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ABSTRACT

Event search is the problem of identifying events or agtiaitin-
terest in a large database storing long sequences of gctivithis
paper, our topic is the problem of identifying activitiesioferest

in databases where such activities are represented asdiige.dn

the typical setup, the user presents a query that represeaistiv-

ity of interest, and the system needs to retrieve the moslkesiac-
tivities stored in the database. We focus on the case whereetst
database matches are not segmented a priori: the datalvaamso
representations of long, continuous activity, that octlrsughout
relatively extensive periods of time, and, given a quergréhare

no constraints as to when exactly a database match starendsd
within the longer activity pattern where it is contained.ingsthe
popular DTW measure, the best database matches can be feund u
ing dynamic programming. However, retrieval time is lineathe

size of the database and can become too long as the database si
becomes larger. To achieve more efficient retrieval timeapmy

to this problem a recently proposed technique called Enihgdd

corresponds to a measurement/observation at a specific dimde
the next vector in the sequence corresponds to the measutraine
the next time step. Measurements can be defined dependitg on t
specific type of activity that we want to model: they can censi
simply of 2D or 3D position of a single person, or they can be
extended to incorporate more information, such as body, pose
additional persons involved in the activity.

Suppose that we have a database where we store long time se-
ries, representing uninterrupted observations obtained ela-
tively long time spans. Each such time series can contaierchs
tions corresponding to different activities, that occarsequence,
at different intervals during the time spanned by that tirages.

A useful functionality in such databases is similarity-ddsctivity
retrieval, i.e., being able to identify the best matchesafgpecific
activity of interest. In other words, a user can submit asexyjthe
time series representation of a specific activity, such dkimg
running, opening a closet, or turning around the corner, taed
system identifies events in the database that best matcluéng q

based Subsequence Matching (EBSM), and we demonstrate that An important aspect of this problem is that the databaseheatc

using EBSM we can obtain significant speedups in retriewas ti

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing: Indexing methods; H.2.8
[Database Applicationd: Data Mining; H.2.4 Bystem$: Multi-
media Databases

General Terms
Embedding-based subsequence matching (EBSM)
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subsequence matching, dynamic time warping, time semesed-
dings

1. INTRODUCTION

Time series are a natural means of representating humartyacti
A time series is simply a sequence of vectors, where everprec
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we want to retrieve do not consist of an entire time seriezdtm
a database. Instead, the database matchesiasasuences of the
database time series: each match starts at a specific timarste
ends at a specific time step within the long database timesstrat
contains the match. Under these assumptions, identifyiadpést
matches for an activity of interest is an instance of the tg@ges
subsequence matching problem.

More formally, subsequence matching is the problem of ident
fying, given a query time series and a database of time sehies
databasesubsequence (i.e., some part of some time series in the
database) that is the most similar to the query sequencerallgt
identifying optimal subsequence matches assumes theegesbf
a similarity measure between sequences, that can be usedl{o e
uate each match. A key requirement for such a measure is that
it should be robust to misalignments between sequences &b a
allow for time warps (such as stretching or shrinking a portof
a sequence along the time axis) and changes in sequench.lengt
This requirement effectively rules out Euclidean and mameayal
L, measures.

Typically, similarity between time series is measured gsig-
namic time warping (DTW) [17], which is indeed robust to mis-
alignments and time warps, and has given very good expetahen
results for applications such as time series mining andsitiea-
tion [13]. However, the complexity of the DTW algorithm sesl
linearly with the length of the query and also scales lineaith
the size of the database (i.e., the sum of the lengths ofnad te-
ries in the database). While this complexity is definitelyaattive
compared to exhaustively matching the query with every iptess
database subsequence, in practice subsequence matchtilbas



computationally expensive operation in many real-worlgliap-
tions, especially in the presence of large database sizes.

