
Towards Faster Activity Search Using Embedding-based
Subsequence Matching

Panagiotis Papapetrou 1, Paul Doliotis 2, and Vassilis Athitsos 2

1 Computer Science Department, Boston University, USA
2 Computer Science and Engineering Department, University of Texas at Arlington, USA

ABSTRACT
Event search is the problem of identifying events or activity of in-
terest in a large database storing long sequences of activity. In this
paper, our topic is the problem of identifying activities ofinterest
in databases where such activities are represented as time series. In
the typical setup, the user presents a query that representsan activ-
ity of interest, and the system needs to retrieve the most similar ac-
tivities stored in the database. We focus on the case where the best
database matches are not segmented a priori: the database contains
representations of long, continuous activity, that occursthroughout
relatively extensive periods of time, and, given a query, there are
no constraints as to when exactly a database match starts andends
within the longer activity pattern where it is contained. Using the
popular DTW measure, the best database matches can be found us-
ing dynamic programming. However, retrieval time is linearto the
size of the database and can become too long as the database size
becomes larger. To achieve more efficient retrieval time, weapply
to this problem a recently proposed technique called Embedding-
based Subsequence Matching (EBSM), and we demonstrate that
using EBSM we can obtain significant speedups in retrieval time.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing methods; H.2.8
[Database Applications]: Data Mining; H.2.4 [Systems]: Multi-
media Databases

General Terms
Embedding-based subsequence matching (EBSM)

Keywords
subsequence matching, dynamic time warping, time series, embed-
dings

1. INTRODUCTION
Time series are a natural means of representating human activity.

A time series is simply a sequence of vectors, where every vector

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PETRA ’09, June 09-13, 2009, Corfu, Greece. Workshop on Multimedia
Event Analysis for Assistive Environments.
Copyright 2009 ACM ISBN 978-1-60558-409-6 ...$5.00.

corresponds to a measurement/observation at a specific time, and
the next vector in the sequence corresponds to the measurement at
the next time step. Measurements can be defined depending on the
specific type of activity that we want to model: they can consist
simply of 2D or 3D position of a single person, or they can be
extended to incorporate more information, such as body pose, or
additional persons involved in the activity.

Suppose that we have a database where we store long time se-
ries, representing uninterrupted observations obtained over rela-
tively long time spans. Each such time series can contain observa-
tions corresponding to different activities, that occur, in sequence,
at different intervals during the time spanned by that time series.
A useful functionality in such databases is similarity-based activity
retrieval, i.e., being able to identify the best matches fora specific
activity of interest. In other words, a user can submit as a query the
time series representation of a specific activity, such as walking,
running, opening a closet, or turning around the corner, andthe
system identifies events in the database that best match the query.

An important aspect of this problem is that the database matches
we want to retrieve do not consist of an entire time series stored in
a database. Instead, the database matches aresubsequences of the
database time series: each match starts at a specific time step and
ends at a specific time step within the long database time series that
contains the match. Under these assumptions, identifying the best
matches for an activity of interest is an instance of the time-series
subsequence matching problem.

More formally, subsequence matching is the problem of identi-
fying, given a query time series and a database of time series, the
databasesubsequence (i.e., some part of some time series in the
database) that is the most similar to the query sequence. Naturally,
identifying optimal subsequence matches assumes the existence of
a similarity measure between sequences, that can be used to eval-
uate each match. A key requirement for such a measure is that
it should be robust to misalignments between sequences, so as to
allow for time warps (such as stretching or shrinking a portion of
a sequence along the time axis) and changes in sequence length.
This requirement effectively rules out Euclidean and more general
Lp measures.

Typically, similarity between time series is measured using dy-
namic time warping (DTW) [17], which is indeed robust to mis-
alignments and time warps, and has given very good experimental
results for applications such as time series mining and classifica-
tion [13]. However, the complexity of the DTW algorithm scales
linearly with the length of the query and also scales linearly with
the size of the database (i.e., the sum of the lengths of all time se-
ries in the database). While this complexity is definitely attractive
compared to exhaustively matching the query with every possible
database subsequence, in practice subsequence matching isstill a

1

computationally expensive operation in many real-world applica-
tions, especially in the presence of large database sizes.

In this paper we discuss EBSM (shorthand for Embedding-Based
Subsequence Matching), a recently-proposed method for speeding
up subsequence matching in time series databases [3]. The key
idea behind EBSM is that the subsequence matching problem can
be partially converted to the much more manageable problem of
nearest neighbor retrieval in a real vector space. This conversion
is achieved by defining an embedding that maps each database se-
quence into a sequence of vectors. There is a one-to-one corre-
spondence between each such vector and a position in the database
sequence. The embedding also maps each query series into a vec-
tor, in such a way that if the query is very similar to a subsequence,
the embedding of the query is likely to be similar to the vector cor-
responding to the endpoint of that subsequence.

Embeddings are defined by matching queries and database se-
quences with so-calledreference sequences, i.e., a relatively small
number of preselected sequences. The expensive operation of match-
ing database and reference sequences is performed offline. At run-
time, the embedding of the query is computed by matching the
query with the reference sequences, which is typically orders of
magnitude faster than matching the query with all database se-
quences. Then, the nearest neighbors of the embedded query are
identified among the database vectors. An additional refinement
step is performed, where subsequences corresponding to thetop
vector-based matches are evaluated using the DTW algorithm.

