Approximate Embedding-Base

d Subsequence Matching of

Time Series

Vassilis Athitsos !, Panagiotis Papapetrou 2, Michalis Potamias 2,

George Kollios 2, and Di

! Computer Science and Engineering Depa

mitrios Gunopulos 3

rtment, University of Texas at Arlington

2 Computer Science Department, Boston University
¢ Department of Informatics and Telecommunications, University of Athens

ABSTRACT

A method for approximate subsequence matching is intratjuce
that significantly improves the efficiency of subsequencécha

ing in large time series data sets under the dynamic timeingrp
(DTW) distance measure. Our method is called EBSM, shodthan
for Embedding-Based Subsequence Matching. The key iden is t
convert subsequence matching to vector matching using aeeém
ding. This embedding maps each database time series into a se
quence of vectors, so that every step of every time serieben t
database is mapped to a vector. The embedding is computed b
applying full dynamic time warping between reference otgend
each database time series. At runtime, given a query olject,
embedding of that object is computed in the same manner,by ru
ning dynamic time warping between the reference objectsttaad
query. Comparing the embedding of the query with the datbas
vectors is used to efficiently identify relatively few aredsnterest

in the database sequences. Those areas of interest areutlyen f
explored using the exact DTW-based subsequence matclyog al
rithm. Experiments on a large, public time series data sedywme
speedups of over one order of magnitude compared to brute-fo
search, with very small losses (1%) in retrieval accuracy.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing: Indexing methods; H.2.8
[Database Applicationd: Data Mining; H.2.4 Bystem$: Multi-
media Databases

General Terms
Algorithms

1. INTRODUCTION

Time series data naturally appear in a wide variety of domain
including scientific measurements, financial data, sensovarks,
audio, video, and human activity. Subsequence matchingeis t
problem of identifying, given a query time series and a dagalnf

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’08,June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

time series, the databasebsequencg.e., some part of some time
series in the database) that is the most similar to the geeyence.
Achieving efficient subsequence matching is an importaoiblem

in domains where the database sequences are much longéne¢han
queries, and where the best subsequence match for a query can
start and end at any position of any database sequence. vetpro
algorithms for subsequence matching can make a big differen
in real-world applications such as query by humming [44]rdvo
spotting in handwritten documents, and content-basetkvatrin

3)arge video databases and motion capture databases.

Naturally, identifying optimal subsequence matches assttime
existence of a similarity measure between sequences, dhabe
used to evaluate each match. A key requirement for such aumeeas
is that it should be robust to misalignments between se@Is0
as to allow for time warps (such as stretching or shrinkinge p
tion of a sequence along the time axis) and changes in seguenc
length. This requirement effectively rules out Euclidead anore
generalL,, measures. Typically, similarity between time series is
measured using dynamic time warping (DTW) [20], which is in-
deed robust to misalignments and time warps, and has givgn ve
good experimental results for applications such as timeserin-
ing and classification [16].

The classical DTW algorithm can be applied for full sequence
matching, so as to compute the distance between two timesseri
With small modifications, the DTW algorithm can also be used
for subsequence matching, so as to find, for one time sehes, t
best matching subsequence in another time series [1, 22625,
31]. The complexity of the DTW algorithm scales linearly hwit
the length of the query and also scales linearly with the efze
the database (i.e., the sum of the lengths of all time semi¢ke
database). While this complexity is definitely attractieenpared
to exhaustively matching the query with every possible e
subsequence, in practice subsequence matching is stithputa-
tionally expensive operation in many real-world applioas, espe-
cially in the presence of large database sizes.

1.1 Our Contributions

In this paper we present EBSM (shorthand for Embedding-Base
Subsequence Matching) a general method for speeding up-subs
guence matching in time series databases. Our method igshe fi
to explore the usage of embeddings for subsequence matihing
unconstrained DTW. The key differentiating features ofroethod
are the following:

e EBSM converts, at least partially, subsequence matching un
der DTW into a much easier vector matching problem. Vec-
tor matching is used to identify very fast a relatively small

(a) offline preprocessing (b) onine retrieval system

embedding reference previously
optimization sequences unseen query Q
' database atabase refine step
reference embeddings sequence (DTW)
sequences
database
Candidate Subsequene
endpoints match

number of candidate matches. The computationally expen-
sive DTW algorithm is only applied to evaluate those candi-
date matches.

e EBSM is the first indexing method, in the context of subse-
guence matching, that focuses on unconstrained DTW, where
optimal matches do not have to have the same length as the
query. The only alternative method for this setting, PDTW,
which uses piecewise aggregate approximation (PAA) [17],
is a generic method for speeding up DTW.

F(X,)
embeddings

filter step
F(X.j) (vector matching)

Figure 1: Flowchart of the offline and the online stages of the

e Our implementation of PDTW (for the purpose of comparing Proposed method. System modules are shown as rectangles,
it to EBSM) is also a contribution, as it differs from the way —and input/output arguments are shown as ellipses. The goafo
PDTW has been described by its creators [17]: we add a the online stage is to identify, given a query time serie®), its
refine step that significantly boosts the accuracy vs effigien ~ Optimal subsequence match in the database.
trade-offs achieved by PDTW.

e In our experiments, EBSM provides the best performance in retrieval, even when only small losses in retrieval acoufaeor-
terms of accuracy versus efficiency, compared to the current rect results for less that{% of the queries) are allowed.
state-of-the-art methods for subsequence matching umder u In Section 2 we discuss related work and we emphasize the key
constrained DTW: the exact SPRING method [31] that uses differences between our method and existing methods. Itidhe
the standard DTW algorithm, and the approximate PDTW we provide necessary background information by definingtwaha
method [17]. optimal subsequence match is, and describing how to useThé D

)) : algorithm to find that match. In Section 4 we define the progose
The key idea behind our method is that the subsequence matCh'noveI type of embeddings that can be used to speed up subseque
ing problem can be partially converted to the much more manag atching. Section 5 describes how the proposed embeddimgs ¢
able problem of nearest neighbor retrieval in a real vegpace. be integrated within a filter-and-refine retrieval framekvdn Sec-
This conversion is achlevgd by defining an embedding thats_map tion 6 we describe how to optimize embedding quality usiagntr
each database sequence into a sequence of vectors. Th@®ES 8 jny qata. Section 7 discusses the issue of how to handle demai
to-one correspondence between each such vector and apasiti where there is a large difference in length between the smailid
the database sequence. The embedding also maps each Guery Sgq |arger queries that the system may have to handle. Fiirall
ries into a vector, in such a way that if the query is very samio a Section 8 we quantitatively evaluate our method on a lardgiu
subsequence, the embedding of the query is likely to be airtal benchmark dataset, and we illustrate that our method canffisig

the vector corresponding to the endpoint of that subseguenc cantly speed up subsequence matching compared to exititeg s
Embeddings are defined by matching queries and database segs iha_art methods.

guences with so-callegference sequenceise., a relatively small

number of preselected sequences. The expensive operatiatah-

ing database and reference sequences is performed offlimenA 2. RELATED WORK

time, the embedding of the query is computed by matching the The topic of efficient sequence matching has received sogmifi
query with the reference sequences, which is typically meraé attention in the database community. However, several odsth
magnitude faster than matching the query with all database s assume that sequence similarity is measured using thedgaali
quences. Then, the nearest neighbors of the embedded qeery a distance [8, 23, 24] or variants [2, 10, 29, 42]. Naturallycls
identified among the database vectors. An additional remem methods cannot handle even the smallest misalignment adyse
step is performed, where subsequences corresponding toghe time warps. In the remaining discussion we restrict oumditie to

vector-based matches are evaluated using the DTW algorffgn methods that are robust to such misalignments.

ure 1 illustrates the flowchart of the offline and the onliregst of Dynamic time warping (DTW) [20] is a distance measure that

the proposed method. is robust to misalignments and time warps, and it is widelgdus
Converting subsequence matching to vector retrieval ispgem for time series matching. Time series matching methods ean b

tationally advantageous for the following reasons: divided into two categories: 1). methods for full sequenaahn-

.) o) _ing, where the best matches for a query are constrained totive e
e Sampling and dimensionality reduction methods can easily gstapase sequences, and 2). methods for subsequencengatchi
be applied to reduce the amount of storage required for the \yhere the best matches for a query can be arbitrary subseggien
database vectors, and the amount of time per query requiredof database sequences. Several well-known methods onfgsadd
for vector matching. full sequence matching [16, 32, 34, 37, 43], and cannot be fmse

e Numerous internal-memory and external-memory indexing efficki]ent retriegalr(])f sub§equences.d ibed i dd h
methods exist for speeding up nearest neighbor retrieval in e duery-by-numming system described in [44] addresses t

vector and metric spaces [4, 13, 41]. Converting subseguenc problem of mgtching short melodies hummed by users to enti.re
matching to a vector retrieval problem allows us to use such songs stored in the database. That method cuts each song into

methods for additional computational savings. smaller, disjoint pie_ces, and performs _fuII sequence nisagche-
tween query melodies and the song pieces stored in the databa
EBSM is an approximate method, that does not guarantee re-A similar approach is taken in [30] for searching words indan
trieving the correct subsequence match for every queryfoRer written documents: as preprocessing, the documents areesegd
mance can be easily tuned to provide different trade-offe/den automatically into words, and full sequence matching isquered
accuracy and efficiency. In the experiments, EBSM providegg v between query words and database words. Such approaches can
good trade-offs, by significantly speeding up subsequenatehm only retrieve pieces that the original database sequeraeshieen

segmented to. In contrast, subsequence matching carvestig £
database subsequence matching the query.