In this paper we discuss EBSM (shorthand for Embedding-Base
Subsequence Matching), a recently-proposed method fexdsug
up subsequence matching in time series databases [3]. The ke
idea behind EBSM is that the subsequence matching problem ca
be partially converted to the much more manageable probfem o
nearest neighbor retrieval in a real vector space. Thisergion
is achieved by defining an embedding that maps each database s
guence into a sequence of vectors. There is a one-to-one-corr
spondence between each such vector and a position in tHeadata
sequence. The embedding also maps each query series inte a ve
tor, in such a way that if the query is very similar to a subsege,
the embedding of the query is likely to be similar to the vectr-
responding to the endpoint of that subsequence.

sequence matches that have the exact same length as the@Query
method has no such limitation. In practice, for efficiencg, make

the assumption that the optimal subsequence match has leegt
tween zero and twice the length of the query. This is a muctenil
assumption than requiring the subsequence match to hawexthe
act same length as the query. Second, the method in [9] is only
applicable to constrained DTW [13], where the warping pah h

to stay close to the diagonal. Our method can also be apmlied t
unconstrained DTW.

An efficient method for retrieving subsequences under DTW is
presented in [21]. The key idea in that method is to speed up
DTW by reducing the length of both query and database segsenc
The length is reduced by representing sequences as ordsseof|
monotonically increasing or decreasing segments. By usioigo-
tonicity, that method is only applicable to 1D time seriegehated

Embeddings are defined by matching queries and database semethod that can also be used for multidimensional timesesie

guences with so-calledference sequences, i.e., a relatively small
number of preselected sequences. The expensive operatmatah-

ing database and reference sequences is performed offlimanA
time, the embedding of the query is computed by matching the
query with the reference sequences, which is typically reraé
magnitude faster than matching the query with all database s
quences. Then, the nearest neighbors of the embedded qeery a
identified among the database vectors. An additional refmem
step is performed, where subsequences corresponding tophe
vector-based matches are evaluated using the DTW algorithm

EBSM is an approximate method, that does not guarantee re-

trieving the correct subsequence match for every queryfoRer
mance can be easily tuned to provide different trade-offe/éen
accuracy and efficiency. In the experiments, EBSM providey v
good trade-offs, by significantly speeding up subsequenaieim
retrieval, even when only small losses in retrieval acoufatcor-
rect results for less that?% of the queries) are allowed.

2. RELATED WORK

The topic of efficient sequence matching has received sogmifi
attention in the database community. However, several odeth
assume that sequence similarity is measured using thedeadli
distance [6, 18, 19] or variants [1, 8, 22, 31]. Naturallyclsu
methods cannot handle even the smallest misalignmentddyse
time warps. In the remaining discussion we restrict ouméitia to
methods that are robust to such misalignments.

Dynamic time warping (DTW) [17] is a distance measure that
is robust to misalignments and time warps, and it is widelgdus
for time series matching. Time series matching methods ean b
divided into two categories: 1). methods for full sequeneaai-
ing, where the best matches for a query are constrained totlie e
database sequences, and 2). methods for subsequencengatchi
where the best matches for a query can be arbitrary subseegien
of database sequences. Several well-known methods onfgsid
full sequence matching [13, 24, 26, 28, 32], and cannot be fose
efficient retrieval of subsequences.

In[20] an indexing structure is proposed for unconstraiD@&iV-
based subsequence matching, but retrieval complexitiflisrear
to the product of the lengths of the query and the databaseresq.
Furthermore, as database sequences get longer, the tinpéesdyn
becomes similar to that of unoptimized DP-based matching.

A method for efficient exact ranked subsequence matching is
proposed in [9]. In that method, queries and database segsien
are broken into segments, and lower bounds are establisiegl u
LB _Keogh [13], so as to prune the majority of candidate matches.
There are two key differences between the method in [9] aad th
proposed EBSM method: First, the method in [9] can only firta su

PDTW [15]. In PDTW, time series are approximated by shorter
sequences, obtained by replacing each constant-lengtiofpéue
original sequence with the average value over that partéméw
sequence. We compare our method with a modified, improved ver
sion of PDTW in the experiments.

