
Extending snBench to Support A Graphical “Programming”

Interface For a Sensor Network Tasking Language (STEP)

Ching Chang, Raymond Sweha, Panagiotis Papapetrou
Department of Computer Science

Boston University
{jching, remos, panagpap}@cs.bu.edu

Abstract

The purpose of this project is the creation of a graphical “programming” interface for a

sensor network tasking language called STEP. The graphical interface allows the user to spec-

ify a program execution graphically from an extensible pallet of functionalities and save the

results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP

format and convert it into the corresponding graphical representation. During both phases a

type-checker is running on the background to ensure that both the graphical representation

and the STEP file are syntactically correct. This project has been motivated by the Senso-

rium project at Boston University. In this technical report we present the basic features of the

software, the process that has been followed during the design and implementation. Finally,

we describe the approach used to test and validate our software.

1 Introduction

Sensor Task Execution Plan (STEP), is a sensor network tasking language used to develop ap-

plications on sensor networks. The purpose of this project is the development of a graphical

“programming” interface for STEP. The graphical interface will allow the user to specify a pro-

gram execution graphically from an extensible pallet of functionalities and save the results as a

properly formatted STEP file. A STEP file is typically an XML formatted file that describes an

execution plan for a sensor network application. Moreover, the software will be able to load a

STEP file and convert it its corresponding graphical representation. During both phases a type-

checker will be running on the background to ensure that both the graphical representation and

1



the XML file are syntactically correct.

This project has been named “STEPVIEW” and is motivated by the Sensorium project at

Boston University [1]. Its ultimate goal is the production of a user-friendly software that will

enable the user to write syntactically correct code in STEP just through a graphical interface and

without getting into XML level coding details.

1.1 Team Organization

A successful implementation is a result of intense and focused team work. In this section we

give an outline of the division of responsibilities among the team members along with a schedule

of tasks until the submission date. Moreover, we had weekly meetings regarding our progress.

Each meeting was divided into three parts: (1) touch-base from the last meeting, where we

would discuss the progress with regard to the milestones set at the previous meeting, (2) general

discussion, where each member would talk about her part, give new ideas and identify problems

with the current implementation, (3) new milestones, where the milestones for the next meeting

would be set. Also note that for the efficient collaboration we used CVS, which helped in the

organization of the code and synchronization of the team work.

As of our first meeting in February 8th the responsibilities of the three team members have

been broken down as follows:

1. Panagiotis Papapetrou: (1) Requirements Specification, (2) Web-site Design and Mainte-

nance, (3) External Documentation.

2. Ching Chang: (1) GUI Design, (2) Step-to-GUI Conversion, (3) GUI maintenance.

3. Raymond Sweha: (1) GUI Design, (2) Type-Checker, (3) Internal Documentation.

In our second meeting in February 14th, we decided on the final schedule of the different

parts of the project. This schedule is shown in the Gantt diagram available on our project web-

site. The project has been broken down to eight major Tasks. Notice that Task 14 had been

removed from our plan, since it is not part of the functional specifications of the project and it

would require a great number of modifications to the data structure used to store the graphical

representation. Also, we set four major milestones that have been completed successfully on time.

2



A Pert Diagram of the development of our project is available on our project web-site. Each node

in the diagram corresponds to a project task and consists of two rows: the first one is the name

of the task, the second shows the scheduled start and end dates, and the third one shows the

dates of the actual start and finish of the task. As it can be seen from the diagram almost every

task has been completed as scheduled and the delays were usually for one or two days. Notice

that the STEP-to-GUI conversion exceeded the schedule by four days, whereas the Type-checker

was completed five days ahead of schedule. Also, it should be mentioned that according to our

first requirements specification, our software was also planned to be able to recognize SNAFU-

formatted files (Task 14 on the Gantt Diagram). This objective though was considered (both by

us and the faculty) quite hard to implement with the current design. So, it was later omitted

from the Pert diagram. However, we have intentionally put it on the Pert diagram to show that

it was initially planned.