EBSM is an approximate method, that does not guarantee re-
trieving the correct subsequence match for every query. Perfor-
mance can be easily tuned to provide different trade-offs between
accuracy and efficiency. In the experiments, EBSM provides very
good trade-offs, by significantly speeding up subsequence match
retrieval, even when only small losses in retrieval accuracy (incor-
rect results for less than1% of the queries) are allowed.

2. RELATED WORK
The topic of efficient sequence matching has received significant

attention in the database community. However, several methods
assume that sequence similarity is measured using the Euclidean
distance [6, 18, 19] or variants [1, 8, 22, 31]. Naturally, such
methods cannot handle even the smallest misalignment caused by
time warps. In the remaining discussion we restrict our attention to
methods that are robust to such misalignments.

Dynamic time warping (DTW) [17] is a distance measure that
is robust to misalignments and time warps, and it is widely used
for time series matching. Time series matching methods can be
divided into two categories: 1). methods for full sequence match-
ing, where the best matches for a query are constrained to be entire
database sequences, and 2). methods for subsequence matching,
where the best matches for a query can be arbitrary subsequences
of database sequences. Several well-known methods only address
full sequence matching [13, 24, 26, 28, 32], and cannot be used for
efficient retrieval of subsequences.

In [20] an indexing structure is proposed for unconstrainedDTW-
based subsequence matching, but retrieval complexity is still linear
to the product of the lengths of the query and the database sequence.
Furthermore, as database sequences get longer, the time complexity
becomes similar to that of unoptimized DP-based matching.

A method for efficient exact ranked subsequence matching is
proposed in [9]. In that method, queries and database sequences
are broken into segments, and lower bounds are established using
LB Keogh [13], so as to prune the majority of candidate matches.
There are two key differences between the method in [9] and the
proposed EBSM method: First, the method in [9] can only find sub-

sequence matches that have the exact same length as the query. Our
method has no such limitation. In practice, for efficiency, we make
the assumption that the optimal subsequence match has length be-
tween zero and twice the length of the query. This is a much milder
assumption than requiring the subsequence match to have theex-
act same length as the query. Second, the method in [9] is only
applicable to constrained DTW [13], where the warping path has
to stay close to the diagonal. Our method can also be applied to
unconstrained DTW.

An efficient method for retrieving subsequences under DTW is
presented in [21]. The key idea in that method is to speed up
DTW by reducing the length of both query and database sequences.
The length is reduced by representing sequences as ordered lists of
monotonically increasing or decreasing segments. By usingmono-
tonicity, that method is only applicable to 1D time series. Arelated
method that can also be used for multidimensional timeseries is
PDTW [15]. In PDTW, time series are approximated by shorter
sequences, obtained by replacing each constant-length part of the
original sequence with the average value over that part in the new
sequence. We compare our method with a modified, improved ver-
sion of PDTW in the experiments.

The SPRING method for subsequence matching is proposed in
[23]. In SPRING, optimal subsequence matches are identifiedby
running the DTW algorithm between the query and each database
sequence. Subsequences are identified by prepending to the shorter
sequence a “null” symbol that matches any sequence prefix with
zero cost. The complexity of SPRING is still linear to both database
size and query size. In EBSM, we use SPRING for matching the
query and database sequences with the reference sequences,and
for refining the embedding-based retrieval results.

Compared to SPRING, the key source of computational savings
in EBSM is that expensive DTW-based matching is only performed
between the query and a small fraction of the database, whereas in
SPRING the query is matched to the entire database using DTW.
The price for this improved efficiency is that EBSM cannot guar-
antee correct results for all queries, whereas SPRING is an exact
method. Still, it is often desirable in database applications to trade
accuracy for efficiency, and our method, in contrast to SPRING,
provides the capability to achieve such trade-offs.

The method proposed in this paper is embedding-based. Sev-
eral embedding methods exist in the literature for speedingup dis-
tance computations and nearest neighbor retrieval. Examples of
such methods include include Lipschitz embeddings [10], FastMap
[5], MetricMap [29], SparseMap [11], and query-sensitive embed-
dings [2]. Such embeddings can be used for speeding up sequence
matching, as done for example in [2, 11]. However , existing em-
bedding methods are only applicable in the context of full sequence
matching, not subsequence matching.The method proposed inthis
paper is applicable for subsequence matching.

3. BACKGROUND: DTW
In this section we define dynamic time warping (DTW), both as a

distance measure between time series, and as an algorithm for eval-
uating similarity between time series. We follow to a large extent
the descriptions in [13] and [23]. We use the following notation:

• Q, X, R, andS are sequences (i.e., time series).Q is typi-
cally a query sequence,X is typically a database sequence,
R is typically a reference sequence, andS can be any se-
quence whatsoever.

• |S| denotes the length of any sequenceS.

• St denotes the t-th step of sequenceS. In other words,S =

2

(S1, . . . , S|S|).