The SPRING method for subsequence matching is proposed in
[23]. In SPRING, optimal subsequence matches are identifyed
running the DTW algorithm between the query and each dagabas
sequence. Subsequences are identified by prepending tedttiers
sequence a “null” symbol that matches any sequence preftx wit
zero cost. The complexity of SPRING is still linear to bothadsmse
size and query size. In EBSM, we use SPRING for matching the
query and database sequences with the reference sequandes,
for refining the embedding-based retrieval results.

Compared to SPRING, the key source of computational savings
in EBSM is that expensive DTW-based matching is only perfmtm
between the query and a small fraction of the database, ahare
SPRING the query is matched to the entire database using DTW.
The price for this improved efficiency is that EBSM cannotgua
antee correct results for all queries, whereas SPRING ixact e
method. Still, it is often desirable in database applicetito trade
accuracy for efficiency, and our method, in contrast to SRRIN
provides the capability to achieve such trade-offs.

The method proposed in this paper is embedding-based. Sev-
eral embedding methods exist in the literature for speedjndis-
tance computations and nearest neighbor retrieval. Exesml
such methods include include Lipschitz embeddings [10§i¥ap
[5], MetricMap [29], SparseMap [11], and query-sensitivebed-
dings [2]. Such embeddings can be used for speeding up sesuen
matching, as done for example in [2, 11]. However , existing e
bedding methods are only applicable in the context of fuidusace
matching, not subsequence matching.The method propogshi$in
paper is applicable for subsequence matching.

3. BACKGROUND: DTW

In this section we define dynamic time warping (DTW), both as a
distance measure between time series, and as an algoritievefo
uating similarity between time series. We follow to a largéeat
the descriptions in [13] and [23]. We use the following nimtat

e ), X, R, andS are sequences (i.e., time serie§)is typi-
cally a query sequenceX is typically a database sequence,
R is typically a reference sequence, aficcan be any se-
guence whatsoever.

¢ |S| denotes the length of any sequerite

e S, denotes the t-th step of sequertteln other words,S =



(S1,..-,Ss).

e S% denotes the subsequenceS$tarting at positior and
ending at positiory. In other words,S*7 = (S,...,S;),
S;7 is thet — th step ofS*/, andS;” = S;+¢—1.

e D (Q, X) denotes the full sequence matching cost between

Q@ and X. In full matching,Q1 is constrained to match with
X1, andQ)|q) is constrained to match with(| x|.

3.2 Optimal Warping Paths and Distances

The optimal warping patf?V*(Q, X) between@ and X is the
warping path that minimizes the cas{Q, X, W):

W*(Q,X) = argminy, C(Q, X, W). )

We define the optimal subsequence matdii@Q, X) of Q in X
to be the subsequence &f specified by the optimal warping path

e D(Q,X) denotes the subsequence matching cost betweeni¥*(Q, X). In other words, ifW*(Q,X) = ((wi1,wis),- .-,

sequences) and X. This cost isasymmetric: we find the
subsequenc& *J of X (whereX is typically a large database
sequence) that minimizeBr(Q, X*7) (whereQ is typi-
cally a query).

e D; ;(Q,X) denotes the smallest possible cost of matching
(Q1,...,Q;) to any suffix of (X1,..., X;) (i.e., Q1 does
not have to matclX, but@; has to match wittX ;). D; ;(Q, X)
is also defined fof = 0 andj = 0, as specified below.

e D;(Q, X) denotes the smallest possible cost of matching
Q to any suffix of (X1,...,X;) (i.e., @1 does not have
to match.Xy, but Qg has to match withX;). Obviously,
Dj(Q, X) = Dyq,;(Q, X).

e ||X; — Yj|| denotes the distance betwe&p andY;.