In[27] an indexing structure is proposed for unconstraiD&iV- 0
based subsequence matching, but retrieval complexitiflisregar
to the product of the lengths of the query and the databaseresq.
Furthermore, as database sequences get longer, the tinpéesdy
becomes similar to that of unoptimized DTW-based matching.

A method for efficient exact ranked subsequence matching is
proposed in [11]. In that method, queries and database segsie
are broken into segments, and lower bounds are establisiegl u
LB_Keogh [16], so as to prune the majority of candidate mesch ~ Figure 2: Example of a warping path between a query sequence
There are two key differences between the method in [11]had t @ and a database sequencd’. Each black square indicates a
proposed EBSM method: First, the method in [11] can only find correspondence between an element ¢f and an element ofX..
subsequence matches that have the exact same length agithe qu
Our method has no such limitation. In practice, for efficienc .) .
we make the assumption that the optimal subsequence magch ha N Particular, the above-mentioned embedding methods metp e
length between zero and twice the length of the query. This is S€duence into a single vector, in such a way that if two sezgsen
much milder assumption than requiring the subsequencehmatc '€ similar to each other then thg embeddlngs of those two se-
have the exact same length as the query. Second, the method iffluénces are also expected to be similar to each other. Hoveeve
[11] is only applicable to constrained DTW [16], where thepva ~ GUETY Sequence can be very similar teubsequencef a database
ing path has to stay close to the diagonal. Our method carbalso ~ S€duence, while being very dissimilar to the entire datalses
applied to unconstrained DTW. quence. For that reason, existing embedding methods aresaet

An efficient method for retrieving subsequences under DTW is ful for efficiently identifying subsequence matches. Intast, the
presented in [28]. The key idea in that method is to speed up method proposed in this paper maps each database sequénce no

DTW by reducing the length of both query and database segsenc to a single vector, but to aequenceof vectors, so that there is

The length is reduced by representing sequences as oristeeof | a one-to-one correspondence between each such vector and a p
monotonically increasing or decreasing segments. By usiogo- sition in the database sequence. If the query is very sumlar_ _
tonicity, that method is only applicable to 1D time seriesefated subsequence, we expect the embedding of the query to besimil

method that can also be used for multidimensional timesasie {© the vector corresponding to the endpoint of that subsexpie
PDTW [17]. In PDTW, time series are approximated by shorter Another way to illustrate the difference between the embegld
sequences, obtained by replacing each constant-lengtiofodre methods in [3, 7, 12, 14, 38] and EBSM (our method) is by consid
original sequence with the average value over that partémgw ering the case where the database contains just a singléorgyy
sequence. We compare our method with a modified, improved ver Seéquence. Existing embedding methods would simply map that
sion of PDTW in the experiments. sequence into a single vector. Comparing the embeddingeof th
The SPRING method for subsequence matching is proposed induery with that vector would not provide any useful inforioat
[31]. In SPRING, optimal subsequence matches are identijed ~ nstead, EBSM maps the database sequence into a sequeree of v
running the DTW algorithm between the query and each dasabas 'S- Comparing the embedding of the query with those veator

sequence. Subsequences are identified by prepending fadttiers used to efficiently identify relatively fgw areas of interés the
sequence a “null” symbol that matches any sequence prefix wit database sequence. Those areas of interest are then fpilty ek

zero cost (similar ideas are also used in [1, 21, 25, 26]). The using the exact DTW-based subsequence matching algorithm.

complexity of SPRING is still linear to both database sizel an

query size. In EBSM, we use SPRING for matching the query and 3. BACKGROUND: DTW

database sequences with the reference sequences, anfiniogre In this section we define dynamic time warping (DTW), both as a

the embedding-based retrieval results.] _distance measure between time series, and as an algorittevefo
Compared to SPRING, the key source of computational savings ,ating similarity between time series. We follow to a largeeat

in EBSM is that expensive DTW-based matching is only perfstm 4 descriptions in [16] and [31]. We use the following niztat
between the query and a small fraction of the database, ahane

SPRING the query is matched to the entire database using DTW. e @, X, R, andS are sequences (i.e., time serie§)is typi-

The price for this improved efficiency is that EBSM cannotgua cally a query sequence is typically a database sequence,
antee correct results for all queries, whereas SPRING ixact e R is typically a reference sequence, aficcan be any se-
method. Still, it is often desirable in database appliceito trade guence whatsoever.
accuracy for efficiency, and our method, in contrast to SRRIN
provides the capability to achieve such trade-offs. ¢ |S| denotes the length of any sequerite

The method proposed in this paper is embedding-based. &ever
embedding methods exist in the literature for speeding stadce e S; denotes the t-th step of sequerteln other words,S =
computations and nearest neighbor retrieval. Examplesudi s (515, 8s))-

methods include Lipschitz embeddings [12], FastMap [7],t-Me
ricMap [38], SparseMap [14], and query-sensitive embegkl[3].

Such embeddings can be used for speeding up sequence match-
ing, as done for example in [3, 14]. However , existing emliregid
methods are only applicable in the context of full sequena&h

ing, not subsequence matching.The method proposed indpisrp

is applicable for subsequence matching.

e S% denotes the subsequenceS$tarting at positior and
ending at positiory. In other words,S*7 = (Si,...,5;),
8,7 is thet — th step ofS*7, andS;” = Sit1¢—1.

e D:11(Q, X) denotes the full sequence matching cost between
@ and X. In full matching,@: is constrained to match with
X1, andQ)|q) is constrained to match with(| x|.

e D(Q, X) denotes the subsequence matching cost between
sequences) and X. This cost isasymmetric: we find the
subsequenc& *J of X (whereX is typically a large database
sequence) that minimizeBr(Q, X*7) (whereQ is typi-
cally a query).

D; ;(Q, X) denotes the smallest possible cost of matching
(Q1,...,Q;:) to any suffix of(X1,..., X;) (i.e., Q1 does
not have to matclX;, but@; has to match wittX ;). D; ;(Q, X)
is also defined fof = 0 andj = 0, as specified below.

D;(Q, X) denotes the smallest possible cost of matching
Q to any suffix of (X1,...,X;) (i.e., Q1 does not have
to match X1, but Q|| has to match withX;). Obviously,
D;(Q,X) = Diq.;(Q, X).

e || X; — Y| denotes the distance betwe&n andY;.

Given a query sequencdg and a database sequen€ethe sub-
sequence matching problem is the problem of finding the subse
quenceX®’ of X that is the best match for the entifg i.e., that
minimizes D1 (Q, X 7). In the next paragraphs we formally de-
fine what the best match is, and we specify how it can be cordpute

3.1 Legal Warping Paths

A Warping pathW = ((’1111’1711)1,2)7 ey (w‘w‘,l, w‘w‘,g)) de-
fines an alignment between two sequen@eand X. The i-th el-
ement of W is a pair(w;,1, w;,2) that specifies a correspondence
between elemen®.,, , of Q and elementX,,, , of X. The cost
C(Q, X, W) of warping pathiW for @ and X is the L,, distance

(for any choice ofp) between vector§Q., ;. .. 7QW\W\,1) and
(le,zv s 7Xw\w\,2):
W]
C(Q7X7 W) =X Z Hszl - Xwi,2Hp . (1)
=1

In the remainder of this paper, to simplify the notation, widl w
assume thap = 1. However, the formulation we propose can be
similarly applied to any choice of.

For W to be a legal warping path, in the context of subsequence
matching under DTWIV must satisfy the following constraints:

e Boundary conditions: w11 = 1 andww,; = |Q|. This
requires the warping path to start by matching the first el-
ement of the query with some element &f, and end by
matching the last element of the query with some element
of X.

Monotonicity: wit1,1 — wi1 > 0,wiq1,2 — wi2 > 0.
This forces the warping path indices ; andw; » to increase
monotonically withi.

Continuity: Wi+1,1 — Wi,1 < 17wi+1,2 — w;,2 < 1. This
restricts the warping path indices,; andw; 2 to never in-
crease by more thah so that the warping path does not skip
any elements of), and also does not skip any elementsXof
between position(w, , andXw,,, | ,-
(Optional) Diagonality: w2 — w12 = |Q| — 1, wi 2 —

wi,2 € [’wz‘#l—@(Q,wi,l), wi¢1+@(Q,wi,1)], where@(Q,t)

is some suitably chosen function (e.(Q,t) = p|Q|, for
some constarg such thaip|Q| is relatively small compared

to |Q|) . This is an optional constraint, employed by some
methods, e.g., [11, 16], and not employed by other methods,

e.g., [31]. The diagonality constraint imposes that the sub
sequenceX “-2¥1w 1.2 be of the same length &@3. Further-
more, the diagonality constraint severely restricts tiralmer

of possible positions; > of X that can match positiow; ;

of @, given the initial match matctwi,1,w1,2). In the rest

of the paper, we will not consider this constraint, and in the
experiments this constraint is not employed.