1.2 The Waterfall Model

After examining various generic software process models for the development of our project, we

agreed to use the waterfall model [2, 3]. Its basic characteristic is that it is based on separate and

distinct phases of specification and development. The whole process is broken down to five phases:

(1) Requirements analysis and definition, (2) System and software design, (3) Implementation and

unit testing, (4) Integration and system testing, and (5) Operation and maintenance. Figure 1

gives a brief overview of how this model works. The main drawback of the waterfall model is

the difficulty of accommodating any change after the process is underway. One phase has to be

complete before proceeding to the next phase. Therefore, an inflexible partitioning of the project

into distinct stages can make it difficult to respond to any changes of the customer requirements.

As a result, this model is only appropriate when the requirements are well-understood and changes

will be fairly limited during the design process. Few business systems have stable requirements, so

other models are preferred to this one. However, in our case the specifications were initially well-

understood and the user-requirements were fully defined. Consequently, the use of the traditional

waterfall model ended up being a good choice.

3



Requirements


Definition


System and


Software Design


Implementation

and Unit Testing


Integration and


System Testing


Operational


Maintanance


Figure 1: The Waterfall model.

2 Requirements Specification

This section presents the requirements specification of our project including the functional, inter-

face and performance requirements. First we give a brief overview of the terms above followed by

a more detailed analysis of the requirements. Our analysis is based on [3].

Functional requirements include the possible effects of a software system, in other words,

what the system must accomplish. These specifications are determined by the project developers

based on the user preferences and requirements. Interface requirements describe how the software

interfaces with other software products or users for any given input or output. Performance

requirements specify some performance issues of the software regarding speed and efficiency.

2.1 Functional Requirements

The functional specifications of our system are given below, in ranked order:

1. Design of a graphical “programming” interface for STEP: the graphical interface should

allow the user to specify a program execution graphically. The GUI will provide the user

with all the appropriate functions (in the form of buttons) to create a syntactically correct

graph that can be successfully translated to a valid STEP file.

4



2. Recognize STEP-formatted execution files: the software should be able to load a program

execution from a STEP formatted file and represent this execution graphically.

3. Type-checker: the software should have the ability to handle syntax errors online. The

type-checker will be active during the program execution, detect syntax errors on demand

and provide the user with helpful suggestions. The type-checker is not one of the main

goals of this project. It has been implemented as an additional system component and it

can validate any type of STEP node except for the “expression” STEP nodes. Thus, its

main functionality is to assure that the designed graphical execution is a valid STEP file

representation. For this module we followed the specifications given in the definition of

“STEPNode” on the project’s web-site.

4. Some other features: (1) the objects on the GUI are movable, (2) the user can zoom in

and out by using the mouse wheel, (3) the properties of each node can be changed by

right-clicking on the each node.

5. Interact with the snbench SXE environment: as soon as the graphical representation is

completed, and the user has designed the STEP graph of the program she wishes to create,

the representation is converted to the corresponding STEP file and then it is executed

directly on snbench.

6. Recognize SNAFU-formatted execution files: the software should be able to load a program

execution from a SNAFU formatted file and represent this execution graphically. This func-

tional specification was originally planned as an extra component of the project, but was

removed later on since it would require complete rearrangement of the current implementa-

tion.

2.2 Interface Requirements

This section describes how the software interfaces with other software products or users for input

or output. Typically there are three main types of interfaces: user interfaces, hardware interfaces

and communication interfaces. In this section we are going to focus on user interfaces.

5



The user interface requirements describe how the product interfaces with the user. In this

case we have three types of interfaces:

1. GUI: the graphical user-interface is divided into three frames. The first one is located on the

left side of the GUI and contains the set of buttons that offer the user all the functionalities

needed to design the appropriate modules of a STEP program. The second is the area where

the user designs the execution and where all the objects are placed. The third one shows

the current version of the STEP file based on the objects that have been already designed

and are linked to each other following the syntax rules of STEP. Also, a pop-up window is

used to report any syntax errors during the graphical design of the execution.