• Si:j denotes the subsequence ofS starting at positioni and
ending at positionj. In other words,Si:j = (Si, . . . , Sj),
Si:j

t is thet − th step ofSi:j , andSi:j
t = Si+t−1.

• Dfull(Q, X) denotes the full sequence matching cost between
Q andX. In full matching,Q1 is constrained to match with
X1, andQ|Q| is constrained to match withX|X|.

• D(Q, X) denotes the subsequence matching cost between
sequencesQ andX. This cost isasymmetric: we find the
subsequenceXi:j of X (whereX is typically a large database
sequence) that minimizesDfull(Q,Xi:j) (whereQ is typi-
cally a query).

• Di,j(Q, X) denotes the smallest possible cost of matching
(Q1, . . . , Qi) to any suffix of(X1, . . . , Xj) (i.e., Q1 does
not have to matchX1, butQi has to match withXj). Di,j(Q,X)
is also defined fori = 0 andj = 0, as specified below.

• Dj(Q, X) denotes the smallest possible cost of matching
Q to any suffix of (X1, . . . , Xj) (i.e., Q1 does not have
to matchX1, but Q|Q| has to match withXj). Obviously,
Dj(Q, X) = D|Q|,j(Q,X).

• ‖Xi − Yj‖ denotes the distance betweenXi andYj .

Given a query sequenceQ and a database sequenceX, the sub-
sequence matching problem is the problem of finding the subse-
quenceXi:j of X that is the best match for the entireQ, i.e., that
minimizesDfull(Q, Xi:j) . In the next paragraphs we formally de-
fine what the best match is, and we specify how it can be computed.

3.1 Legal Warping Paths
A warping pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) de-

fines an alignment between two sequencesQ andX. The i-th el-
ement ofW is a pair(wi,1, wi,2) that specifies a correspondence
between elementQwi,1

of Q and elementXwi,2
of X. The cost

C(Q, X, W) of warping pathW for Q andX is theLp distance
(for any choice ofp) between vectors(Qw1,1 , . . . , Qw|W |,1

) and
(Xw1,2 , . . . , Xw|W |,2

):

C(Q, X, W) =
p

v

u

u

t

|W |
X

i=1

|Qwi,1
− Xwi,2

|p . (1)

In the remainder of this paper, to simplify the notation, we will
assume thatp = 1. However, the formulation we propose can be
similarly applied to any choice ofp.

ForW to be a legal warping path, in the context of subsequence
matching under DTW,W must satisfy the following constraints:

• Boundary conditions: w1,1 = 1 andw|W |,1 = |Q|. This
requires the warping path to start by matching the first el-
ement of the query with some element ofX, and end by
matching the last element of the query with some element
of X.

• Monotonicity: wi+1,1 − wi,1 ≥ 0, wi+1,2 − wi,2 ≥ 0.
This forces the warping path indiceswi,1 andwi,2 to increase
monotonically withi.

• Continuity: wi+1,1 − wi,1 ≤ 1, wi+1,2 − wi,2 ≤ 1. This
restricts the warping path indiceswi,1 andwi,2 to never in-
crease by more than1, so that the warping path does not skip
any elements ofQ, and also does not skip any elements ofX
between positionsXw1,2 andXw|W |,2

.

3.2 Optimal Warping Paths and Distances
The optimal warping pathW ∗(Q, X) betweenQ andX is the

warping path that minimizes the costC(Q, X, W):

W ∗(Q,X) = argminW C(Q, X, W). (2)

We define the optimal subsequence matchM(Q, X) of Q in X
to be the subsequence ofX specified by the optimal warping path
W ∗(Q, X). In other words, ifW ∗(Q, X) = ((w∗

1,1, w
∗
1,2), . . . ,

(w∗
m,1, w

∗
m,2)), then M(Q,X) is the subsequenceXw∗

1,2:w∗
m,2 .

We define the partial dynamic time warping (DTW) distanceD(Q, X)
to be the cost of the optimal warping path betweenQ andX:

D(Q, X) = C(Q, X, W ∗(Q, X)). (3)

To facilitate the description of our method, we will define two
additional types of optimal warping paths and associated distance
measures. First, we defineW ∗

full(Q,X) to be the optimalfull warp-
ing path, i.e., the pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2))
minimizingC(Q, X, W) under the additional boundary constraints
that w1,2 = 1 andw|W |,2 = |X|. Then, we can define the full
DTW distance measureDfull(Q, X) as:

Dfull(Q, X) = C(Q, X, W ∗
full(Q,X)). (4)

DistanceDfull(Q,X) measures the cost of full sequence matching,
i.e., the cost of matching the entireQ with the entireX. In contrast,
D(Q, X) from Equation 3 corresponds to matching the entireQ
with a subsequence of X.

We defineW ∗(Q,X, j) to be the optimal warping path match-
ing Q to a subsequence ofX ending atXj , i.e., the pathW =
((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) minimizingC(Q,X, W) un-
der the additional boundary constraint thatw|W |,2 = j. Then, we
can defineDj(Q,X) as:

Dj(Q,X) = C(Q,X, W ∗(Q,X, j)). (5)

We defineM(R, X, j) to be the optimal subsequence match for
R in X under the constraint that the last element of this match is
Xj :

M(R, X, j) = argminXi:jDfull(R,Xi:j). (6)

Essentially, to identifyM(R, X, j) we simply need to identify the
start pointi that minimizes the full distanceDfull betweenR and
Xi:j .