3.2 Optimal Warping Paths and Distances

The optimal warping patfV*(Q, X) between@ and X is the
warping path that minimizes the casS{Q, X, W):

W*(Q,X) = argminy, C(Q, X, W).)

We define the optimal subsequence matdii@Q, X) of Q in X
to be the subsequence &f specified by the optimal warping path
W*(Q,X). In other words, ifW*(Q,X) = (wii,wlz),...,
(Wi, 1, Win2)), then M (Q, X) is the subsequencﬁ”“’fﬂ’w;ﬂ.
We define the partial dynamic time warping (DTW) distafitfe), X)
to be the cost of the optimal warping path betwégand X:

D(Q, X) =C(Q, X, W"(Q, X)).

Clearly, partial DTW is an asymmetric distance measure.

To facilitate the description of our method, we will defineotw
additional types of optimal warping paths and associatethdce
measures. First, we defifi&,; (Q, X) to be the optimalull warp-
ing path i.e., the patiV = ((w1,1,w1,2),. .., (Ww|1, Ww)2))
minimizing C'(Q, X, W) under the additional boundary constraints
thatw: 2 = 1 andww| 2 = |X|. Then, we can define the full
DTW distance measurBs,1(Q, X) as:

Dfull(Q7X) = C(Q7X7 Wf’:lll(Q7X))' (4)

DistanceDs.11 (@, X') measures the cost of full sequence matching,
i.e., the cost of matching the entiggwith the entireX. In contrast,
D(Q, X) from Equation 3 corresponds to matching the enfire
with asubsequencef X .

We defineW*(Q, X, j) to be the optimal warping path match-
ing @ to a subsequence dof ending atX}, i.e., the pathV =
((wi,1,w1,2),- .., (Ww,1, ww),2)) MiNiMizingC(Q, X, W) un-
der the additional boundary constraint thaty| , = j. Then, we
can defineD; (Q, X) as:

We defineM (R, X, j) to be the optimal subsequence match for
R in X under the constraint that the last element of this match is
Xj:

®)

M(R, X, j) = argmin y.; Dsan (R, X*7). (6)

Essentially, to identifyM (R, X, j) we simply need to identify the
start point; that minimizes the full distanc®;. betweenk and
X’L:] i

3.3 The DTW Algorithm

Dynamic time warping (DTW) is a term that refers both to the
distance measures that we have just defined, and to the slalda
gorithm for computing these distance measure and the qames
ing optimal warping paths.

We define an operatios that takes as inputs a warping path
W = ((w1,17w172)7 (R (w\W\,ly w\W\,Q)) and a pair(wl7 wﬂ)
and returns a new warping path that is the result of appending
(w',w') to the end ofV:

W (w,7 w”) = ((wl,h w1’2)7 LR (w\W\,ly w\W\,2)7 (wlvw//))'

@)

The DTW algorithm uses the following recursive definitions:

Do,0(Q,X) =0,Di,0(Q, X) =00,D0,;(Q,X) =0 (8)
Woo(Q, X) = () Wo,; (@, X) = () 9)
A7) ={(,7-1),(E-1,7),(G-175-1)} (10)
((@, X), pi(Q, X)) = argmin yca (i, Ds.t(Q, X) (11)
1.0(Q, X) = 1Qi — X[l + Dyi(q,x) pi(@.x) (@, X) (12)

Wi ;(Q, X) = Whiq,x).pic@.x) ® (i,4) (13)
D@.X) = _min_{Dig;(Q. X)) (14)

The DTW algorithm proceeds by employing the above equations
at each step, as follows:

e Inputs. A short sequencé), and a long sequencke.
e Initialization. ComputeDo0(Q, X), D;,0(Q,X), Do,;(Q, X).
QLI =1,...,|X]:

1. Computepi(Q, X), pj(Q, X)).
2. ComputeD; ;(Q, X).
3. ComputdV; ;(Q, X).

e Output. Compute and retur®(Q, X).

The DTW algorithm takes tim@(|Q|| X |). By definingDo ; =
0 we essentially allow arbitrary prefixes &f to be skipped (i.e.,
matched with zero cost) before matchi@gwith the optimal sub-
sequence inX [31]. By defining D(Q, X) to be the minimum
Dq),;(Q, X), wherej = 1,...,|X]|, we allow the best matching
subsequence of to end at any positiori. Overall, this definition
matches the entir@ with an optimal subsequence &f.

For each positiory of sequenceX, the optimal warping path
W*(Q, X, j) is computed as valud/ g ;(Q, X) by the DTW al-
gorithm (step 3 of the main loop) . The globally optimal waugi
pathW*(Q, X) is simplyW*(Q, X, jopt), Wherejqop: is the end-
point of the optimal matchjopt = argmin,_; | x{Djq;(Q,X)}.

4. EBSM: AN EMBEDDING FOR SUBSE-
QUENCE MATCHING

Let X = (Xi,...,X|x|) be a database sequence that is rela-
tively long, containing for example millions of elements.itidut
loss of generality, we can assume that the database onlginsnt
this one sequenc¥ (if the database contains multiple sequences,
we can concatenate them to generate a single sequenceh &ive
query sequencé, we want to find the subsequenceXfthat op-
timally matches) under DTW. We can do that using brute-force
search, i.e., using the DTW algorithm described in the previ
section. This paper proposes a more efficient method. Ouradet
is based on defining a novel type of embedding funcfigrwhich
maps every querg into ad-dimensional vector and every element
X; of the database sequence also ini@-@mensional vector. In
this section we describe how to define such an embeddinghand t
we provide some examples and intuition as to why we expett suc
an embedding to be useful.

Let R be a sequence, of relatively short length, that we shall
call areference objecobr reference sequenceWe will use R to
create a 1D embedding”, mapping each query sequence into a
real numberF'(Q), and also mapping each stgf sequenceX
into a real numbeF (X, j):

FHQ)
FY(X,j)

e Mainloop. Fori=1,...

(15)
(16)

Diryq|(R,Q) -
Dig (R, X) .

Naturally, instead of picking a single reference sequeRcee
can pick multiple reference sequences to create a multitiioeal
embedding. Forexample, &%, .. ., Rq bed reference sequences.
Then, we can define@&dimensional embedding' as follows:

FQ = (F™Q),....F'(Q). an
F(X,j) = (FU(Xj),....FH(X,5). (18
Computing the set of all embedding¥ X, j), forj = 1,...,|X]|

is an off-line preprocessing step that takes t@¢xX| 3¢ | |Ri|).
In particular, computing theth dimension/%: can be done simul-
taneously for all position$X, j), with a single application of the
DTW algorithm with inputsR; (as the short sequence) axd(as
the long sequence). We note that the DTW algorithm computes
eachF " (X, j),forj = 1,...,|X|, as valueD|g, ;(R:, X) (see
Section 3.3 for more details).
Given a queryQ, its embeddingF’(Q) is computed online, by
applying the DTW algorithna times, with inputsR; (in the role of
the short sequence) adi(in the role of the long sequence). In to-
tal, these applications of DTW take tin@@(|Q| Y%, |R:|). This
time is typically negligible compared to running the DTW @&lg
rithm betweer) and X, which takesO(]Q||X|) time. We assume
that the sum of lengths of the reference objects is ordersaginin
tude smaller than the lengtX | of the database sequence.
Consequently, a very simple way to speed up brute forcelsearc
for the best subsequence matchpfs to:

e CompareF'(Q)to F(X,j)forj =1,...,|X|.

e Choose somg's such thatF’(Q) is very similar toF' (X, 7).

e For each suclj, and for some length parametbr run dy-
namic time warping betwee@ and(X’~***/) to compute
the best subsequence matchdpin (X7~L+17),

As long as we can choose a small number of such promising
areas X7~ L+ evaluating only those areas will be much faster
than running DTW betwee® and X . Retrieving the most similar
vectorsF'(X, j) for F(Q) can be done efficiently by applying a
multldlmensmnal vector indexing method to these embegki[8,
40, 33, 5, 22, 6, 15, 39, 19, 35].

