with many recent approaches. The proposed image representation
reaches state-of-the-art performance on each one of these datasets.

66.28.2 Main points

e Pattern mining

dimentionality reduction

feature selection

feature augmentation

e Common image representations with real-valued histograms

— Local Binary Patterns (LBP)
— Histograms of Oriented Gradients (HOG)
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— Bag-of-Words (BoW)
e Authors propose Histograms of Pattern Sets (HoPS).

— Extract some features from the images, for example BoW.
— Randomly select N features (in this case visual words)
— Binarize the selected feature histograms

x The top-K selected features with higher occurrencies are set
to one.

x The rest is set to zero.

x Group the features with value 1 as a transaction of size K

— Repeat the random selection P times and create one transaction
at each step

— Apply data mining techniques to select the most discriminative
transactions, for example:

* Frequent Patterns (FPs) [5]
* Jumping Emerging Patterns (JEPs) [50]
- positive JEPs: random projections that are found only in
the positive images
- negative JEPs: random projections that are found onluy
in the negative images

— The final representaiton is a histogram of 2xP bins where P are
the total number of projections and one positive JEP and negative
JEP per projection

— Train a classifier with this representation
— Results

x A linear SVM trained with HoPS improved the performance
on the original features from 68.8 to 74.1

* A RBF-Chi?trainedwithHoPsimprovedtheper formanceontheoriginal features from71
+ Image classification: state-of-the-art in Oxford-Flowers 17 dataset

— Texture recognition: good results on KTH-TIPS2a

— Object detection: state-of-the-art in PASCAL VOC 2007 dataset

— Pedestrian recognition: state-of-the-art in pedestrian recognition
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66.29 Recurrent Models of Visual Attention [176]
66.29.1 Original Abstract

Applying convolutional neural networks to large images is computationally
expensive because the amount of computation scales linearly with the number
of image pizels. We present a novel recurrent neural network model that is
capable of extracting information from an image or video by adaptively select-
ing a sequence of regions or locations and only processing the selected regions
at high resolution. Like convolutional neural networks, the proposed model
has a degree of translation invariance built-in, but the amount of computation
it performs can be controlled independently of the input image size. While
the model is non-differentiable, it can be trained using reinforcement learn-
ing methods to learn task-specific policies. We evaluate our model on several
image classification tasks, where it significantly outperforms a convolutional
neural network baseline on cluttered images, and on a dynamic visual control
problem, where it learns to track a simple object without an explicit training
signal for doing so.

66.30 From Captions to Visual Concepts and Back [60]
66.30.1 Original Abstract

This paper presents a novel approach for automatically generating image de-
scriptions: visual detectors and language models learn directly from a dataset
of image captions. We use Multiple Instance Learning to train visual de-
tectors for words that commonly occur in captions, including many different
parts of speech such as nouns, verbs, and adjectives. The word detector out-
puts serve as conditional inputs to a marimum-entropy language model. The
language model learns from a set of over 400,000 image descriptions to cap-
ture the statistics of word usage. We capture global semantics by re-ranking
caption candidates using sentence-level features and a deep multimodal simi-
larity model. When human judges compare the system captions to ones writ-
ten by other people, the system captions have equal or better quality over
23

66.30.2 Main points

Comment: Added appendix
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66.31 Going deeper with convolutions [239]
66.31.1 Original Abstract

We propose a deep convolutional neural network architecture codenamed "In-
ception”, which was responsible for setting the new state of the art for classi-
fication and detection in the ImageNet Large-Scale Visual Recognition Chal-
lenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the
improved utilization of the computing resources inside the network. This was
achieved by a carefully crafted design that allows for increasing the depth and
width of the network while keeping the computational budget constant. To
optimize quality, the architectural decisions were based on the Hebbian prin-
ciple and the intuition of multi-scale processing. One particular incarnation
used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers
deep network, the quality of which is assessed in the context of classification
and detection.