3.3 The DTW Algorithm
Dynamic time warping (DTW) is a term that refers both to the

distance measures that we have just defined, and to the standard al-
gorithm for computing these distance measure and the correspond-
ing optimal warping paths.

We define an operation⊕ that takes as inputs a warping path
W = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) and a pair(w′, w′′)
and returns a new warping path that is the result of appending
(w′, w′′) to the end ofW :

W ⊕ (w′, w′′) = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2), (w
′, w′′)).

(7)
The DTW algorithm uses the following recursive definitions:

3

D0,0(Q, X) = 0, Di,0(Q,X) = ∞, D0,j(Q, X) = 0 (8)

W0,0(Q, X) = (), W0,j(Q,X) = () (9)

A(i, j) = {(i, j − 1), (i − 1, j), (i − 1, j − 1)} (10)

(pi(Q,X), pj(Q,X)) = argmin(s,t)∈A(i,j)Ds,t(Q, X) (11)

Di,j(Q,X) = ‖Qi − Xj‖ + Dpi(Q,X),pj(Q,X)(Q, X) (12)

Wi,j(Q, X) = Wpi(Q,X),pj(Q,X) ⊕ (i, j) (13)

D(Q, X) = min
j=1,...,|X|

{D|Q|,j(Q, X)} (14)

The DTW algorithm proceeds by employing the above equations
at each step, as follows:

• Inputs. A short sequenceQ, and a long sequenceX.

• Initialization. ComputeD0,0(Q, X), Di,0(Q,X), D0,j(Q,X).

• Main loop. For i = 1, . . . , |Q|, j = 1, . . . , |X|:

1. Compute(pi(Q, X), pj(Q, X)).

2. ComputeDi,j(Q, X).

3. ComputeWi,j(Q, X).

• Output. Compute and returnD(Q, X).

The DTW algorithm takes timeO(|Q||X|). By definingD0,j =
0 we essentially allow arbitrary prefixes ofX to be skipped (i.e.,
matched with zero cost) before matchingQ with the optimal sub-
sequence inX [23]. By definingD(Q, X) to be the minimum
D|Q|,j(Q, X), wherej = 1, . . . , |X|, we allow the best matching
subsequence ofX to end at any positionj. Overall, this definition
matches the entireQ with an optimal subsequence ofX.

For each positionj of sequenceX, the optimal warping path
W ∗(Q, X, j) is computed as valueW|Q|,j(Q, X) by the DTW al-
gorithm (step 3 of the main loop) . The globally optimal warping
pathW ∗(Q, X) is simplyW ∗(Q, X, jopt), wherejopt is the end-
point of the optimal match:jopt = argminj=1,...,|X|{D|Q|,j(Q,X)}.

4. EBSM: AN EMBEDDING FOR SUBSE-
QUENCE MATCHING

Let X = (X1, . . . , X|X|) be a database sequence that is rela-
tively long, containing for example millions of elements. Without
loss of generality, we can assume that the database only contains
this one sequenceX (if the database contains multiple sequences,
we can concatenate them to generate a single sequence). Given a
query sequenceQ, we want to find the subsequence ofX that op-
timally matchesQ under DTW. We can do that using brute-force
search, i.e., using the DTW algorithm described in the previous
section. This paper proposes a more efficient method. Our method
is based on defining a novel type of embedding functionF , which
maps every queryQ into ad- dimensional vector and every element
Xj of the database sequence also into ad-dimensional vector. In
this section we describe how to define such an embedding, and then
we provide some examples and intuition as to why we expect such
an embedding to be useful.

Let R be a sequence, of relatively short length, that we shall call
areference sequence. We will useR to create a 1D embeddingF R,
mapping each query sequence into a real numberF (Q), and also
mapping each stepj of sequenceX into a real numberF (X, j):

F R(Q) = D|R|,|Q|(R, Q) . (15)

F R(X, j) = D|R|,j(R, X) . (16)

Naturally, instead of picking a single reference sequenceR, we
can pick multiple reference sequences to create a multidimensional
embedding. For example, letR1, . . . , Rd bed reference sequences.
Then, we can define ad-dimensional embeddingF as follows:

F (Q) = (F R1(Q), . . . , F Rd(Q)) . (17)

F (X, j) = (F R1(X, j), . . . , F Rd(X, j)) . (18)

Computing the set of all embeddingsF (X, j), for j = 1, . . . , |X|

is an off-line preprocessing step that takes timeO(|X|
Pd

i=1 |Ri|).
In particular, computing thei-th dimensionF Ri can be done simul-
taneously for all positions(X, j), with a single application of the
DTW algorithm with inputsRi (as the short sequence) andX (as
the long sequence). We note that the DTW algorithm computes
eachF Ri(X, j), for j = 1, . . . , |X|, as valueD|Ri|,j(Ri, X) (see
Section 3.3 for more details).