We claim that, under certain circumstancesRifs similar to a
subsequence ok ending atX;, and if R is some reference se-
quence, ther(Q) is likely to be similar toF®(X, 7). Here we
provide some intuitive arguments for supporting this claim

Let’s consider a very simple case, illustrated in Figurer8this

case, the querg) is identicalto a subsequencﬁ'i,:j. Consider a
reference sequende, and suppose thadt/ (R, X, j) (defined as in
Equation 6) isX*/, and thati > ¢'. In other words,M (R, X,)
is a suffix of X*7 and thus a suffix of) (sinceX*’ = Q). Note
that the following holds:

F*(Q) = Dirjj(R, Q) = Diry; (R, X) = F*(X,). (19)
In other words, ifQ appears exactly as a subsequeﬁl’déj of X,

it holds thatF%(Q) = F®(X,j), under the conditiorthat the
optimal warping path alignind? with X**J does not start before
positiond’, which is where the appearance@fstarts.

This simple example illustrates an ideal case, where theyqe
has an exact matck®*/ in the database. The next case to consider
is whenX* is a slightly perturbed version ap, obtained, for
example, by adding noise from the interyale, €] to eachQ;. In
that case, assuming always thet(R, X, j) = X* andi > 4/,
we can show thatF(Q) — FE(X,)| < (2|Q| — 1)e. This

(a) (b)
R R
—>Q i j
Q
X
©
R
i i j
Q
X
Figure 3. (a) Example of an optimal warping path

W*(R,Q,|Q]) aligning a reference objectR to a suffix of
Q. FR(Q) is the cost of W*(R,Q,|Q]). (b) Example of a
warping path W*(R, X, j), aligning a reference objectR to
a subsequenceX’ of sequenceX. FT(X,) is the cost of
W*(R,X,j). The query @ from (a) appears exactly in X,
as subsequenceX’/, and ' < i. Under these conditions,
FE(Q) = FE(X,j). (c) Similar to (b), except thati’ > i.
In this case, typically F7(Q) # FT(X, j).

is obtained by taking into account that warping pHth (R, X, j)
cannot be longer tha?|@Q| — 1 (as long as > i').
There are two cases we have not covered:

e Perturbations along thtemporalaxis, such as repetitions, in-
sertions, or deletions. Unfortunately, for unconstraibddV,

due to the non-metric nature of the DTW distance measure,
no existing approximation method can make any strong math-

ematical guarantees in the presence of such perturbations.

e The case where < ¢/, i.e., the optimal path matching the
reference sequence to a suffix &/ starts before the be-
ginning of M (Q, X, 7). We address this issue in Section 7.

Given the lack of mathematical guarantees, in order for the p
posed embeddings to be useful in practice, the followgtagjstical
property has to hold empirically: given positigs: (Q), such that
the optimal subsequence match@fin X ends atjop:(Q), and
given some random positign# jopt (Q), it should be statistically
very likely that F'(Q) is closer toF' (X, jopt (@)) than toF' (X, j).

If we have access to query samples during embedding construc

tion, we can actually optimize embeddings so th&t)) is closer
to F(X, jopt(Q)) than toF' (X, 5) as often as possible, over many
random choices af) andj. We do exactly that in Section 6.

5. FILTER-AND-REFINED RETRIEVAL

Our goal in this paper is to design a method for efficiently re-
trieving, given a query, its best matching subsequence fitzen
database. In the previous sections we have defined embesdtiatg
map each query object and each database positiogi-thraensional
vector space. In this section we describe how to use suchd&embe
dings in an actual system.

5.1 General Framework

The retrieval framework that we use is filter-and-refineieetd,
where, given a query, the retrieval process consists ofe &tep
and a refine step [12]. The filter step typically provides ackui
way to identify a relatively small number of candidate math
The refine step evaluates each of those candidates usindgheb
matching algorithm (DTW in our case), in order to identifyeth
candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retabef-
ficiency with small, or zero loss in retrieval accuracy. Refl
efficiency depends on the cost of the filter step (which iscziby
small) and the cost of evaluating candidates at the refipe Ebeal-
uating a small number of candidates leads to significantngavi
compared to brute-force search (where brute-force searatyr
setting, corresponds to running SPRING [31], i.e., runrigN
between and X). Retrieval accuracy, given a query, depends on
whether the best match is included among the candidatesatedl
during the refine step. If the best match is among the carefidat
the refine step will identify it and return the correct result

Within this framework, embeddings can be used at the filegr,st
and provide a way to quickly select a relatively small numbier
candidates. Indeed, here lies the key contribution of thjgep, in
the fact that we provide a novel method for quick filteringattban
be applied in the context of subsequence matching. Our metho
relies on computationally cheap vector matching operatias op-
posed to requiring computationally expensive applicatioiDTW.
To be concrete, given @&dimensional embedding', defined as in
the previous sectiond;’ can be used in a filter-and-refine frame-
work as follows:

Offline preprocessing step:Compute and store vectét(X,)
for every positiory of the database sequen&e

Online retrieval system: Given a previously unseen query ob-
ject@, we perform the following three steps:

e Embedding step: compute F(Q), by measuring the dis-
tances betwee@ and the chosen reference sequences.

o Filter step: Select database positiof¥, j) according to the
distance between eadh(X, j) and F(Q). These database
positions are candidatendpointsof the best subsequence
match for@.

¢ Refine step:Evaluate selected candidate positi¢fs ;) by
applying the DTW algorithm.

In the next subsections we specify the precise implememntafi
the filter step and the refine step.

5.2 Speeding Up the Filter Step

The simplest way to implement the filter step is by simply com-
paring F(Q) to every singleF'(X, j) stored in our database. The
problem with doing that is that it may take too much time, espe
cially with relatively high-dimensional embeddings (fotaenple,
40-dimensional embeddings are used in our experimentsydir
to speed up the filtering step, we can apply well-known teshes,
such as sampling, PCA, and vector indexing methods. We ghoul
note that these three techniques are all orthogonal to e¢heh o

In our implementation we use sampling, so as to avoid compar-
ing F'(Q) to the embedding of every single database position. The
way the embeddings are constructed, embeddings of neasdy po
tions, such a#'(X,j) and F(X,j + 1), tend to be very similar.

A simple way to apply sampling is to choose a paraméfeand
sample uniformly one out of ever§ vectors F(X, j). That is,
we only store vectord’(X,1), F(X,1 + ¢), F(X,1 4 20),....

Given F(Q), we only compare it with the vectors that we have
sampled. If, for a database positi¢iX, j), its vector F'(X, j)
was not sampled, we simply assign to that position the distan
betweenF(Q) and the vector that was actually sampled among
(F(X,j—[6/2]),-.., F(X,j + [6/2])}.

PCA can also be used, in principle, to speed up the filter step,
by reducing the dimensionality of the embedding. Finalbcter
indexing methods [9, 40, 33, 5, 22, 6, 15, 39, 19, 35] can béepp
to speed up retrieval of the nearest database vectors. Sdeking
methods may be particularly useful in cases where the enngdd
of the database does not fitin main memory; in such casesnakte
memory indexing methods can play a significant role in oping
disk usage and overall retrieval runtime.

Our implementation at this point is a main-memory implemen-
tation, where the entire database embedding is stored inonyem
In our experiments, using sampling paramétet 9, and without
any further dimensionality reduction or indexing methodas, get
a very fast filter step: the average running time per quengtter
filter step is abou@.5% of the average running time of brute-force
search. For that reason, at this point we have not yet incatpd
more sophisticated methods, that might yield faster fitgeri

5.3 The Refine Step for Unconstrained DTW

The filter step ranks all database positigi$, j) in increasing
order of the distance (or estimated distance, when we usexpp
imations such as PCA, or sampling) betwdefX, j) and F(Q).

The task of the refine step is to evaluate thega@andidates, where
p is a system parameter that provides a trade-off betwedpvaitr
accuracy and retrieval efficiency.

Algorithm 1 describes how this evaluation is performed.c8in
candidate position$X, j) actually represent candidagadpoints
of a subsequence match, we can evaluate each such candidate e
point by starting the DTW algorithm from that endpoint andngo
backwards. In other words, the end of the query is alignel thi¢
candidate endpoint, and DTW is used to find the optimal saaud (
corresponding matching cost) for that endpoint.

If we do not put any constraints, the DTW algorithm will go all
the way back to the beginning of the database sequence. légwev
subsequences df that are much longer tha@ are very unlikely
to be optimal matches faR. In our experiments99.7% out of
the 1000 queries used in performance evaluation have an optimal
match no longer than twice the length of the query. Conseftyien
we consider that twice the length of the query is a prettyaras
able cut-off point, and we do not allow DTW to consider longer
matches.

One complication is a case where, as the DTW algorithm moves
backwards along the database sequence, the algorithmogats t
other candidate endpoint that has not been evaluated yeat Th
endpoint will need to be evaluated at some point anyway, so we
can save time by evaluating it now. In other words, while eval
uating one endpoint, DTW can simultaneously evaluate kot
endpoints that it finds along the way. The two adjustmentstiea
make to allow for that are that:

e The “sink state”Q q|+1 matches candidate endpoints (that
have not already been checked) with cost 0 and all other
database positions with cost.

o Ifin the process of evaluating a candidate endpgie find
another candidate endpoijft we allow the DTW algorithm
to look back further, up to positioff — 2|Q| + 1.

