
'

&

$

%

EMBEDDING-BASED SUBSEQUENCE MATCHING

IN LARGE SEQUENCE DATABASES

PANAGIOTIS PAPAPETROU

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

EMBEDDING-BASED SUBSEQUENCE MATCHING

IN LARGE SEQUENCE DATABASES

by

PANAGIOTIS PAPAPETROU

B.S., University of Ioannina, Greece, 2003,
M.A., Boston University, 2006

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2010

Approved by

First Reader

George Kollios, PhD
Associate Professor of Computer Science

Second Reader

Stan Sclaroff, PhD
Professor of Computer Science

Third Reader

Margrit Betke, PhD
Associate Professor of Computer Science

Acknowledgments

First of all, I thank my advisor, George Kollios, for his guidance, patience, and friendship through-

out my PhD studies. He has been an excellent advisor for all these years and has influenced me

significantly in discovering my own research interests.

A huge thanks to Vassilis Athitsos for all his help, discussions, collaboration, and support

during the last years of my PhD studies. The core contributions of this thesis stemmed from our

numerous discussions; his help was priceless. I also thank Professors Stan Sclaroff, Margrit Betke,

Dimitrios Gunopulos, and Steve Homer for participating in my committee and for providing many

useful comments that helped me improve the quality of the document.

I would also like to thank all students, professors, instructors, and staff I have interacted with in

the Computer Science Department, for all the times they havehelped and supported me. A special

thanks to my officemate Michalis Potamias with whom we had great times inside and outside the

lab.

All my relatives in the United States and Greece have played amajor role in supporting me

throughout this period. I am extremely thankful to all, especially my mother Vasiliki and my

cousins Katerina, Thodoris, Perry, Leo, and Ioanna. Finally, I would like to commemorate my

father Petros. Even though I lost him18 years ago, his memories served as inspiration and moti-

vation to pursue and complete my PhD studies.

I am very grateful to my friends in and outside Boston who havemade a huge difference in my

life throughout my PhD studies. The space and time are reallyconstrained to list everyone who de-

serves to be here. However, I should especially thank my Boston friends: Georgios Smaragdakis,

Niky Riga, Yola Katsargyri, Georgios Zervas, Christos Thomidis, Vijay Erramilli, and Kathleen

Maniataki, who have been precious parts of my life in Boston.A special thanks to my best child-

hood friends: Vassilis Panoulas, Stathis Ioannou, Angeliki Koloka, Chrysa Kotsoni, Vasiliki and

iii

Stavroula Liaska, Katerina Kostoula, Maria Gouveli, and Maria Konstantakopoulou. Despite the

4,731-mile distance, we have managed to keep our friendship intact. Their support throughout

these years was priceless.

I would like to thank the “Georgios Stavros Scholarship Foundation” for the partial financial

support of my PhD studies for the years 2004-2007, as well as the Mitropolis of Ioannina and

Bishop Theoklitos.

This work was supported in part by the National Science Foundation under grants IIS-0329009

and IIS-0812309.

Finally, I would like to dedicate this thesis to my mother Vasiliki. She devoted the greatest

part of her life to me and my education. Her inspiration and support during my PhD studies was

precious.

iv

EMBEDDING-BASED SUBSEQUENCE MATCHING

IN LARGE SEQUENCE DATABASES

(Order No.)

PANAGIOTIS PAPAPETROU

Boston University, Graduate School of Arts and Sciences, 2010

Major Professor:George Kollios, Associate Professor of Computer Science

ABSTRACT

Sequential data, such as time series and categorical sequences, naturally appear in a wide variety of

domains including financial and scientific data, human activity, biological sequences, etc. In such

domains large databases of sequences are used as knowledge repositories. Information retrieval

from such repositories is challenging, due to the large amount of data that needs to be searched.

Our attention is focused on subsequence matching methods that employ dynamic programming-

based distance measures. Such approaches are robust to misalignments and time warps and are

widely used for time series and DNA matching. Three methods are proposed for efficient subse-

quence matching in large sequence databases.