Given a query sequencdg and a database sequen€ethe sub-
sequence matching problem is the problem of finding the subse
quenceX ®’ of X that is the best match for the entifg i.e., that
minimizesDr.(Q, X*7) . In the next paragraphs we formally de-
fine what the best match is, and we specify how it can be cordpute

3.1 Legal Warping Paths

A Warping pathW = ((’1111’1711)1,2)7 ey (w‘w‘,l, w‘w‘,g)) de-
fines an alignment between two sequen@eand X. The i-th el-
ement of W is a pair(w;,1, w;,2) that specifies a correspondence
between elemer®.,, , of @ and elementX,,, , of X. The cost
C(Q, X, W) of warping pathi¥ for @ and X is the L,, distance

(for any choice ofp) between vector$Qu, , ;. - ., Quy, ,) and
(X’wl,27“‘7Xw\W\,2):
W]
C(Q7X7 W) = Z |Q’wi,1 - Xwi,2|p . (1)
=1

In the remainder of this paper, to simplify the notation, widl w
assume thap = 1. However, the formulation we propose can be
similarly applied to any choice of.

For W to be a legal warping path, in the context of subsequence
matching under DTWAV must satisfy the following constraints:

e Boundary conditions: w1,1 = 1 andww,; = |Q|. This
requires the warping path to start by matching the first el-
ement of the query with some element &f, and end by
matching the last element of the query with some element
of X.

e Monotonicity: wit1,1 — wi1 > 0,wit1,2 — wi2 > 0.
This forces the warping path indices,; andw; » to increase
monotonically withi.

° Continuity: Wi4+1,1 — Wi,1 < 1, Wi41,2 — W42 < 1. This
restricts the warping path indices ; andw; 2 to never in-
crease by more thah so that the warping path does not skip
any elements of), and also does not skip any elementsXof
between position&,, , andX

w2

(Wi, 1, Wi 2)), then M (Q, X) is the subsequencﬁ”“’fﬂ’w;ﬂ.
We define the partial dynamic time warping (DTW) distafizfe), X )
to be the cost of the optimal warping path betwégand X:

D(Q, X) =C(Q, X, W"(Q, X)). ®)

To facilitate the description of our method, we will defineotw
additional types of optimal warping paths and associatsthdce
measures. First, we defifig;;,;, (Q, X) to be the optimafull warp-
ing path, i.e., the patiV = ((w1,1,w1,2),..., (Ww|,1, Ww|2))
minimizing C'(Q, X, W) under the additional boundary constraints
thatw: 2 = 1 andww| 2 = |X|. Then, we can define the full
DTW distance measutBs.i (@, X) as:

Dfull(Q7X) = C(Q7X7 WfTAll(Q7X))' (4)
DistanceDr.11 (@, X ) measures the cost of full sequence matching,
i.e., the cost of matching the entifgwith the entireX. In contrast,
D(Q, X) from Equation 3 corresponds to matching the enfjre
with a subsequence of X.

We defineW*(Q, X, j) to be the optimal warping path match-
ing Q to a subsequence dof ending atX}, i.e., the pathV =
((11]1,17 ’ng)7 ey (w‘WM? w‘W‘ﬁg)) m|n|m|2|ngC(Q7 X, W) un-
der the additional boundary constraint thaty| » = j. Then, we
can defineD; (Q, X) as:

Di(Q,X) = C(Q, X, W"(Q, X, 7)) (5)

We defineM (R, X, j) to be the optimal subsequence match for
R in X under the constraint that the last element of this match is
Xj:

M(R, X, j) = argmin yi.; Dran (R, X*7). (6)

Essentially, to identifyM/ (R, X, j) we simply need to identify the
start point: that minimizes the full distanc®,; betweenR and
X,

3.3 The DTW Algorithm

Dynamic time warping (DTW) is a term that refers both to the
distance measures that we have just defined, and to the slaida
gorithm for computing these distance measure and the gamels
ing optimal warping paths.