66.31.2 Main points

66.32 Deep Learning: Methods and Applications [54]
66.32.1 Original Abstract

This book is aimed to provide an overview of general deep learning method-
ology and its applications to a variety of signal and information processing
tasks. The application areas are chosen with the following three criteria:
1) expertise or knowledge of the authors; 2) the application areas that have
already been transformed by the successful use of deep learning technology,
such as speech recognition and computer vision; and 3) the application areas
that have the potential to be impacted significantly by deep learning and that
have gained concentrated research efforts, including natural language and text
processing, information retrieval, and multimodal information processing em-
powered by multi-task deep learning. In Chapter 1, we provide the background
of deep learning, as intrinsically connected to the use of multiple layers of
nonlinear transformations to derive features from the sensory signals such
as speech and visual tmages. In the most recent literature, deep learning is
embodied also as representation learning, which involves a hierarchy of fea-
tures or concepts where higher-level representations of them are defined from
lower-level ones and where the same lower-level representations help to define

202



higher-level ones. In Chapter 2, a brief historical account of deep learning is
presented. In particular, selected chronological development of speech recog-
nition is used to illustrate the recent impact of deep learning that has become
a dominant technology in speech recognition industry within only a few years
since the start of a collaboration between academic and industrial researchers
n applying deep learning to speech recognition. In Chapter 3, a three-way
classification scheme for a large body of work in deep learning is developed.
We classify a growing number of deep learning techniques into unsupervised,
supervised, and hybrid categories, and present qualitative descriptions and a
literature survey for each category. From Chapter 4 to Chapter 6, we discuss
in detail three popular deep networks and related learning methods, one in
each category. Chapter 4 is devoted to deep autoencoders as a prominent
example of the unsupervised deep learning techniques. Chapter 5 gives a ma-
jor example in the hybrid deep network category, which is the discriminative
feed-forward neural network for supervised learning with many layers initial-
1zed using layer-by-layer generative, unsupervised pre-training. In Chapter
6, deep stacking networks and several of the variants are discussed in detail,
which exemplify the discriminative or supervised deep learning techniques in
the three-way categorization scheme. In Chapters 7-11, we select a set of
typical and successful applications of deep learning in diverse areas of signal
and information processing and of applied artificial intelligence. In Chapter
7, we review the applications of deep learning to speech and audio processing,
with emphasis on speech recognition organized according to several prominent
themes. In Chapters 8, we present recent results of applying deep learning
to language modeling and natural language processing. Chapter 9 is devoted
to selected applications of deep learning to information retrieval including
Web search. In Chapter 10, we cover selected applications of deep learn-
ing to image object recognition in computer vision. Selected applications of
deep learning to multi-modal processing and multi-task learning are reviewed
in Chapter 11. Finally, an epilogue is given in Chapter 12 to summarize
what we presented in earlier chapters and to discuss future challenges and
directions.
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66.32.2 Main points

66.33 Very deep convolutional networks for large-scale
image recognition [228§]
66.33.1 Original Abstract

In this work we investigate the effect of the convolutional network depth on

its accuracy in the large-scale image recognition setting. Our main contribu-
tion is a thorough evaluation of networks of increasing depth, which shows
that a significant improvement on the prior-art configurations can be achieved
by pushing the depth to 16—19 weight layers. These findings were the basis of
our ImageNet Challenge 2014 submission, where our team secured the first
and the second places in the localisation and classification tracks respectively.
We also show that our representations generalise well to other datasets, where
they achieve the state-of-the-art results. Importantly, we have made our two
best-performing ConvNet models publicly available to facilitate further re-
search on the use of deep visual representations in computer vision.

66.33.2 Main points

66.34 Imagenet large scale visual recognition challenge
[211]

66.34.1 Original Abstract

The ImageNet Large Scale Visual Recognition Challenge is a benchmark in
object category classification and detection on hundreds of object categories
and millions of images. The challenge has been run annually from 2010 to
present, attracting participation from more than fifty institutions. This paper
describes the creation of this benchmark dataset and the advances in object
recognition that have been possible as a result. We discuss the challenges of
collecting large-scale ground truth annotation, highlight key breakthroughs in
categorical object recognition, provide detailed a analysis of the current state
of the field of large-scale image classification and object detection, and com-
pare the state-of-the-art computer vision accuracy with human accuracy. We
conclude with lessons learned in the five years of the challenge, and propose
future directions and improvements.
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66.34.2 Main points

Comment: 37 pages, 14 figures
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