The first method works for time series databases and theDynamic Time Warping (DTW)dis-

tance. It converts subsequence matching to vector matchingusing an embedding that maps each

database time series into a sequence of vectors. The embedding is computed by applying the full

DTW distance between each reference and database time series. At query time, the embedding of

the query time series is computed in a similar manner. Relatively few areas of interest are identi-

fied by performing vector comparisons, and are then fully explored using the exact DTW distance.

The second method defines a similar type of embedding that stores additional information into the

vector representation and significantly improves the efficiency of subsequence matching under the

v

constrained Dynamic Time Warping (cDTW)distance.

The third method speeds up retrieval of optimal subsequencematches in string databases, un-

der the Edit Distance and the Smith-Waterman similarity measure. Filtering of candidate matches

is performed using precomputed alignment scores between the database sequence and a set of

fixed-length reference sequences. At query time, the query sequence is partitioned into segments

of the same length as the reference sequences. For each of those segments, the alignment scores

between the segment and the reference sequences are used to efficiently identify a relatively small

number of candidate matches. Experiments show that the proposed method outperforms BLAST

by over an order of magnitude in retrieval runtime for large queries (up to10, 000 bases) and

similarity levels of up to15%.

vi

Contents

1 Introduction 1

1.1 Searching Time Series Databases 1

1.2 Searching String and Biological Sequence Databases 5

1.3 Contributions .. 7

1.4 Roadmap . 9

1.5 List of related papers 10

2 Related Work 11

2.1 Literature on Time Series Subsequence Matching 11

2.2 Literature on String Subsequence Matching 14

3 Embedding-based Subsequence Matching in Time Series Databases 18

3.1 Background . 18

3.2 EBSM: An Embedding for Subsequence Matching 23

3.3 Filter-and-Refine Retrieval 26

3.4 Embedding Optimization 31

3.5 Handling Large Ranges of Query Lengths 32

3.6 Experiments .34

3.7 Summary . 43

4 Bidirectional Embedding-based Subsequence Matching in Time Series Databases 46

4.1 Background: The cDTW Algorithm 46

4.2 Bidirectional Subsequence Embeddings 47

4.3 Computing Database Embeddings 49

4.4 Filter-and-Refined Retrieval 51

vii

4.5 Embedding Optimization 53

4.6 Experiments .54

4.7 Summary . 64

5 Reference-based Alignment of Sequence Databases 66

5.1 Background . 66

5.2 RBSA for Fixed Query Length .. . 70

5.3 RBSA for Variable Query Length 77

5.4 Experiments .80

5.5 Summary . 89

6 Conclusions and Future Work 94

6.1 Discussion of Contributions and Limitations 94

6.2 Future Work and Other Interesting Directions 95

References 98

Curriculum Vitae 105

viii

List of Tables

3.1 Description of the three UCR datasets we combined to generate our dataset. . . . 35

4.1 Description of the three UCR datasets we combined to generate our dataset. . . . 55

4.2 Comparison of Cell Cost for BSE constructed using max variance, EE constructed

using max variance, DTK and LBKeogh for the UCR dataset. 58

4.3 Comparison of Retrieval Runtime for BSE constructed using max variance, EE

constructed using max variance, DTK and LBKeogh for the UCR dataset. 58

4.4 Runtime (in seconds) for the filter step of BSE with sampling rate9 and dimen-

sionality40 and for the filter step of LBKeogh for the UCR dataset. 58

4.5 Behavior of BSE (for 95% retrieval accuracy) vs. LBKeogh for different warping

widths for the Random Walk dataset. 61

4.6 Effect of query size on Cell Cost for the Random Walk dataset. 61

4.7 Effect of query size on the retrieval runtime cost for theRandom Walk dataset. . . 61

5.1 Cell cost of Q-grams vs. E-RBSA-ED (exact RBSA using editdistance at the

refine step) for different query sizes and different values of δ. 84

5.2 RRP and cell cost of E-RBSA-ED (exact RBSA using edit distance at the refine

step) for various query sizes and variousδ values without applying letter collaps-