Given a queryQ, its embeddingF (Q) is computed online, by
applying the DTW algorithmd times, with inputsRi (in the role of
the short sequence) andQ (in the role of the long sequence). In to-
tal, these applications of DTW take timeO(|Q|

Pd

i=1 |Ri|). This
time is typically negligible compared to running the DTW algo-
rithm betweenQ andX, which takesO(|Q||X|) time. We assume
that the sum of lengths of the reference objects is orders of magni-
tude smaller than the length|X| of the database sequence.

Consequently, a very simple way to speed up brute force search
for the best subsequence match ofQ is to:

• CompareF (Q) to F (X, j) for j = 1, . . . , |X|.

• Choose somej’s such thatF (Q) is very similar toF (X, j).

• For each suchj, and for some length parameterL, run dy-
namic time warping betweenQ and(Xj−L+1:j) to compute
the best subsequence match forQ in (Xj−L+1:j).

As long as we can choose a small number of such promising
areas(Xj−L+1:j), evaluating only those areas will be much faster
than running DTW betweenQ andX. Retrieving the most similar
vectorsF (X, j) for F (Q) can be done efficiently by applying a
multidimensional vector indexing method to these embeddings [7,
25, 4, 12, 30, 16, 27].

Let’s consider a very simple example, illustrated in Figure1. In
this case, the queryQ is identical to a subsequenceXi′:j . Consider
a reference sequenceR, and suppose thatM(R, X, j) (defined as
in Equation 6) isXi:j , and thati ≥ i′. In other words,M(R, X, j)

is a suffix ofXi′:j and thus a suffix ofQ (sinceXi′:j = Q). Note
that the following holds:

F R(Q) = D|R|,|Q|(R,Q) = D|R|,j(R,X) = F R(X, j). (19)

In other words, ifQ appears exactly as a subsequenceXi′:j of X,
it holds thatF R(Q) = F R(X, j), under the condition that the
optimal warping path aligningR with X1:j does not start before
positioni′, which is where the appearance ofQ starts.

This simple example illustrates an ideal case, where the query Q

has an exact matchXi′:j in the database. The next case to consider
is whenXi′:j is a slightly perturbed version ofQ, obtained, for
example, by adding noise from the interval[−ǫ, ǫ] to eachQt. In
that case, assuming always thatM(R, X, j) = Xi:j andi ≥ i′,
we can show that|F R(Q) − F R(X, j)| ≤ (2|Q| − 1)ǫ. This
is obtained by taking into account that warping pathW ∗(R, X, j)
cannot be longer than2|Q| − 1 (as long asi ≥ i′).

There are two cases we have not covered:

• Perturbations along thetemporal axis, such as repetitions, in-
sertions, or deletions. Unfortunately, for unconstrainedDTW,

4

Q

R

X

Q

i'
 j
i

R

X

Q

i'
 j
i

R

(a)

(c)

(b)

Figure 1: (a) Example of an optimal warping path
W ∗(R, Q, |Q|) aligning a reference object R to a suffix of
Q. F R(Q) is the cost of W ∗(R, Q, |Q|). (b) Example of a
warping path W ∗(R,X, j), aligning a reference objectR to
a subsequenceXi:j of sequenceX. F R(X, j) is the cost of
W ∗(R, X, j). The query Q from (a) appears exactly in X,
as subsequenceXi′:j , and i′ < i. Under these conditions,
F R(Q) = F R(X, j). (c) Similar to (b), except that i′ > i.
In this case, typicallyF R(Q) 6= F R(X, j).

due to the non-metric nature of the DTW distance measure,
no existing approximation method can make any strong math-
ematical guarantees in the presence of such perturbations.

• The case wherei < i′, i.e., the optimal path matching the
reference sequence to a suffix ofX1:j starts before the be-
ginning ofM(Q,X, j). This issue remains a topic for future
work. In our experiments, although this case did happen, we
still obtained good overall results.

5. FILTER-AND-REFINED RETRIEVAL
Our goal in this paper is to design a method for efficiently re-

trieving, given a query, its best matching subsequence fromthe
database. In the previous sections we have defined embeddings that
map each query object and each database position to ad-dimensional
vector space. In this section we describe how to use such embed-
dings in an actual system.

The retrieval framework that we use is filter-and-refine retrieval,
where, given a query, the retrieval process consists of a filter step
and a refine step [10]. The filter step typically provides a quick
way to identify a relatively small number of candidate matches.
The refine step evaluates each of those candidates using the original
matching algorithm (DTW in our case), in order to identify the
candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retrieval ef-
ficiency with small, or zero loss in retrieval accuracy. Retrieval
efficiency depends on the cost of the filter step (which is typically
small) and the cost of evaluating candidates at the refine step. Eval-
uating a small number of candidates leads to significant savings
compared to brute-force search (where brute-force search,in our
setting, corresponds to running SPRING [23], i.e., runningDTW
betweenQ andX). Retrieval accuracy, given a query, depends on

whether that best match is included among the candidates evaluated
during the refine step. If the best match is among the candidates,
the refine step will identify it and return the correct result.