The endpoint array in Algorithm 1 keeps track, for every pair
(4, 7), of the endpoint that corresponds to the cost storedsiti][5].

input 1 Q: query.
X: database sequence.
sorted: an array of candidate endpoints sorted in
decreasing order gf.
p: number of candidates to evaluate.

output (X, Jstart), (X, jena): Start and end point of estimated best
subsequence match.
distance: distance between query and estimated best sub-
sequence match.
columns: number of database positions evaluated by DTW
(this is a key measure of retrieval efficiency).

for ¢ = 1to | X| do
| unchecked[i] = 0;

end
for s =1topdo

| unchecked [sorted[d]] = 1;
end

distance = oo;
columns = 0;
/l main loop, check all candidates sorted[1], ..., sorted[p
for k=1topdo
candidate = sorted[k];
if (unchecked [candidate] == 0) then continug
7 = candidate + 1,
fori=|Q|+ 1to1do
| cost[i][j] = oo;
end
while (true) do
j=Ji—-1
if (candidate — j > 2 x |Q]) then break;
if (unchecked[j] == 1) then
unchecked[j] = 0;
candidate = j; // found another candidate endpoint.
cost[|Q| + 1][j] = 0;
endpoint[|Q| + 1][5] = 7;
else
| cost[|Q| + 1][j] = oo; /l j is not a candidate endpoint.
end
for i = |Q|to 1 do
previous = {(i + 1,7), (i,j + 1), (i + 1,5 + 1)}
(pi) pj) = a‘rgn’lin(a,b)Eprcviouscost [a’} [b} ;
cost[i][j] = |Qi — Xj| + cost[pi][p;];
endpoint[i][j] = endpoint|p;][p;];
nd
(cost[1][j] < distance) then
distance = cost[1][4];
Jjstart = J;
Jend = CndPOint[l] []]'

= @

end

columns = columns + 1;

if (min{cost[i][j]li =1,...,|Q|} > distance) then break;
end

end

/ffinal alignment step
start = jend — 3‘Q‘;
end = jcnd + |Q|'

Adjust jstart @ndjstart by running the DTW algorithm betweeR and
Xstart:cnd;

Algorithm 1. The refine step for unconstrained DTW.

This is useful in the case where multiple candidate endpaing
encountered, so that when the optimal matching score isdfoun
(stored in variablelistance), we know what endpoint that match-
ing score corresponds to.

6. EMBEDDING OPTIMIZATION

In this section, we present an approach for selecting naere
objects in order to improve the quality of the embedding. goal

input 1 X: database sequence.
Qg: training query set.
d: embedding dimensionality.

RSK: initial set ofk reference subsequences. is to create an embedding where the rankings of differensesub
qguences with respect to a query in the embedding space rsemb
output : R: set ofd reference subsequences. the rankings of these subsequences in the original spaceafu

proach is largely an adaptation of the method proposed i [36

/I select d reference sequences with highest variance fi8kh R The first step is based on the max variance heuristic, i®idta

R={R1,..,Rq |R; € RSK with mazimum variance}

CreateEmbedding(R, X); that we should select subsequences that cover the domaie &z
OldSEE = 0; much as possible) and have distances to other subsequeithes w
for i = 1to0 |Qgs]| do high variance. In particular, we select uniformly at randosubse-

| OldSEE+ = EE(Qslil); quences with sizes betweéminimum query size)/2ndmaximum
end query sizédrom different locations in the database sequence. Then,
=1 we compute the DTW distances for each pair of thext) val-
while (true) do ues) and we select tHesubsequences with the highest variance in

Il consider replacind?; with another reference object

CandR — RSK — R .th.e.lr distances to the othélp 1 subsequences. Thus we select an
for i = 0to |CandR| do initial set of & reference objects. _
CreateEmbedding(R — {R;} + {CandR][i]}, X); The next step is to use a learning approach to select the final
newSEE = 0; set of reference objects assuming that we have a set of sasmple
for i = 1to0 |Qg| do that is representative of the query distribution. The injouthis
| newSEE+ = EE(Qsli); algorithm is a set ok reference objectRSK selected from the
end previous step, the number of final reference objddfwhered <
if (newSEE < oldSEE) then k) and a set of sample queri€s. The main idea is to seledtout
iﬁS:Eg“:"f;[;]SEE of thek reference objects so as to minimize the embedding error on
' the sample query set. The embedding eBBI(Q) of a queryQ is
end defined as the number of vectaf§ X, j) in the embedding space
end that the embedding of the queRy(Q) is closer to than it is to the
j=(j modd) +1; embedding ofF' (X, jq), wherejq is the endpoint of the optimal
subsequence match @fin the database.
end Initially, we selectd initial reference objectsRy, ..., R; and
we create the embedding of the database and the quer@.set
using the selected;’s. Then, for each query, we compute the
Algorithm 2. The training algorithm for selection of embedding error and we compute the sum of these errors dver al
reference objects. queries, i.e.SEE = ZQEQS EE(Q). The nest step, is to con-

sider a replacement of theth reference object with an object in
RSK — {Ru,...,Ra}, and re-estimate th8EE. If SEE is re-

The columns variable, which is an output of Algorithm 1, mea- duced, we make the replacement and we continue with the next
sures the number of database positions on which DTW is applie (i + 1)-th reference object. This process starts fror: 1 un-
These database positions include both each candidateienepd til ¢ = d. After we replace thel-th reference object we continue
all other positiong for whichcost|i][4] is computed. Theolumns again with the first reference object. The loop continues the
output is a very good measure of how much time the refine step improvement of thesEE over all reference objects falls below a
takes, compared to the time it would take for brute-forcecsea threshold. The pseudo-code of the algorithm is shown in Aigm

i.e., for applying the original DTW algorithm as describedSec- 2. To reduce the cemputation overheed of the technique wa use
tion 3. In the experiments, one of the main measures of EBSM ef Sample of the possible replacements in each step. Thusathsf
ficiency (the DTW cell cost) is simply defined as the ratio kegw ~ considering all objects ilRSK — {R, ..., Ra} for replacement,
columns and the lengthX | of the database. we consider only a s_ample of_them. Furthermore, we use a sampl
We note that each application of DTW in Algorithm 1 stops Of the database entries to estimate Sif. .
when the minimumcostli][j] over alli = 1,...,|Q| is higher Note that the embedding optimization method described here
than the minimum distance found so far. We do that because anylargely follows the method described in [36]. However, te a
cost[i][j — 1] will be at least as high as the minimum (over i) proach in [36] was based on the Edit distance, which is a metri
of cost[i][4], except ifj — 1 is also a candidate endpoint (in which and therefore a different optimization criterion was uslecbar_tlc-
case, it will also be evaluated during the refine step). ular, in [36], reference objects are selected based on teny
The refine step concludes with a final alignment/verificatipn power of each reference object. Since DTW is not a metrierref
eration, that evaluates, using the original DTW algorithine, area ence ObJeCt$ in our setting do not.have pruning power, umess
around the estimated optimal subsequence match. In partidiu allow some incorrect results. That is why we use the sum oferr

jena is the estimated endpoint of the optimal match, we run the as our optimization criterion.
DTW algorithm betweeid) and X Vena =31@D:Gena QD The pur-

pose of this final alignment operation is to correctly haraiiees 7. HANDLING VERY LARGE RANGES OF

where jsiare andjena are off by a small amount (a fraction of the

size of@Q) from the correct positions. This may arise when the opti- QU ERY LENGTHS
mal endpoint was not included in the original set of candidatb- In Section 4 and in Figure 3 we have illustrated that, intei,
tained from the filter step, or when the length of the optimateh when the query) has a very close matck*” in the database, we

was longer thar|Q)|. expectF*(Q) and F* (X, 5) to be similar, as long a&/ (R, X, j)

N w
T T

number of reference sequences

[
T

0 | .
50 150 200 250 300

reference sequence length

100 350 400

Figure 4: Distribution of lengths of the 40 reference objecs
chosen by the embedding optimization algorithm in our exper
iments.

is a suffix of M (Q, X, j). If we fix the length|Q| of the query, as
the length|R| of the reference object increases, it becomes more
and more likely that\/ (R, X, 7) will start before the beginning of
M(Q, X, 7). Inthose casesk(Q) and F(X, j) can be very
different, even in the ideal case whepds identical toX 7.

In our experiments, the minimum query length is 152 and the
maximum query length is 426. Figure 4 shows a histogram of the
lengths of the 40 reference objects that were chosen by the em
bedding optimization algorithm in our experiments. We nibizt
smaller lengths have higher frequencies in that histogk&minter-
pret that as empirical evidence for the argument that lofegeace
objects tend to be harmful when applied to short queries,jtaad
better to have short reference objects applied to long gsie@ver-
all, as we shall see in the experiments section, this 40usinaal
embedding provides very good performance.