ing. 84

5.3 RRP and cell cost of E-RBSA-ED (exact RBSA using edit distance at the refine

step) and E-RBSA-SW (exact RBSA using Smith-Waterman at therefine step) for

various query sizes andδ = 15%. 85

ix

5.4 RRP of BLAST and BWT-SW vs. A-RBSA-SW (approximate RBSA using Smith-

Waterman at the refine step) and E-RBSA-SW (exact RBSA using Smith-Waterman

at the refine step). 86

5.5 Cell cost of BLAST and BWT-SW vs. A-RBSA-SW (approximateRBSA using

Smith-Waterman at the refine step) and E-RBSA-SW (exact RBSAusing Smith-

Waterman at the refine step). .. 87

5.6 RRP and cell cost of E-RBSA-SW (exact RBSA using Smith-Waterman at the

refine step) varying the number of reference objects assigned to each database

point. 89

5.7 RRP and cell cost of RBSA vs. competitors for variableδ values. 89

x

List of Figures

1·1 Flowchart of the offline and the online stages of EBSM. 4

3·1 (a) Example of an optimal warping pathW ∗(R,Q, |Q|) aligning a reference object

R to a suffix ofQ. FR(Q) is the cost ofW ∗(R,Q, |Q|). 25

3·2 Distribution of lengths of the 40 reference objects chosenby the embedding opti-

mization algorithm in our experiments. 33

3·3 Comparing the accuracy versus efficiency trade-offs achieved by EBSM with sam-

pling rate 9 and by modified PDTW with sampling rates 7, 9, 11, and 13. 36

3·4 Distribution of lengths of optimal subsequence matches (as fractions of the query

length) for the 1000 queries used for performance evaluation. 37

3·5 Accuracy vs. efficiency for EBSM with sampling rates 1, 9, 15, and 23. 37

3·6 Accuracy vs. efficiency for EBSM, using embeddings constructed randomly, op-

timized with the max variance heuristic, and optimized using Algorithm 4.2 for

embedding optimization. .. 38

3·7 Accuracy vs. efficiency for EBSM, using embeddings with different dimensionality. 42

4·1 An example that illustrates the construction of the bidirectional embedding given

a query Q and a reference object R. .. . 50

4·2 Plots of cell cost (left) and retrieval time (right) vs. retrieval accuracy attained by

BSE embeddings and endpoint embeddings (EE),both embeddings constructed

using learning, for the UCR dataset. Dimensionality =40 and sampling rate =9. 57

4·3 Plots of cell cost (left) and retrieval time (right) vs. retrieval accuracy attained by

BSE embeddings and endpoint embeddings (EE),both embeddings constructed

using the max variance heuristic, for the UCR dataset. 57

xi

4·4 Cell Cost and Retrieval Runtime of BSE embeddings optimized via learning for

the UCR dataset, for different embedding dimensionalities. 63

4·5 Cell Cost and Retrieval Runtime of BSE embeddings optimized via learning for

the UCR dataset, for different sampling rates. 64

5·1 RRP (on left column) and cell cost (on right column) of BLASTand BWT-SW vs.