Within this framework, embeddings can be used at the filter step,
and provide a way to quickly select a relatively small numberof
candidates. Indeed, here lies the key contribution of this paper, in
the fact that we provide a novel method for quick filtering, that can
be applied in the context of subsequence matching. Our method
relies on computationally cheap vector matching operations, as op-
posed to requiring computationally expensive applications of DTW.
To be concrete, given ad-dimensional embeddingF , defined as in
the previous sections,F can be used in a filter-and-refine frame-
work as follows:

Offline preprocessing step:Compute and store vectorF (X, j)
for every positionj of the database sequenceX.

Online retrieval system: Given a previously unseen query ob-
jectQ, we perform the following three steps:

• Embedding step: computeF (Q), by measuring the dis-
tances betweenQ and the chosen reference sequences.

• Filter step: Select database positions(X, j) according to the
distance between eachF (X, j) andF (Q). These database
positions are candidateendpoints of the best subsequence
match forQ.

• Refine step:Evaluate selected candidate positions(X, j) by
applying the DTW algorithm.

In our implementation we use sampling, so as to avoid compar-
ing F (Q) to the embedding of every single database position. The
way the embeddings are constructed, embeddings of nearby posi-
tions, such asF (X, j) andF (X, j + 1), tend to be very similar.
A simple way to apply sampling is to choose a parameterδ, and
sample uniformly one out of everyδ vectorsF (X, j). That is,
we only store vectorsF (X, 1), F (X, 1 + δ), F (X, 1 + 2δ),
Given F (Q), we only compare it with the vectors that we have
sampled. If, for a database position(X, j), its vectorF (X, j)
was not sampled, we simply assign to that position the distance
betweenF (Q) and the vector that was actually sampled among
{F (X, j − ⌊δ/2⌋), . . . , F (X, j + ⌊δ/2⌋)}.

6. EXPERIMENTS
We perform experiments on time series data obtained from the

UCR Time Series Data Mining Archive [14]. We compare EBSM
to two alternative methods for subsequence matching under uncon-
strained DTW:

• SPRING: the exact method proposed by Sakurai et al. [23],
which applies the DTW algorithm as described in Section
3.3.

• Modified PDTW: a modification of the approximate method
based on piecewise aggregate approximation that was pro-
posed by Keogh et al. [15].

As formulated in [15], PDTW (given a sampling rate) yields
a specific accuracy and efficiency, by applying DTW to smaller,
subsampled versions of queryQ and database sequenceX. Even
with the smallest possible sampling rate of 2, for which the original
PDTW cost is25% of the cost of brute-force search, the original
PDTW method has an accuracy rate of less than50%. We modify
the original PDTW so as to significantly improve those results, as
follows: in our modified PDTW, the original PDTW of [15] is used
as a filtering step, that quickly identifies candidate endpoint posi-
tions, exactly as the proposed embeddings do for EBSM. We then

5

Name 50Words Wafer Yoga
Length of each time series 270 152 426
Size of “training set” (used 450 1000 300
by us as set of queries)
Number of time series used for 192 428 130
validation (subset of set of queries)
Number of time series used for
measuring performance (subset 258 572 170
of set of queries)
Size of “test set” (used 455 6164 3000
by us to generate the database)

Table 1: Description of the three UCR datasets we combined to
generate our dataset. For each original UCR dataset we show
the sizes of the original training and test sets. We note that,
in our experiments, we use the original training sets to obtain
queries for embedding optimization and for performance eval-
uation, and we use the original test sets to generate the long
database sequence (of length 2,337,778).

apply the refine step on top of the original PDTW rankings, using
the exact same algorithm (Algorithm 1) for the refine step that we
use in EBSM. We will see in the results that the modified PDTW
works very well, but still not as well as EBSM.

6.1 Datasets
To create a large and diverse enough dataset, we combined three

of the datasets from UCR Time Series Data Mining Archive [14].
The three UCR datasets that we used are shown on Table 1.

Each of the three UCR datasets contains a test set and a training
set. As can be seen on Table 1, the original split into training and
test sets created test sets that were significantly larger than the cor-
responding training sets, for two of the three datasets. In order to
evaluate indexing performance, we wanted to create a sufficiently
large database, and thus we generated our database using thelarge
test sets, and we used as queries the time series in the training sets.

More specifically, our database is a single time seriesX, that was
generated by concatenating all time series in the original test sets:
455 time series of length 270 from the 50Words dataset, 6164 time
series of length 152 from the Wafer dataset, and 3000 time series of
length 426 from the Yoga dataset. The length|X| of the database
is obviously the sum of length of all these time series, whichadds
up to 2,337,778.

Our set of queries was the set of time series in the original train-
ing set of the three UCR datasets. In total, this set includes1750
time series. We randomly chose 750 of those time series as a val-
idation set of queries, that was used for embedding optimization
using Algorithm 2. The remaining 1000 queries were used to eval-
uate indexing performance. Naturally, the set of 1000 queries used
for performance evaluation was completely disjoint from the set of
queries used during embedding optimization.