At the same time, in any situation where there is a large dif-
ference in scale between the shortest query length and nigeso
query length, we are presented with a dilemma. While long ref
erence objects may hurt performance for short queriesgusity
short reference objects gives us very little informatiomwhthe
really long queries. To be exact, given a reference objeeind
a database positiofX, j), F*(X,j) only gives us information
about subsequenc®/ (R, X, 7). If Q is a really long query and
R is a really short reference object, proximity betwdé(Q) and
F(X,7) cannot be interpreted as strong evidence of a good sub-
sequence match for the entigg ending at positiory; it is simply
strong evidence of a good subsequence match ending atopogsiti
for some smalbuffixof @ defined byM (R, Q, |Q|).

The simple solution in such cases is to use, for each quely, on
embedding dimensions corresponding to a subset of thecheke
erence objects. This subset of reference objects shouéd@agths
that are not larger than the query length, and are not too much
smaller than the query length either (e.g., no smaller ttaithe
query length). To ensure that for any query length there isfa s
ficient number of reference objects, reference object fengan
be splitintod rangegr, rs), [rs, rs?), [rs?,rs%), ... [rs?™ ", rs?),
wherer is the minimum desired reference object lengt! is the
highest desired reference object length, ansl determined given
r,d andrs?. Then, we can constrain tliedimensional embedding

so that for each randes’, rs*™') there is only one reference object
with length in that range.

We do not use this approach in our experiments, becausenthe si
ple scheme of using all reference objects for all querieksarell
enough. However, it is important to have in mind the limitag of
this simple scheme, and we believe that the remedy we have out
lined here is a good starting point for addressing theseadins.

8. EXPERIMENTS

We evaluate the proposed method on time series data obtained
from the UCR Time Series Data Mining Archive [18]. We compare
our method to the two state-of-the-art methods for subsempie
matching under unconstrained DTW:

e SPRING: the exact method proposed by Sakurai et al. [31],
which applies the DTW algorithm as described in Section
3.3.

e Modified PDTW: a modification of the approximate method
based on piecewise aggregate approximation that was pro-
posed by Keogh et al. [17].

Actually, as formulated in [17], PDTW (given a sampling pate
yields a specific accuracy and efficiency, by applying DTWhtaler,
subsampled versions of quefy and database sequenke Even
with the smallest possible sampling rate of 2, for which thiginal
PDTW cost is25% of the cost of brute-force search, the original
PDTW method has an accuracy rate of less %@. We modify
the original PDTW so as to significantly improve those resuds
follows: in our modified PDTW, the original PDTW of [17] is u$e
as a filtering step, that quickly identifies candidate enaipposi-
tions, exactly as the proposed embeddings do for EBSM. We the
apply the refine step on top of the original PDTW rankingsh@si
the exact same algorithm (Algorithm 1) for the refine step tha
use in EBSM. We will see in the results that the modified PDTW
works very well, but still not as well as EBSM.

We do not make comparisons to the subsequence matchinganetho
of [11], because the method in [11] is designed for indexiog-c
strained DTW (whereas in the experiments we use unconettain
DTW), and thus would fail to identify any matches whose léngt
is not equal to the query length. As we will see in Section 8.3,
the method in [11] would fail to identify optimal matches fitve
majority of the queries.

8.1 Datasets

To create a large and diverse enough dataset, we combiress thr
of the datasets from UCR Time Series Data Mining Archive [18]
The three UCR datasets that we used are shown on Table 1.

Each of the three UCR datasets contains a test set and agraini
set. As can be seen on Table 1, the original split into trgirind
test sets created test sets that were significantly largerttie cor-
responding training sets, for two of the three datasets.rderato
evaluate indexing performance, we wanted to create a srfflgi
large database, and thus we generated our database uslagthe
test sets, and we used as queries the time series in thet aigis.

More specifically, our database is a single time sekiethat was
generated by concatenating all time series in the origestl gets:
455 time series of length 270 from the 50Words dataset, GGl t
series of length 152 from the Wafer dataset, and 3000 tiniessef
length 426 from the Yoga dataset. The lengtf of the database
is obviously the sum of lengths of all these time series, tvhidds
up to 2,337,778.

Our set of queries was the set of time series in the origiaaitr
ing sets of the three UCR datasets. In total, this set ineldd&0

Name 50Words | Wafer | Yoga accuracy vs. DTW cell cost for PDTW and EBSM

Length of each time series 270 152 | 426 R [y ‘ ‘
Size of “training set” (used 450 1000 | 300 o PDTW-11
by us as set of queries) 0.12 1
Number of time series used for 192 428 | 130
validation (subset of set of queries) 0.1 1
Number of time series used for _
measuring performance (subset 258 572 170 8 0.08 i
of set of queries) 3
Size of “test set” (used 455 6164 | 3000 2 0.06 ,
by us to generate the database) o
Table 1: Description of the three UCR datasets we combined to 004 i
generate our dataset. For each original UCR dataset we show
the sizes of the original training and test sets. We note that 002 il
in our experiments, we use the original training sets to obt
queries for embedding optimization and for performance evé 0 o8 09 0.5 1
uation, and we use the original test sets to generate the long accuracy
database sequence (Of |ength 2,337,778). accuracy vs. retrieval runtime cost for PDTW and EBSM
018 —PDTW-13 ‘ ‘ ‘
time series. We randomly chose 750 of those time series ds ava 016 . _ PoTW 2t 1
idation set of queries, that was used for embedding optimiza - = =PDTW-7
using Algorithm 2. The remaining 1000 queries were used &b-ev 014/ —EBSM-9 i
uate indexing performance. Naturally, the set of 1000 gsensed % 012 i
for performance evaluation was completely disjoint from slet of °
queries used during embedding optimization. g 0.1 1
=1
8.2 Performance Measures goosf T :
Our method is approximate, meaning that it does not guagante % oos e |
finding the optimal subsequence match for each query. The two =~ e """ EIPATIE St
key measures of performance in this context are accuracgféind .o4f T BT T g
ciency. Accuracy is simply the percentage of queries in vatua-
tion set for which the optimal subsequence match was sufcdlgss 0.02¢)
retrieved. Efficiency can be evaluated using two measures: o ‘ ‘ ‘ ‘
e DTW cell cost: For each query), the DTW cell cost is the 0.8 %?curacy 0.9 !

ratio of number of celldi][j] visited by Algorithm 1 over

number of cells[¢][j] using the SPRING method (for the

SPRING method, this number is the product of query length Figure 5. Comparing the accuracy versus efficiency trade-
and database length). For PDTW with sampling rateve offs achieved by EBSM with sampling rate 9 and by modified
addsi2 to this ratio, to reflect the cost of running the DTW al- PDTW with sampling rates 7, 9, 11, and 13. The top figure mea-
gorithm between the subsampled query and the subsampledsures efficiency using the DTW cell cost, and the bottom figure
database. For the entire test set of 1000 queries, we reportmeasures efficiency using the retrieval runtime cost. The s
the average DTW cell cost over all queries. shown are average costs over our test set of 1000 queries. Not
that SPRING, being an exact method, corresponds to a single
point (not shown on these figures), with perfect accuracy 1 ah
maximal DTW cell cost 1 and retrieval runtime cost 1.

e Retrieval runtime cost: For each quen@, given an in-
dexing method, the retrieval runtime cost is the ratio of to-
tal retrieval time for that query using that indexing method
over the total retrieval time attained for that query using t
SPRING method. For the entire test set, we report the aver-
age retrieval runtime cost over all 1000 queries. While run-
time is harder to analyze, as it depends on diverse things suc
as cache size, memory bus bandwidth, etc., runtime is also a
more fair measure for comparing EBSM to PDTW, as it in-
cludes the costs of both the filter step and the refine step. The
DTW cell cost ignores the cost of the filter step for EBSM.

queries of length 426. The system was implemented in C++, and
run on an AMD Opteron 8220 SE processor running at 2.8GHz.

Trade-offs between accuracy and efficiency can be obtaielsd v
easily, for both EBSM and the modified PDTW, by changing pa-
rametermn of the refine step (see Algorithm 1). Increasing the value
of p increases accuracy, but decreases efficiency, by inceelasth
the DTW cell cost and the running time.

We remind the reader that the SPRING method simply uses the We should emphasize the runtime retrieval cost dependseon th
standard DTW algorithm of Section 3.3. Consequently, bynilefi retrieval method, the data set, the implementation, andyktem
tion, the DTW cell cost of SPRING is always 1, and the retdieva platform. On the other hand, the DTW cell cost only depends on
runtime cost of SPRING is always 1. The actual average rgnnin the retrieval method and the data set; different implentemts of
time of the SPRING method over all queries we used for perfor- the same method should produce the same results (or vergisimi
mance evaluation was: 4.43 sec/query for queries of len§#h 1 when random choices are involved) on the same data set fegsrd
7.23 sec/query for queries of length 270, and 11.30 sec/dqoer of the system platform or any implementation details.

600

5001

iy

o

o
T

3001

number of queries

N

o

o
T

100

e T

1 15 2 25
ratio of subsequence match length to query length

o]
0.5

Figure 6: Distribution of lengths of optimal subsequence
matches (as fractions of the query length) for the 1000 quegis
used for performance evaluation. We note that a significant
fraction of the optimal matches have lengths that are not ide-
tical to the query length.