A-RBSA-SW (approximate RBSA using Smith-Waterman at the refine step) and

E-RBSA-SW (exact RBSA using Smith-Waterman at the refine step). 88

xii

List of Abbreviations

1D One-dimensional

2D Two-dimensional

EBSM Embedding-Based Subsequence Matching

BSE Bidirectional Subsequence Embeddings

RBSA Reference-Based Sequence Alignment

DP Dynamic Programming

ED Edit Distance

SW Smith Waterman

DTW Dynamic Time Warping

cDTW constrained Dynamic Time Warping

PAA Piecewise Aggregate Approximation

LB Lower Bound

xiii

To my mother Vasiliki, the most important person in my life.

xiv

1

Chapter 1

Introduction

Subsequence matching is the problem of identifying, given aquery sequence and a database of

sequences, the databasesubsequencethat best matches the query sequence. Achieving efficient

subsequence matching is an important problem in domains where the database sequences are much

longer than the queries, and where the best subsequence match for a query can start and end at

any position of any database sequence. Motivating applications include keyword-based search in

handwritten documents, DNA and protein matching, query-by-humming, etc.

Identifying optimal subsequence matches assumes the existence of a similarity measure be-

tween sequences, that can be used to evaluate each match. A key requirement for such a measure is

that it should be robust to small misalignments between sequences, so as to allow for time warps

in time series data and insertions/deletions in strings. Typically, similarity between sequences

is measured using algorithms based on dynamic programming (DP). In particular, dynamic time

warping (DTW) [42] is widely used for time series data, and the edit distance [45] is used for

strings and biological sequences.

This thesis is focused on two types of sequences: time seriesand biological sequences.

1.1 Searching Time Series Databases

Time series data naturally appear in a wide variety of domains, including financial data (e.g. stock

values), scientific measurements (e.g. temperature, humidity, earthquakes), medical data (e.g.

electrocardiograms), audio, video and human activity. Improved algorithms for time series subse-

quence matching can make a big difference in real-world applications such as query by humming

[95], word spotting in handwritten documents, and content-based retrieval in large video databases

and motion capture databases.

2

For the case of time series sequences, one commonly used similarity measure is the Euclidean

Distance and generally theLp measures. However, these measures fail to identify misalignments

and warps in the time axis. Typically, similarity between time series is measured using dynamic

time warping (DTW) [42], which is indeed robust to misalignments and time warps, and has given

very good experimental results for applications such as time series mining and classification [34].

The classical DTW algorithm can be applied for full sequencematching, so as to compute the

distance between two time series. With small modifications,the DTW algorithm can also be used

for subsequence matching, so as to find, for one time series, the best matching subsequence in

another time series [44, 58, 64, 75]. Constrained Dynamic Time Warping (cDTW) is a modifica-

tion of DTW that places constraints on the possible alignment between two sequences [34, 76]. In

cDTW each position in one sequence can only be matched to a relatively short range of positions

in the other sequence. These constraints have been shown to improve the meaningfulness of the

results in many applications, as measured for example basedon nearest neighbor classification

accuracy [72]. Constraints can improve accuracy by eliminating from consideration pathological

cases, i.e., accidental alignments that are legal (in the absence of constraints) and produce optimal

scores, but do not capture a meaningful correspondence between the two time series.

The aforementioned DP-based algorithms can be used both forfull sequence and subsequence

matching, and identify the globally optimal subsequence match for a query in time linear to the

length of the database [44, 58, 64, 75]. While this complexity is definitely attractive compared

to exhaustively matching the query with every possible database subsequence, in practice, subse-

quence matching is still a computationally expensive operation in many real-world applications,

especially in the presence of large database sizes.

The first contribution of this thesis is an approximate method for Embedding-Based Sub-

sequence Matching (EBSM) [6]. Embeddings are defined by matching queries and database

sequences with so-calledreference sequences, i.e., a relatively small number of preselected se-

quences. The expensive operation of matching database and reference sequences is performed

offline. At runtime, the embedding of the query is computed bymatching the query with the ref-

erence sequences, which is typically orders of magnitude faster than matching the query with all

3

database sequences. Then, the nearest neighbors of the embedded query are identified among the

database vectors. An additional refinement step is performed, where subsequences corresponding

to the top vector-based matches are evaluated using the DTW algorithm.

Converting subsequence matching to vector retrieval is computationally advantageous for the

following reasons:

• Sampling and dimensionality reduction methods can easily be applied to reduce the amount

of storage required for the database vectors, and the amountof time per query required for

vector matching.