6.2 Performance Measures
Our method is approximate, meaning that it does not guarantee

finding the optimal subsequence match for each query. The two
key measures of performance in this context are accuracy andeffi-
ciency. Accuracy is simply the percentage of queries in our evalua-
tion set for which the optimal subsequence match was successfully
retrieved. Efficiency can be evaluated using two measures:

• DTW cell cost: For each queryQ, the DTW cell cost is the
ratio of number of cells[i][j] visited by Algorithm 1 over
number of cells[i][j] using the SPRING method (for the

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

accuracy

D
T

W
 c

el
l c

os
t

accuracy vs. DTW cell cost for PDTW and EBSM

PDTW−13
PDTW−11
PDTW−9
PDTW−7
EBSM−9

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

accuracy

re
tr

ie
va

l r
un

tim
e

co
st

accuracy vs. retrieval runtime cost for PDTW and EBSM

PDTW−13
PDTW−11
PDTW−9
PDTW−7
EBSM−9

Figure 2: Comparing the accuracy versus efficiency trade-
offs achieved by EBSM with sampling rate 9 and by modified
PDTW with sampling rates 7, 9, 11, and 13. The top figure mea-
sures efficiency using the DTW cell cost, and the bottom figure
measures efficiency using the retrieval runtime cost. The costs
shown are average costs over our test set of 1000 queries. Note
that SPRING, being an exact method, corresponds to a single
point (not shown on these figures), with perfect accuracy 1 and
maximal DTW cell cost 1 and retrieval runtime cost 1.

SPRING method, this number is the product of query length
and database length). For PDTW with sampling rates, we
add 1

s2
to this ratio, to reflect the cost of running the DTW al-

gorithm between the subsampled query and the subsampled
database. For the entire test set of 1000 queries, we report
the average DTW cell cost over all queries.

• Retrieval runtime cost: For each queryQ, given an in-
dexing method, the retrieval runtime cost is the ratio of to-
tal retrieval time for that query using that indexing method
over the total retrieval time attained for that query using the
SPRING method. For the entire test set, we report the aver-
age retrieval runtime cost over all 1000 queries. While run-
time is harder to analyze, as it depends on diverse things such

6

as cache size, memory bus bandwidth, etc., runtime is also a
more fair measure for comparing EBSM to PDTW, as it in-
cludes the costs of both the filter step and the refine step. The
DTW cell cost ignores the cost of the filter step for EBSM.

We remind the reader that the SPRING method simply uses the
standard DTW algorithm of Section 3.3. Consequently, by defini-
tion, the DTW cell cost of SPRING is always 1, and the retrieval
runtime cost of SPRING is always 1. The actual average running
time of the SPRING method over all queries we used for perfor-
mance evaluation was: 4.43 sec/query for queries of length 152,
7.23 sec/query for queries of length 270, and 11.30 sec/query for
queries of length 426. The system was implemented in C++, and
run on an AMD Opteron 8220 SE processor running at 2.8GHz.

Trade-offs between accuracy and efficiency can be obtained very
easily, for both EBSM and the modified PDTW, by changing pa-
rameterp of the refine step (see Algorithm 1). Increasing the value
of p increases accuracy, but decreases efficiency, by increasing both
the DTW cell cost and the running time.

We should emphasize the runtime retrieval cost depends on the
retrieval method, the data set, the implementation, and thesystem
platform. On the other hand, the DTW cell cost only depends on
the retrieval method and the data set; different implementations of
the same method should produce the same results (or very similar,
when random choices are involved) on the same data set regardless
of the system platform or any implementation details.

6.3 Results
We compare EBSM to modified PDTW and SPRING. We note

that the SPRING method guarantees finding the optimal subse-
quence match, whereas modified PDTW (like EBSM) is an approx-
imate method. For EBSM, unless otherwise indicated, we useda
40-dimensional embedding, with a sampling rate of 9. The embed-
ding was optimized using a training set of queries, as described in
[3].

Figure 2 shows the trade-offs of accuracy versus efficiency achieved.
We note that EBSM provides very good trade-offs between accu-
racy and retrieval cost. Also, EBSM significantly outperforms the
modified PDTW, in terms of both DTW cell cost and retrieval run-
time cost. For many accuracy settings, EBSM attains costs smaller
by a factor of 2 or more compared to PDTW. As highlights, for
99.5% retrieval accuracy our method is about 21 times faster than
SPRING (retrieval runtime cost = 0.046), and for90% retrieval ac-
curacy our method is about 47 times faster than SPRING (retrieval
runtime cost = 0.021).

In terms of offline preprocessing costs, selecting 40 reference se-
quences using Algorithm 2 took about 3 hours, and computing the
40-dimensional embedding of the database took about 240 seconds.

7. CONCLUSIONS
In this paper, we have described EBSM, a general method for

subsequence matching of time series, that can be applied forthe
problem of similarity-based activity retrieval in databases storing
long observations of activity patterns. The key advantage of EBSM
is that it partially converts the computationally expensive problem
of subsequence matching into the much more manageable problem
of nearest neighbor search in a vector space. This conversion allows
us to efficiently identify a relatively small set of candidate matches
using vector comparisons.

While this paper has been oriented mainly towards the theoreti-
cal problem of efficient subsequence matching, an interesting topic
is applying EBSM in specific real-world data representing patterns
of activity. We are in the process of evaluating EBSM on the prob-

lem of sign spotting, i.e., the problem of identifying occurrences
of signs of interest in large video databases of American Sign Lan-
guage (ASL) content. Results on the problem will be useful for
evaluating the impact of EBSM in real-world applications, as well
as potential issues that will need to be addressed in future work.