8.3 Results

We compare EBSM to modified PDTW and SPRING. We note
that the SPRING method guarantees finding the optimal subse-
guence match, whereas modified PDTW (like EBSM) is an approx-
imate method. For EBSM, unless otherwise indicated, we ased
40-dimensional embedding, with a sampling rate of 9. Foethe
bedding optimization procedure of Section 6, we used paense
I = 1755 (I was the number of candidate reference objects before
selection using the maximum variance criterion) &ne 1000 (k
was the number of candidate reference objects selected base
the maximum variance criterion).

Figure 5 shows the trade-offs of accuracy versus efficieobiesed.
We note that EBSM provides very good trade-offs between-accu
racy and retrieval cost. Also, EBSM significantly outpenfisrthe
modified PDTW, in terms of both DTW cell cost and retrieval+un
time cost. For many accuracy settings, EBSM attains cosafiem
by a factor of 2 or more compared to PDTW. As highlights, for
99.5% retrieval accuracy our method is about 21 times faster than
SPRING (retrieval runtime cost = 0.046), and 8% retrieval ac-
curacy our method is about 47 times faster than SPRING dxetri
runtime cost = 0.021).

Figure 6 shows a histogram of the length of the optimal sub-
sequence match for each query, as a fraction of the lengthaof t
query. The statistics for this histogram were collectediail 1000
queries used for performance evaluation. We see that,ugthfor
the majority of cases the match length is fairly close to therg
length, it is only for a minority of queries that the matchdémis
exactly equal to the query length. We should note that theesub
guence matching method of [11] would fail to identify any ofes
whose length is not equal to the query length. As a resultoitld/
not be meaningful to compare the performance of our method ve
sus the method in [11] for this dataset.

Figure 7 shows how the performance of EBSM varies with dif-
ferent sampling rates. For all results in that figure, 40atisional
embeddings were used, optimized using Algorithm 2. Sargplin
rates between 1 and 15 all produced pretty similar DTW cedtso

accuracy vs. DTW cell cost for different sampling rates

0.12

= = =EBSM-23

= = EBSM-15
= EBSM-9
017, EBSM-1]
0.08 7
8 0.06 B
g
a
0.04- B
0.02 4
0 : ‘ : :
0.85 0.9 0.95 1
accuracy
accuracy vs. retrieval runtime cost for different sampling rates
0.12 T T T
= = =EBSM-23
== EBSM-15
= EBSM-9 !
011, EBSM-1 ro
0.08 4
o
£
50.06F 7
®
]
g
0.04r- 7
0.02 T T 1
I I I I
0.85 0.9 0.95 1

accuracy

Figure 7: Accuracy vs. efficiency for EBSM with sampling
rates 1, 9, 15, and 23. The top figure measures efficiency using
the DTW cell cost, and the bottom figure measures efficiency
using the retrieval runtime cost. The costs shown are averay
costs over our test set of 1000 queries.

for EBSM, but a sampling rate of 23 produced noticeably worse
DTW cell costs. In terms of retrieval runtime, a samplingeraf
1 performed much worse compared to sampling rates of 9 and 15,
because the cost of the filter step is much higher for sampiitey
1: the number of vector comparisons is equal to the lengthef t
database divided by the sampling rate.

Figure 8 compares different methods for embedding construc
tion. For all results in that figure, 40-dimensional embeddiand
a sampling rate of 9 were used. We notice that selecting-refer
ence objects using the max variance heuristic (i.e., usithg the
first two lines of Algorithm 2) improves performance signéfintly
compared to random selection. Using the full Algorithm 2dar-
bedding construction improves performance even more.

Figure 9 shows how the performance of EBSM varies with dif-
ferent embedding dimensionality, for optimized (using @ithm
2) and unoptimized embeddings. For all results in that figare
sampling rate of 9 was used. For optimized embeddings, imster
of DTW cell cost, performance clearly improves with incregsli-

accuracy vs. DTW cell cost for for different embedding construction methods

0.2 T T — T
= Random Reference Objects N
0.18H ' After Max-Variance B 1
= Full Algorithm 2 H
0.16 .

0.14

DTW cell cost
o o o
o o ©° Pk
(=2 [*3) = N

o
=]
B

o
o
[N
T
i

I
0.95 1

I I
0.85 0.9
accuracy

accuracy vs. retrieval runtime cost for different embedding construction methods
0.2

- Random Reference Objects f
0.18H " After Max-Variance d 4
= Full Algorithm 2 -

0.16

0.14

0.12

0.1

retrieval runtime cost

I I I
0.85 0.9 0.95 1

accuracy

Figure 8: Accuracy vs. efficiency for EBSM, using embeddings
constructed randomly, optimized with the max variance heurs-
tic, and optimized using Algorithm 2 for embedding optimiza-
tion. The top figure measures efficiency using the DTW cell
cost, and the bottom figure measures efficiency using the re-
trieval runtime cost. The costs shown are average costs over
our test set of 1000 queries.

mensionality up to about 40 dimensions, and does not changh m

9. DISCUSSION AND FUTURE WORK

EBSM, the method proposed in this paper, was shown to signif-
icantly outperform the current state-of-the-art methaatssubse-
guence matching under unconstrained DTW. At the same thmee, t
idea of using embeddings to speed up subsequence matcking op
up several directions for additional investigation, bathimprov-
ing performance under unconstrained DTW, and for extentliag
current formulation to additional settings.

The proposed embeddings treat every position of every dagab
sequence as a candidatadpointfor the optimal subsequence match.
Itis fairly straightforward to change our formulation satlit treats
every database position as a candidatetpoint The open ques-
tion is how to combine both approaches, by simultaneoushgus
embeddings of endpoints and embeddings of startpoints.

It is worth noting that the PDTW method of [17] is not a direct
competitor of our method, but rather a complimentary metitioat
can possibly be combined with our method to provide everebett
results. For example, PDTW can be used to speed up comphéng t
embedding of the query, or to introduce a PDTW-based additio
filter step after our current filter step and before the finfshegnent.
Alternatively, our method could be used to quickly identgndi-
date database areas which would then be explored using PDTW.
Identifying the best way to combine EBSM with PDTW is an in-
teresting topic for future work.

The discussion in this paper has focused on finding the optima
subsequence match for each query. It is pretty straigh#fiao
also apply our method for retrieving top-k subsequence nestc
we simply modify the refine step to return the k-best startpoi
endpoint pairs. It will be interesting to evaluate how aecyrand
efficiency vary withk.

Another interesting direction is applying our method irfeliént
settings, such as subsequence matching under constraifdd D
and the edit distance. The key idea of embedding database pos
tions, as opposed to existing approaches that embed eatabate
sequences, can readily be extended to both constrained Dit\W a
the edit distance. Perhaps by exploiting known lower bowfds
constrained DTW [16], or by using the metric properties ef ¢dlit
distance, we can obtain an exact indexing scheme for emfgddi
based subsequence matching under those distance measures.

In conclusion, the proposed EBSM method is the first subse-
guence matching method for unconstrained DTW that convetts
least partially, the subsequence matching problem intochreas-
ier vector matching problem. As a result, a relatively smathber
of database areas of interest can be identified very fasthwaeor-
ders of magnitude faster compared to brute-force searchrieo
periments. The computationally expensive DTW algorithrstil
employed within EBSM, but only to refine results by evalugtin

between 40 and 160. Actually, 160 dimensions give a somewhat the jdentified database areas of interest. The resultingeedd

worse DTW cell cost compared to 40 dimensions, providing evi
dence that our embedding optimization method suffers fronilé
effect of overfitting as the number of dimensions increa¥éken
reference objects are selected randomly, overfitting isnassue.
As we see in Figure 9, a 160-dimensional unoptimized emingddi
yields a significantly lower DTW cell cost than lower-dimamsl
unoptimized embeddings.

In terms of offline preprocessing costs, selecting 40 referse-
quences using Algorithm 2 took about 3 hours, and computiag t
40-dimensional embedding of the database took about 240dec

Code and datasets for duplicating the experiments desidnidye
are publicly available on our project website, at two misites:

e http://cs-peopl e. bu. edu/ panagpap/ ebsnl

e http://crystal.uta.edu/~athitsos/ebsn

retrieval system is one to two orders of magnitude faster binate-
force search,with relatively small losses in accuracy, prodides
state-of-the-art performance in the experiments.

Acklownedgements

This work was supported in part by grants NSF IS 0705749 and
NSF CAREER 11S-0133825. V. Athitsos’ research was also sup-
ported by his UT Arlington startup grant. D. Gunopulos’ tash
was supported by the NSF 11S-0534781, Aware and HealthitCh
projects.