• Numerous internal-memory and external-memory indexing methods exist for speeding up

nearest neighbor retrieval in vector and metric spaces [7, 25, 90]. Converting subsequence

matching to a vector retrieval problem allows us to use such methods for additional compu-

tational savings.

EBSM is an approximate method that does not guarantee retrieving the correct subsequence

match for every query. Performance can be easily tuned to provide different trade-offs between

accuracy and efficiency. In experiments with real time series data, EBSM provides very good

trade-offs, by significantly speeding up subsequence matchretrieval, even when only small losses

in retrieval accuracy (incorrect results for less than1% of the queries) are allowed. Figure 1·1

illustrates the flowchart of the offline and the online stagesof the proposed method. The key idea

behind EBSM is that the subsequence matching problem can be partially converted to the much

more manageable problem of nearest neighbor retrieval in a real-valued vector space. This con-

version is achieved by defining an embedding that maps each database sequence into a sequence

of vectors. There is a one-to-one correspondence between each such vector and a position in the

database sequence. The embedding also maps each query series into a vector, in such a way that

if the query is very similar to a subsequence, the embedding of the query is likely to be similar to

the vector corresponding to the endpoint of that subsequence.

The second topic studied in this thesis is efficient subsequence matching under cDTW. An

approximate method is proposed, that introduces a new embedding, called Bidirectional Subse-

4

(a) offline preprocessing

sample
queries

database
sequence

embedding
optimization

reference
sequences

DTW

database
embeddings

F(X, j)

(b) onine retrieval system

reference
sequences

previously
unseen query Q

DTW

F(Q)

database
embeddings

F(X, j)

filter step
(vector matching)

candidate
endpoints

database
sequence

refine step
(DTW)

subsequene
match

Figure 1·1: System modules are shown as rectangles, and input/output arguments
are shown as ellipses. The goal of the online stage is to identify, given a query
time seriesQ, its optimal subsequence match in the database.

quence Embedding (BSE), that manages to trade accuracy for efficiency and can yield significant

performance gains in practice. Each query is mapped into a vector, and each database sequence is

mapped into an equally long sequence of vectors. Given a query, there is a one-to-one correspon-

dence between each database vector and a possible subsequence match for the query. If the query

is very similar to a subsequence, we expect the embedding of the query to be similar to the vector

corresponding to that subsequence. This approach allows a relatively short number of candidate

matches to be identified using efficient vector comparisons.The main differentiation from EBSM

is that BSE exploits some properties of cDTW and uses both end-point and start-point embed-

dings to define the embedding index. Experiments on real timeseries data have shown significant

speedups (of at least one order of magnitude) in contrast with standard methods for time series

matching under cDTW.

As mentioned earlier, in many domains cDTW has been shown to identify more meaningful

matches than unconstrained DTW [72]. A method that is explicitly designed for efficient sub-

sequence matching under cDTW can help obtain these meaningful results more efficiently, and

can make the use of cDTW a realistic option for larger datasets than it was possible with existing

methods. While EBSM is an embedding method for subsequence matching under unconstrained

DTW [6], BSE focuses on embedding-based subsequence matching under cDTW.

5

1.2 Searching String and Biological Sequence Databases

There are many applications that require fast searching in sequence databases that consist of col-

lections of strings. Given a query string, the goal is to find the most similar substrings in the

database using a distance/similarity measure such as the edit distance (ED) or Smith-Waterman

(SW). Applications in this area include 1) spell-checking:given some input text the spell-checker

consults its dictionary to find words of high similarity to the text, so as to identify potential typos,

2) data cleaning: data obtained from different sources might contain inconsistencies which can be

eliminated by looking for similar entities (strings) in thedata, 3) homology search in biological

sequences: given different genomes we want to find regions ofhigh similarity that were the result

of a mutation, etc. Being able to efficiently answer such queries is crucial, especially for online

string search applications.