2. INPUT: the input of the software can be of two different forms: (1) a STEP-formatted file

given by the user which is assumed to be syntactically correct and corresponds to a valid

STEP file, (2) a graphical execution of a STEP program.

3. OUTPUT: the output of the software depends on the input and can be of two different

forms depending on the INPUT: (1) the graphical execution design of the STEP file that

has been given as input, (2) a syntactically correct STEP file that has been created based

on a graphical execution design.

2.3 Performance Requirements

In this section we address some performance issues and mainly focus on speed and correctness.

First of all, we require our final product to be very accurate and produce STEP code with no errors.

To assure this, we have enhanced a type-checker which, as described above, runs simultaneously

with the application and evaluates the current execution design both after each step and on

demand. At each step, a function is called that enables the type-checker and validates the current

action. If there is a syntax error at the graphical representation of the code, the user is informed

in two ways: first the validation window shows a message regarding the syntax error and at the

same time the corresponding nodes or edges on the graph of the execution are colored differently

showing that there is something wrong.

6



3 Package Organization

In this Section we give a precise description of the organization of our package into directories

and Java source files. We also provide the UML class diagram of our software that gives a better

view of the system and the way each module interacts with the others.

Our package consists of the following classes:

1. STEPGraph: is the generic class that describes the data structure that holds all the nodes

and links created in the system. It contains all the appropriate functions and features needed

to maintain the graphical representation efficiently.

2. NodeObject: is the class that describes each STEP node object in the system. It is the

basic component of STEPGraph, since the STEPGraph is used to create, hold and delete

all the NodeObjects of the system.

3. LinkObject: is the class that describes a link between two NodeObjects.

4. NodeOption: is the class that contains methods to change the features of each NodeObject.

5. IDEStarter: contains all the basic functions to initialize, configure and maintain the appli-

cation.

6. SGRightClickPopup: is the class that describes the pop-up menus that change the GUI

properties.

7. ValueOption: changes the ID values of the STEP nodes.

The way the above classes interact with each other is shown in Figure 2 that shows the class

diagram (in UML) of our package.

7



Figure 2: The UML class Diagram of our software.

8



4 Package Activation

This Section provides a clear presentation of how to activate and use our package. The code has

been provided in the zip file called “source.zip”. To activate the code you need to follow three

steps:

1. Unzip the file and save it under any folder.

2. Open Eclipse and create a new Project called “snbench”.

3. Add the unzipped files into “snbench”.

4. Open and run the file called “IDEStarter.java” which is under the following path: “snbench/ide/ui”.

To draw the graph the user can select any of the STEP node types included in the menu on

the left. After two nodes are drawn, the user can draw a line to connect them depending on their

types. At any point you can see the STEP file resulting from the current graphical representation.

In case of an erroneous design, the corresponding STEP code is not generated. The type-checker

can be used at any time by pressing the “Compile” button. This will type-check the current graph

and enure that it corresponds to a valid STEP file. In case of any errors, they will be reported at

the area designed at the bottom of the design pallet.

Moreover, our software can interact with snbench directly and actually run the STEP programs

that are created graphically. To do this, the server needs to be activated before the software is

started up. This can be easily done by running the following command in Unix: “java sxe.Server

http://localhost:8080 NONE”. Then, after creating the desired execution graph and compiling

it, we can run the resulting STEP file by pressing the “Execute” button.

The reverse process is also supported by our system. The user can load any STEP file, using

the “load” button, and the system will create the corresponding graphical execution. In Figure 3

we give a screen-shot of the system. As we can see, on the left we have a menu of all the possible

STEP nodes that can be included in a STEP file, and on the right we have two frames. The upper

frame provides an area to design the graph, and the syntax errors are reported on the bottom

frame. Another screen-shot is given in Figure 4, where an exception is shown.

9



Figure 3: A screen-shot of “STEPVIEW”.

10



Figure 4: A screen-shot of “STEPVIEW” showing an exception notification.