10. REFERENCES

[1] J. Alon, V. Athitsos, and S. Sclaroff. Accurate and effiaf
gesture spotting via pruning and subgesture reasoning. In

accuracy vs. DTW cell cost for different dimensions, for optimized embeddings
0.12 T accuracy vs. retrieval runtime cost for different dimensions, for optimized embeddings

—— EBSM-160 : 0.12 : :
- = EBSM-80 [3 —— EBSM-160 '
= = =EBSM-40] = = EBSM-80 '
01 — EBSM-20 "] o1/ = = ~EBSM-40 i |
= = EBSM-10 " **|| =——=EBSM-20 b
- = =EBSM-5 B ='='EBSM-10 "
L ' J = = =EBSM-5 "

o
o
®

DTW cell cost
o
o
(=2
retrieval runtime cost
o o
o o
(=2 [*3)
- ~/-'-\- —— -

o

o

5
o
=}
=

‘‘‘‘

0.02 1 0.02F==22 2 Zame= - 1
0 1 1 1 i o | 1 1 I
0.85 0.9 0.95 1 0.85 0.9 0.95 1
accuracy accuracy
accuracy vs. DTW cell cost for different dimensions, for unoptimized embeddings
0.18 T T T T accuracy vs. retrieval runtime cost for different dimensions, for unoptimized embeddings
— EBSM-160 ’ 0.18 T T n T T
016l = = EBSM-80 .] — EBSM-160 N
|| = = =EBSM-40 ! 0.161 = = EBSM-80 1/ B
——EBSM-20 'y || = = ~EBSM-40 afr
0.14 1 — EBSM-20 Ryol
0.14 : S 1
0.12 | g 0.12 1
@ g
3 0.1 i)
3 £ o1 1
> 5
E 0.08) = 0.08 B
e @
0.06 1 © 0.06 1
0.04 1 0.04 1
0.02 b 0.02+ B
0 1 1 1 | 0 i 1 1 I
0.85 0.9 0.95 1 0.85 0.9 0.95 1
accuracy accuracy

Figure 9: Accuracy vs. efficiency for EBSM, using embeddingwith different dimensionality. The plots on the left measue efficiency
using the DTW cell cost, and the plots on the right measure effiency using the retrieval runtime cost. The costs shown araverage
costs over our test set of 1000 queries. The top plots show téts for embeddings optimized using Algorithm 2. The bottomplots
show results for embeddings with randomly selected referere objects.

IEEE Workshop on Human Computer Interactipages product approximations. Imternational Conference on
189-198, 2005. Information and Knowledge Managemgpages 219-226,
[2] T. Argyros and C. Ermopoulos. Efficient subsequence 2000.
matching in time series databases under time and amplitude [7] C. Faloutsos and K. I. Lin. FastMap: A fast algorithm for
transformations. Iinternational Conference on Data indexing, data-mining and visualization of traditionatan
Mining, pages 481-484, 2003. multimedia datasets. IACM International Conference on
[3] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sebff. Management of Data (SIGMODpages 163-174, 1995.
Query-sensitive embeddings. ACM International [8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
Conference on Management of Data (SIGMQOpyges subsequence matching in time-series databasésC
706-717, 2005. International Conference on Management of Data
[4] C.Bohm, S. Berchtold, and D. A. Keim. Searching in (SIGMOD) pages 419-429, 1994.
high-dimensional spaces: Index structures for improviteg t [9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
performance of multimedia databasA€M Computing high dimensions via hashing. International Conference on
Surveys33(3):322—-373, 2001. Very Large Databasepages 518-529, 1999.
[5] K. Chakrabarti and S. Mehrotra. Local dimensionality [10] D. Q. Goldin and P. C. Kanellakis. On similarity querfes
reduction: A new approach to indexing high dimensional time-series data: Constraint specification and
spaces. lrinternational Conference on Very Large Data implementation. Irinternational Conference on Principles
Basespages 89-100, 2000. and Practice of Constraint Programmingages 137-153,
[6] O. Egecioglu and H. Ferhatosmanoglu. Dimensionality 1995.

reduction and similarity distance computation by inner [11] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang. Ranked

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

subsequence matching in time-series databases. In
International Conference on Very Large Data Bases (VLDB)
pages 423-434, 2007.

G. Hjaltason and H. Samet. Properties of embedding
methods for similarity searching in metric spade&EE
Transactions on Pattern Analysis and Machine Intelligence
25(5):530-549, 2003.

G. R. Hjaltason and H. Samet. Index-driven similariasch
in metric spacesACM Transactions on Database Systems
28(4):517-580, 2003.

G. Hristescu and M. Farach-Colton. Cluster-preseyvin
embedding of proteins. Technical Report 99-50, CS
Department, Rutgers University, 1999.

K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality
reduction for similarity searching in dynamic databases. |
ACM International Conference on Management of Data
(SIGMOD) pages 166-176, 1998.

E. Keogh. Exact indexing of dynamic time warping. In
International Conference on Very Large Data Bagesges
406-417, 2002.

E. Keogh and M. Pazzani. Scaling up dynamic time warping
for data mining applications. IRroc. of SIGKDD 2000.

E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The
UCR time series classification/clustering homepage:
www.cs.ucr.edufeamonn/time_series_data/, 2006.

N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung. LDC:
Enabling search by partial distance in a hyper-dimensional
space. IHEEE International Conference on Data
Engineearingpages 6-17, 2004.

J. B. Kruskall and M. Liberman. The symmetric time
warping algorithm: From continuous to discreteTime
Warps Addison-Wesley, 1983.

H. Lee and J. Kim. An HMM-based threshold model
approach for gesture recognitidEEE Transactions on
Pattern Analysis and Machine Intelligen@1(10):961-973,
October 1999.

C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold.
Clustering for approximate similarity search in
high-dimensional spacekEEE Transactions on Knowledge
and Data Engineeringl4(4):792-808, 2002.

Y. Moon, K. Whang, and W. Han. General match: a
subsequence matching method in time-series databasets base
on generalized windows. IACM International Conference
on Management of Data (SIGMO[®ages 382-393, 2002.
Y. Moon, K. Whang, and W. Loh. Duality-based
subsequence matching in time-series databas¢SHBR
International Conference on Data Engineering (ICDE)
pages 263-272, 2001.

P. Morguet and M. Lang. Spotting dynamic hand gestures i
video image sequences using hidden Markov models. In
IEEE International Conference on Image Processipages
193-197, 1998.

R. Oka. Spotting method for classification of real wadlkta.
The Computer Journa#t1(8):559-565, July 1998.

S. Park, W. W. Chu, J. Yoon, and J. Won. Similarity searth
time-warped subsequences via a suffix ttefarmation
Systems28(7), 2003.

S. Park, S. Kim, and W. W. Chu. Segment-based approach
for subsequence searches in sequence databases. In
Symposium on Applied Computjnzages 248-252, 2001.

D. Rafiei and A. O. Mendelzon. Similarity-based quefias

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

time series data. IACM International Conference on
Management of Data (SIGMODpages 13-25, 1997.

T. M. Rath and R. Manmatha. Word image matching using
dynamic time warping. IhlEEE Conference on Computer
Vision and Pattern Recognition (CVP,Rplume 2, pages
521-527, 2003.

Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream
monitoring under the time warping distance lHEE
International Conference on Data Engineering (ICDE)
2007.

Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: fast
similarity search under the time warping distance. In
Principles of Database Systems (POD&ges 326-337,
2005.

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The
A-tree: An index structure for high-dimensional spacesgisi
relative approximation. linternational Conference on Very
Large Data Basegages 516-526, 2000.

Y. Shou, N. Mamoulis, and D. W. Cheung. Fast and exact
warping of time series using adaptive segmental
approximationsMachine Learning58(2-3):231-267, 2005.
E. Tuncel, H. Ferhatosmanoglu, and K. Rose. VQ-index: A
index structure for similarity searching in multimedia
databases. IRroc. of ACM Multimediapages 543-552,
2002.

J. Venkateswaran, D. Lachwani, T. Kahveci, and

C. Jermaine. Reference-based indexing of sequence
databases. Imternational Conference on Very Large
Databases (VLDB)pages 906-917, 2006.

M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and

E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measuresAGM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 216-225, 2003.

X.Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,
and K. Zhang. An index structure for data mining and
clustering.Knowledge and Information Systems
2(2):161-184, 2000.

R. Weber and K. Béhm. Trading quality for time with
nearest-neighbor search.lhternational Conference on
Extending Database Technology: Advances in Database
Technologypages 21-35, 2000.

R. Weber, H.-J. Schek, and S. Blott. A quantitative gsial
and performance study for similarity-search methods in
high-dimensional spaces. International Conference on
Very Large Data Basepages 194—-205, 1998.

D. A. White and R. Jain. Similarity indexing: Algorithen
and performance. I18torage and Retrieval for Image and
Video Databases (SPIF)ages 62-73, 1996.

H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shiratd, a
D. R. Kaeli. Subsequence matching on structured time series
data. INnACM International Conference on Management of
Data (SIGMOD) pages 682-693, 2005.

B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficientietal
of similar time sequences under time warpinglEEE
International Conference on Data Engineerjmages
201-208, 1998.

Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. BRCM International
Conference on Management of Data (SIGMOyges
181-192, 2003.