In order to generate and interpret complete genomes of different organisms, various searches

need to be performed that 1) involve queries of large length,and 2) only targetnear exactmatches

[21, 29]. We focus on these two major requirements: we want tobe able to retrievenear-exact

matchesof long query sequencesefficiently. As a motivating example for large query lengths,

consider large EST (Expressed Sequence Tag) databases, that contain portions of genes expressed

as mature mRNA. In such databases, large scale searches needto be performed against other

genomic databases to determine locations of genes [29]. In practice, genes can vary in size from

hundreds to millions of nucleotides. Searches can also target whole chromosomes, where the

goal is to find chromosome similarities across different organisms. Since chromosomes can be

relatively large (e.g. Human Chromosome1 is approximately272 million bases), such searches

require algorithms that can handle large queries efficiently.

In many applications, database matches are of interest onlyif their deviation from the query

does not exceed a certain, relatively small, fraction of thequery length [9, 21, 33]. We denote that

fraction asδ and focus on values ofδ up to15%, which is typical in applications, such as shotgun

sequencing [59] and mutation analysis [74]. Notice that ourfocus is on DNA sequences, where

the alphabet size is small (4) and the query size can be large (up to10, 000 bases). In this setting,

6

only near homology search is biologically significant, whereasremote homology searchis more

meaningful and mostly used not for DNA, but for protein sequences.

In this thesis, we propose a novel method, called reference-based string alignment (RBSA)

[65] for efficient subsequence matching in large databases of strings under the edit distance or

the Smith-Waterman similarity measure. In RBSA, we decompose the subsequence matching

problem into two distinct problems:

• The fixed query length problem: achieve efficient retrieval assuming that all queries have

the same length.

• The variable query length problem: using a solution to the fixed query length problem,

achieve efficient retrieval for queries of arbitrary length.

To solve the fixed query length problem, RBSA precomputes, for each position of every

database string, alignment scores corresponding to different reference sequences. These align-

ment scores are based on the edit distance. Given a query, alignment scores between the query

and all reference sequences are computed online. These alignment scores are used to prune away

large portions of the database, so as to leave a relatively small number of candidate matches. We

can guarantee that the optimal subsequence match will be included among the candidates. Exact

alignment scores (using the edit distance or Smith-Waterman) are then computed to identify the

optimal match among the remaining candidates. One of the main contributions in this thesis is in

showing how to use alignment scores with reference sequences to achieve efficient subsequence

matching for fixed query lengths.

To solve the variable query length problem, the RBSA first breaks up that problem into multi-

ple fixed query length problems, by partitioning the query sequence into segments of fixed length.

In the exact version of RBSA, all query segments are considered, and subsequence matches found

for those segments are used to identify candidate subsequence matches for the entire query. In the

approximate version of RBSA, only a subset of query segmentsis considered. Another contribu-

tion in this thesis consists in showing that the probabilityof failing to find the optimal match drops

very fast (exponentially) as we increase the number of querysegments that we consider, and thus

7

we can achieve both significantly improved efficiency and very high accuracy rates by considering

only a relatively small number of segments.

An important advantage of RBSA compared to BLAST and its variants is that RBSA has an

exact version that provably achieves100% accuracy, and as shown in the experimental evaluation

outperforms BLAST (which is the most widely used method for near-exact homology search in

DNA sequences) by more than an order of magnitude even for large query lengths. Compared to

other exact methods, such as OASIS[54] and BWT-SW[43], thatare used for near-exact homology

search of short queries in biological sequences, RBSA achieves a retrieval runtime of more than

one order of magnitude. Moreover, RBSA differs from (MV and MP) [85] in that it is developed

for substring matching and not for full string matching.

1.3 Contributions

The main contributions of this thesis are summarized below.