We define an operatios that takes as inputs a warping path
W = ((w1,17w172)7 (R (w\W\,ly w\W\,Q)) and a pair(wl7 w”)
and returns a new warping path that is the result of appending
(w’,w") to the end of¥:

we (w,7 w”) = ((lev w1¢2)7 B (w\W\J’ w\W\Q)v (w,7w//();j

The DTW algorithm uses the following recursive definitions:



Do,0(Q,X) =0,Di,0(Q, X) =00,D0,;(Q,X)=0  (8)
Wo,0(Q, X) = (), Wo,;(Q, X) = () 9)
A, g) = {67 =1, —1,7),(@—1,7 - 1)} (10
(pl(Q X),pi(Q, X)) = argmin, 4 5 Ds(Q, X) (11)
1.0(Q, X) = 1Qi — X || + Dyicq,x) pi(@.x)(Q, X) (12)

Wi (@, X) = pm x),pi(@,x) @ (4, 1) (13)
DQ.X)= min (Dioy,(Q. X)) (14

The DTW algorithm proceeds by employing the above equations
at each step, as follows:

e Inputs. A short sequencé), and a long sequenckg.
Di,O(Q,X),DQ,j(Q,X)-
QLI =1,...,|X]:

1. Computepi(Q, X), pj(Q, X)).
2. ComputeD; ;(Q, X).
3. ComputdV; ;(Q, X).

e Initialization. ComputeDy o (Q, X),

e Mainloop. Fori=1,...

e Output. Compute and retur(Q, X).

The DTW algorithm takes tim@(|Q|| X |). By definingDo ; =
0 we essentially allow arbitrary prefixes &f to be skipped (i.e.,
matched with zero cost) before matchi@gwith the optimal sub-
sequence inX [23]. By defining D(Q, X) to be the minimum
Dq),;(Q, X), wherej = 1,...,|X]|, we allow the best matching
subsequence of to end at any positiori. Overall, this definition
matches the entir@ with an optimal subsequence &f.

For each positiory of sequenceX, the optimal warping path
W*(Q, X, j) is computed as valud/ g ;(Q, X) by the DTW al-
gorithm (step 3 of the main loop) . The globally optimal waugi
pathiw*(Q, X) is simply W*(Q, X, jopt), wherejopt is the end-
point of the optimal matchjope = argmin;_; | x{D)q;(Q, X)}.

4. EBSM: AN EMBEDDING FOR SUBSE-
QUENCE MATCHING

Let X = (Xi,...,X|x|) be a database sequence that is rela-
tively long, containing for example millions of elements.itidut
loss of generality, we can assume that the database onlginent
this one sequenc# (if the database contains multiple sequences,
we can concatenate them to generate a single sequenceh &ive
query sequencé, we want to find the subsequenceXfthat op-
timally matches under DTW. We can do that using brute-force
search, i.e., using the DTW algorithm described in the previ
section. This paper proposes a more efficient method. Ouradet
is based on defining a novel type of embedding funcfigrwhich
maps every querg) into ad- dimensional vector and every element
X; of the database sequence also ini@-@mensional vector. In
this section we describe how to define such an embeddinghand t
we provide some examples and intuition as to why we expett suc
an embedding to be useful.

Let R be a sequence, of relatively short length, that we shall call
areference sequence. We will useR to create a 1D embeddinig”,
mapping each query sequence into a real nunitp), and also
mapping each stepof sequenceX into a real numbeF (X, j):

FYQ) Digjjqi(R, Q) - (15)
FR(X,§) Digy;(R, X) . (16)

-----

Naturally, instead of picking a single reference sequeRcee
can pick multiple reference sequences to create a multitiiaeal
embedding. Forexample, &%, .. ., R4 bed reference sequences.
Then, we can define&dimensional embedding' as follows:

FQ = (F™Q),....F"(@Q). (17
F(X,j) = (FU(Xj),....FH(X,5). (18
Computing the set of all embedding¥ X, j), forj = 1,...,|X]|

is an off-line preprocessing step that takes @ @X | 7, |R:|).
In particular, computing theth dimension/%: can be done simul-
taneously for all position$X, j), with a single application of the
DTW algorithm with inputsR; (as the short sequence) axd(as
the long sequence). We note that the DTW algorithm computes
eachF™i (X, j), forj = 1,...,|X|, as valueD,x, ;(Ri, X) (see
Section 3.3 for more details).
Given a queryQ, its embeddingF’(Q) is computed online, by
applying the DTW algorithnal times, with inputsR; (in the role of
the short sequence) adi(in the role of the long sequence). In to-
tal, these applications of DTW take tind&(|Q| Zle |R;|). This
time is typically negligible compared to running the DTW a&lg
rithm betweer) and X, which takesO(]Q||X|) time. We assume
that the sum of lengths of the reference objects is ordersaginin
tude smaller than the lengtX | of the database sequence.
Consequently, a very simple way to speed up brute forcelsearc
for the best subsequence matchofs to:

e CompareF'(Q)to F(X,j)forj=1,...,|X|.