8. REFERENCES
[1] T. Argyros and C. Ermopoulos. Efficient subsequence

matching in time series databases under time and amplitude
transformations. InInternational Conference on Data
Mining, pages 481–484, 2003.

[2] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff.
Query-sensitive embeddings. InACM International
Conference on Management of Data (SIGMOD), pages
706–717, 2005.

[3] V. Athitsos, P. Papapetrou, M. Potamias, P. Papapetrou,and
G. Kollios. Approximate embedding-based subsequence
matching of time series. InACM International Conference
on Management of Data (SIGMOD), pages 365–378, 2008.

[4] Ö. Egecioglu and H. Ferhatosmanoglu. Dimensionality
reduction and similarity distance computation by inner
product approximations. InInternational Conference on
Information and Knowledge Management, pages 219–226,
2000.

[5] C. Faloutsos and K. I. Lin. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. InACM International Conference on
Management of Data (SIGMOD), pages 163–174, 1995.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. InACM
International Conference on Management of Data
(SIGMOD), pages 419–429, 1994.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. InInternational Conference on
Very Large Databases, pages 518–529, 1999.

[8] D. Q. Goldin and P. C. Kanellakis. On similarity queries for
time-series data: Constraint specification and
implementation. InInternational Conference on Principles
and Practice of Constraint Programming, pages 137–153,
1995.

[9] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang. Ranked
subsequence matching in time-series databases. In
International Conference on Very Large Data Bases (VLDB),
pages 423–434, 2007.

[10] G. Hjaltason and H. Samet. Properties of embedding
methods for similarity searching in metric spaces.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
25(5):530–549, 2003.

[11] G. Hristescu and M. Farach-Colton. Cluster-preserving
embedding of proteins. Technical Report 99-50, CS
Department, Rutgers University, 1999.

[12] K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality
reduction for similarity searching in dynamic databases. In
ACM International Conference on Management of Data
(SIGMOD), pages 166–176, 1998.

[13] E. Keogh. Exact indexing of dynamic time warping. In
International Conference on Very Large Data Bases, pages
406–417, 2002.

[14] E. Keogh. The UCR time series data mining archive.
http://www.cs.ucr.edu/ eamonn/tsdma/index.html, 2006.

[15] E. Keogh and M. Pazzani. Scaling up dynamic time warping
for data mining applications. InProc. of SIGKDD, 2000.

7

[16] N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung. LDC:
Enabling search by partial distance in a hyper-dimensional
space. InIEEE International Conference on Data
Engineearing, pages 6–17, 2004.

[17] J. B. Kruskall and M. Liberman. The symmetric time
warping algorithm: From continuous to discrete. InTime
Warps. Addison-Wesley, 1983.

[18] Y. Moon, K. Whang, and W. Han. General match: a
subsequence matching method in time-series databases based
on generalized windows. InACM International Conference
on Management of Data (SIGMOD), pages 382–393, 2002.

[19] Y. Moon, K. Whang, and W. Loh. Duality-based
subsequence matching in time-series databases. InIEEE
International Conference on Data Engineering (ICDE),
pages 263–272, 2001.

[20] S. Park, W. W. Chu, J. Yoon, and J. Won. Similarity searchof
time-warped subsequences via a suffix tree.Information
Systems, 28(7), 2003.

[21] S. Park, S. Kim, and W. W. Chu. Segment-based approach
for subsequence searches in sequence databases. In
Symposium on Applied Computing, pages 248–252, 2001.

[22] D. Rafiei and A. O. Mendelzon. Similarity-based queriesfor
time series data. InACM International Conference on
Management of Data (SIGMOD), pages 13–25, 1997.

[23] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream
monitoring under the time warping distance. InIEEE
International Conference on Data Engineering (ICDE),
2007.

[24] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: fast
similarity search under the time warping distance. In
Principles of Database Systems (PODS), pages 326–337,
2005.

[25] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The
A-tree: An index structure for high-dimensional spaces using
relative approximation. InInternational Conference on Very
Large Data Bases, pages 516–526, 2000.

[26] Y. Shou, N. Mamoulis, and D. W. Cheung. Fast and exact
warping of time series using adaptive segmental
approximations.Machine Learning, 58(2-3):231–267, 2005.

[27] E. Tuncel, H. Ferhatosmanoglu, and K. Rose. VQ-index: An
index structure for similarity searching in multimedia
databases. InProc. of ACM Multimedia, pages 543–552,
2002.

[28] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measures. InACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 216–225, 2003.

[29] X. Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,
and K. Zhang. An index structure for data mining and
clustering.Knowledge and Information Systems,
2(2):161–184, 2000.

[30] R. Weber and K. Böhm. Trading quality for time with
nearest-neighbor search. InInternational Conference on
Extending Database Technology: Advances in Database
Technology, pages 21–35, 2000.

[31] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shirato, and
D. R. Kaeli. Subsequence matching on structured time series
data. InACM International Conference on Management of
Data (SIGMOD), pages 682–693, 2005.

[32] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval

of similar time sequences under time warping. InIEEE
International Conference on Data Engineering, pages
201–208, 1998.

8