11



5 Testing and Test Results

Testing our system was the last step of the development process. In this Section we describe the

approach used to verify and validate our system. We further discuss how the tests have been

selected and why they are sufficient.

We have tested our software on various input STEP files, that are included in the submitted

zip file. To ensure the correctness of our code we tried to cover every possible case. First, we have

tried all the different kinds of STEP nodes individually, to assure that the code works correctly for

each one of them. Then we made combinations of two and three different types of STEP nodes.

Moreover, we created several STEP file that contained all the different types of STEP nodes with

random repetitions of some types. Finally, we tested our code on a set of STEP files that are

available under the “testsuite” directory in Michael Ocean’s code. The software produced the

correct output for each input file.

Furthermore, we had to ensure that the software worked correctly for the reverse procedure,

i.e. convert a given STEP graph on the GUI to its corresponding STEP file. This process was

quite easy. For each input file described above we created the STEP graph and then converted

each graph to its corresponding STEP file. In all cases, the new STEP file matched the original

one, which indicated the correctness of our code.

Even though our test files covered every possible scenario, for completion, we finally tested our

software on the three examples given on the project web-site: http : //cs−people.bu.edu/mocean/cs511.

6 Reflection and Future Work

In this last Section we discuss the design and implementation techniques that distinguish this

project as a success. We further identify and discuss some known limitations and propose direc-

tions for future work.

6.1 Reflection

“STEPVIEW” has been completed successfully and has met all our expectations and goals. We

managed to create a user-friendly interface to graphically represent the execution of STEP files.

12



The interface provides the users with all the appropriate utilities and gives them a variety of menus

and options to create the STEP execution graphs easily and efficiently. For our implementation

we have used part of Michael Ocean’s code, we have extended it by overriding some methods and

improving their functionalities.

One problem of our implementation is the fact that it requires each STEP node to have its

own unique id. In other words, our software does not allow any two STEP nodes to share the

same id. Therefore, if our program is given an input STEP file that contains a duplicate id, an

exception is raised and the STEP file is rejected. This problem could not be solved easily since

the original implementation (Michael Ocean’s) required the ids to be “static” and our code had

to be compatible with the original code.

6.2 Our Contributions

Our main contributions include:

1. Build STEP programs using GUI.

2. Save the STEPGraph in a STEP file format.

3. Load a STEP File into GUI.

4. Type-Check Nodes, except for the expression STEP Node (expNode).

5. Manipulate multiple STEP programs simultaneously (as long as they do not share the same

ID).

6. Execute STEP files, via connecting to SNBENCH.

7. Auto-generate Node options and enable the user to change them (using a right click menu).

8. Move and delete nodes.

9. Zoom-in and zoom-out (using mouse wheel)

10. Upload nodes dynamically (using Nodes.xml template).

13



6.3 Future Work

A possible direction for future work is to extend the current implementation to recognize SNAFU-

formatted files. This can be done in two ways: (1) load the SNAFU file, convert it to STEP and

then create the graph using the current implementation, (2) load the SNAFU file and directly

convert it to a graphical representation.

Another possible direction is to improve the type-checker so that it can validate “expression”

STEP nodes, which are not supported by the current implementation. Type-checking “expres-

sions” is a pretty tough task and we intentionally removed it from the requirements specification,

since it could end up being too complicated and we would diverge from the main goal of this

project which is the graphical interface and not the type-checker.

Finally, another extension is to handle duplicate IDs in multiple STEP programs. This can

be accomplished by modifying Michael Ocean’s code accordingly.

References

[1] Azer Bestavros, Adam D. Brandley, Assaf J. Kfoury, and Michael J. Ocean. Snbench: A

development and run-time platform for rapid deployment of sensor network applications. In

Proceedings of the IEEE International Workshop on Broadband Advanced Sensor Networks

(Basenets 2005), Boston, MA, October 2005.

[2] Barbara Liskov and John Guttag. Program Development in Java. Abstraction, Specification

and Object-Oriented Design. Pearson Education, 2005.

[3] Ian Somerville. Software Engineering 7th Edition. Pearson Education, 1996.

14