e Choose somg's such thatF’(Q) is very similar toF' (X, 7).

e For each such, and for some length parametgr run dy-
namic time warping betwee and(XJfL“:’) to compute
the best subsequence matchd@pm (X7~ L+17),

As long as we can choose a small number of such promising
areas( X’ ~L+17), evaluating only those areas will be much faster
than running DTW betwee® and X . Retrieving the most similar
vectorsF'(X, j) for F(Q) can be done efficiently by applying a
multldlmensmnal vector indexing method to these embegki[i,

25, 4,12, 30, 16, 27].

Let’s consider a very simple example, illustrated in Figlrén
this case, the query isidentical to a subsequenck’i/:j. Consider
a reference sequend® and suppose that/ (R, X, j) (defined as
in Equation 6) isX*4, and that > 4’. In other wordsM (R, X, §)
is a suffix of X** and thus a suffix of) (sinceX” ¥ = Q). Note
that the following holds:

F™(Q) = D)0/ (R.Q) =

In other words, ifQ appears exactly as a subsequeXdéj of X,

it holds thatF(Q) = F?(X, ), under the condition that the
optimal warping path alignind? with X'/ does not start before
positiond’, which is where the appearance@fstarts.

This simple example illustrates an ideal case, where theyqe
has an exact matcK*  in the database. The next case to consider
is when X% is a slightly perturbed version a, obtained, for
example, by adding noise from the interyale, €] to eachQ:. In
that case, assuming always tet(R, X, j) = X*/ andi > ¢/,
we can show thatF(Q) — FE(X, )| < (2|Q| — 1)e. This
is obtained by taking into account that warping p8thi (R, X, j)
cannot be longer tha?|@Q| — 1 (as long as > ¢').

There are two cases we have not covered:

Dir),;(R,X) = F*(X,5). (19)

e Perturbations along tritemporal axis, such as repetitions, in-
sertions, or deletions. Unfortunately, for unconstraiDgdV,
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Figure 1. (a) Example of an optimal warping path

W*(R,Q,|Q]) aligning a reference objectR to a suffix of
Q. FR(Q) is the cost of W*(R,Q,|Q]). (b) Example of a
warping path W*(R, X, j), aligning a reference objectR to
a subsequenceX’ of sequenceX. FT(X, ) is the cost of
W*(R,X,j). The query @ from (a) appears exactly in X,
as subsequenceX’/, and ' < i. Under these conditions,
FE(Q) = FE(X,j). (c) Similar to (b), except thati’ > i.
In this case, typically F7(Q) # FT(X, j).

due to the non-metric nature of the DTW distance measure,
no existing approximation method can make any strong math-
ematical guarantees in the presence of such perturbations.

The case wher¢ < i, i.e., the optimal path matching the
reference sequence to a suffix &'/ starts before the be-
ginning of M (@, X, 7). This issue remains a topic for future
work. In our experiments, although this case did happen, we
still obtained good overall results.

5. FILTER-AND-REFINED RETRIEVAL

Our goal in this paper is to design a method for efficiently re-
trieving, given a query, its best matching subsequence fitzen
database. In the previous sections we have defined embesdtiatg
map each query object and each database positiog-thraensional
vector space. In this section we describe how to use suchdembe
dings in an actual system.

The retrieval framework that we use is filter-and-refineieetd,
where, given a query, the retrieval process consists ofe &tep
and a refine step [10]. The filter step typically provides ackui
way to identify a relatively small number of candidate match
The refine step evaluates each of those candidates usindgheb
matching algorithm (DTW in our case), in order to identifyeth
candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retabef-
ficiency with small, or zero loss in retrieval accuracy. Refl
efficiency depends on the cost of the filter step (which iscgiby
small) and the cost of evaluating candidates at the refipe Eeal-
uating a small number of candidates leads to significantngavi
compared to brute-force search (where brute-force searayr
setting, corresponds to running SPRING [23], i.e., runridigN
between and X). Retrieval accuracy, given a query, depends on

whether that best match is included among the candidatbsated
during the refine step. If the best match is among the carafidat
the refine step will identify it and return the correct result

Within this framework, embeddings can be used at the filtgr,st
and provide a way to quickly select a relatively small numbier
candidates. Indeed, here lies the key contribution of thjgep, in
the fact that we provide a novel method for quick filteringattban
be applied in the context of subsequence matching. Our metho
relies on computationally cheap vector matching operatias op-
posed to requiring computationally expensive applicatioiDTW.
To be concrete, given @&dimensional embedding', defined as in
the previous sectiond;’ can be used in a filter-and-refine frame-
work as follows:

Offline preprocessing step:Compute and store vectét(X, j)
for every positiory of the database sequenge

Online retrieval system: Given a previously unseen query ob-
ject@, we perform the following three steps:

e Embedding step: compute F(Q), by measuring the dis-
tances betwee@ and the chosen reference sequences.

o Filter step: Select database positiof¥, j) according to the
distance between eadh(X, j) and F(Q). These database
positions are candidatendpoints of the best subsequence
match for@).

¢ Refine step:Evaluate selected candidate positi¢As j) by
applying the DTW algorithm.

In our implementation we use sampling, so as to avoid compar-
ing F'(Q) to the embedding of every single database position. The
way the embeddings are constructed, embeddings of neasdy po
tions, such a¥'(X,j) and F(X,j + 1), tend to be very similar.

A simple way to apply sampling is to choose a paraméteand
sample uniformly one out of ever§ vectors F (X, j). That is,

we only store vectord’(X,1), F(X,1 + ¢), F(X,1 4 20),....
Given F(Q), we only compare it with the vectors that we have
sampled. If, for a database positidiX, j), its vector F'(X, j)
was not sampled, we simply assign to that position the distan
betweenF(Q) and the vector that was actually sampled among

{F(X,5 = 16/2]), ..., F(X,5+ [6/2])}

6. EXPERIMENTS

We perform experiments on time series data obtained from the
UCR Time Series Data Mining Archive [14]. We compare EBSM
to two alternative methods for subsequence matching unctemd
strained DTW:

e SPRING: the exact method proposed by Sakurai et al. [23],
which applies the DTW algorithm as described in Section
3.3.

e Modified PDTW: a modification of the approximate method
based on piecewise aggregate approximation that was pro-
posed by Keogh et al. [15].

As formulated in [15], PDTW (given a sampling rate) yields
a specific accuracy and efficiency, by applying DTW to smaller
subsampled versions of quefy and database sequenke Even
with the smallest possible sampling rate of 2, for which thgipal
PDTW cost is25% of the cost of brute-force search, the original
PDTW method has an accuracy rate of less th. We modify
the original PDTW so as to significantly improve those resuds
follows: in our modified PDTW, the original PDTW of [15] is u$e
as a filtering step, that quickly identifies candidate enaipposi-
tions, exactly as the proposed embeddings do for EBSM. We the



Name 50Words | Wafer | Yoga
Length of each time series 270 152 | 426
Size of “training set” (used 450 1000 | 300
by us as set of queries)

Number of time series used for 192 428 | 130
validation (subset of set of queries)

Number of time series used for

measuring performance (subset 258 572 170
of set of queries)

Size of “test set” (used 455 6164 | 3000
by us to generate the database)

Table 1: Description of the three UCR datasets we combined to
generate our dataset. For each original UCR dataset we show
the sizes of the original training and test sets. We note that
in our experiments, we use the original training sets to obt
queries for embedding optimization and for performance evé
uation, and we use the original test sets to generate the long
database sequence (of length 2,337,778).

apply the refine step on top of the original PDTW rankingsn@si
the exact same algorithm (Algorithm 1) for the refine step tha
use in EBSM. We will see in the results that the modified PDTW
works very well, but still not as well as EBSM.

6.1 Datasets

To create a large and diverse enough dataset, we combiresd thr
of the datasets from UCR Time Series Data Mining Archive [14]
The three UCR datasets that we used are shown on Table 1.

Each of the three UCR datasets contains a test set and agraini
set. As can be seen on Table 1, the original split into trgimind
test sets created test sets that were significantly largerttie cor-
responding training sets, for two of the three datasets.rderato
evaluate indexing performance, we wanted to create a srfflgi
large database, and thus we generated our database uslamthe
test sets, and we used as queries the time series in thet aigis.

More specifically, our database is a single time sekiethat was
generated by concatenating all time series in the origestlgets:
455 time series of length 270 from the 50Words dataset, GGl t
series of length 152 from the Wafer dataset, and 3000 tiniessef
length 426 from the Yoga dataset. The lengif of the database
is obviously the sum of length of all these time series, whidts
up to 2,337,778.

Our set of queries was the set of time series in the origiaaltr
ing set of the three UCR datasets. In total, this set inclUd&®
time series. We randomly chose 750 of those time series as a va
idation set of queries, that was used for embedding opttimiza
using Algorithm 2. The remaining 1000 queries were used &b-ev
uate indexing performance. Naturally, the set of 1000 g@seaused
for performance evaluation was completely disjoint from slet of
queries used during embedding optimization.

6.2 Performance Measures

Our method is approximate, meaning that it does not guagante
finding the optimal subsequence match for each query. The two
key measures of performance in this context are accuracgféind
ciency. Accuracy is simply the percentage of queries in vatua-
tion set for which the optimal subsequence match was sucitigss
retrieved. Efficiency can be evaluated using two measures:

e DTW cell cost: For each query), the DTW cell cost is the
ratio of number of celldi][j] visited by Algorithm 1 over
number of cells[i][j] using the SPRING method (for the

accuracy vs. DTW cell cost for PDTW and EBSM
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Figure 2. Comparing the accuracy versus efficiency trade-
offs achieved by EBSM with sampling rate 9 and by modified
PDTW with sampling rates 7, 9, 11, and 13. The top figure mea-
sures efficiency using the DTW cell cost, and the bottom figure
measures efficiency using the retrieval runtime cost. The &ts
shown are average costs over our test set of 1000 queries. Not
that SPRING, being an exact method, corresponds to a single
point (not shown on these figures), with perfect accuracy 1 ah
maximal DTW cell cost 1 and retrieval runtime cost 1.

SPRING method, this number is the product of query length
and database length). For PDTW with sampling rateve
addsi2 to this ratio, to reflect the cost of running the DTW al-
gorithm between the subsampled query and the subsampled
database. For the entire test set of 1000 queries, we report
the average DTW cell cost over all queries.

Retrieval runtime cost: For each quen@, given an in-
dexing method, the retrieval runtime cost is the ratio of to-
tal retrieval time for that query using that indexing method
over the total retrieval time attained for that query using t
SPRING method. For the entire test set, we report the aver-
age retrieval runtime cost over all 1000 queries. While run-
time is harder to analyze, as it depends on diverse thinds suc



as cache size, memory bus bandwidth, etc., runtime is also alem of sign spotting, i.e., the problem of identifying ocamces
more fair measure for comparing EBSM to PDTW, as it in- of signs of interest in large video databases of American San-
cludes the costs of both the filter step and the refine step. Theguage (ASL) content. Results on the problem will be useful fo
DTW cell cost ignores the cost of the filter step for EBSM.  evaluating the impact of EBSM in real-world applications veell

] ) as potential issues that will need to be addressed in futark.w
We remind the reader that the SPRING method simply uses the

standard DTW algorithm of Section 3.3. Consequently, bynilefi
tion, the DTW cell cost of SPRING is always 1, and the retidieva 8. REFERENCES
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