EBSM (Embedding-Based Subsequence Matching)is a method for speeding up subse-

quence matching in time series databases. It is the first to explore the usage of embed-

dings for subsequence matching for unconstrained DTW. The key differentiating features of

EBSM are the following:

• EBSM converts, at least partially, subsequence matching under DTW into a much

easier vector matching problem. Vector similarity retrieval is used to identify very fast

a relatively small number of candidate matches. The computationally expensive DTW

algorithm is only applied to evaluate those candidate matches.

• EBSM is the first indexing method, in the context of subsequence matching, that fo-

cuses on unconstrained DTW, where optimal matches do not have to have the same

length as the query. The only alternative method for this setting, PDTW, which uses

piecewise aggregate approximation (PAA) [36], is a genericmethod for speeding up

DTW.

• In experiments with real time series data, EBSM provides thebest performance in

8

terms of accuracy versus efficiency, compared to the currentstate-of-the-art methods

for subsequence matching under unconstrained DTW: the exact SPRING method [75]

that uses the standard DTW algorithm, and the approximate PDTW method.

BSE (Bidirectional Subsequence Embeddings)is a bi-directional embedding-based method

for subsequence matching under cDTW. The main features of BSE are described below:

• On the algorithmic side, we exploit the constraints of cDTW to define a new embed-

ding, BSE, that includes more information than previously proposed embeddings for

this problem. This information includes startpoint embeddings that are defined in a

manner similar to that of endpoint embeddings. An interesting feature of BSE embed-

dings is that they are customized, online, to the length of each query.

• On the practical side, we provide experimental results on real time series data where

our method produces speedups of one to two orders of magnitude compared to the

state-of-the-art methods of LBKeogh [34] and DTK [56], at the cost of1% to 20%

loss in retrieval accuracy. We believe that this trade-off between accuracy and effi-

ciency is highly desirable for many real world settings. Furthermore, our method has

shown speedups that significantly outperform competing methods by over an order of

magnitude. It is also able to tolerate large warping widths and large query lengths as

shown in the experiments.

• Another important practical result is that, unlike resultspreviously published on un-

constrained DTW [6], our embedding method has very good perfornamce without

using training data for embedding optimization. Not requiring training data makes it

much easier to implement and deploy our method in real-worldsystems.

• In the experiments we apply our method to real-world datasets of time series as well as

random walk synthetic datasets. The proposed BSE embeddingsignificantly speeds up

subsequence retrieval with relatively small losses in accuracy (by at most5%), and per-

formance compares favorably to that of existing state-of-the-art methods (LBKeogh

[34] and DTK [56]) for constrained subsequence matching. Our method also out-

9

performs the embedding method of [6], thanks to the novel embeddings, explicitly

designed for cDTW, that we introduce in this thesis.

RBSA (Reference-Based Sequence Alignment)is the first reference based method for sub-

sequent matching in string databases that both guarantees no false dismissals and performs

well for large queries. The main characteristics of RBSA aredescribed below:

• RBSA produces lower bounds of the edit distance and upper bounds of the Smith-

Waterman similarity between the query and database subsequences using precomputed

alignment scores with reference sequences. In prior work, such bounds have only been

derived for full sequence matching [85].

• An exact method is presented for decomposing the variable-length query problem into

multiple fixed-length queries, so that we can achieve significant retrieval runtimes (one

to two orders of magnitude faster than the Edit Distance [45], Smith-Waterman [79]

and BLAST [2]) for long queries, while still guaranteeing correct results.

• An approximate method is presented for decomposing the variable-length query prob-

lem into multiple fixed-length queries. At the same time, theprobability of missing

the correct result in approximate RBSA drops exponentiallywith the number of query

segments that we consider, and thus can easily be reduced to anegligible quantity.

The experimental evaluation shows that, for query lengths≥ 200, RBSA outperforms

current state-of-the-art sequence alignment methods: BLAST2[2], BWT-SW[43] and

q-grams. Speedups of one to two orders of magnitude over the current state of the art

are demonstrated for query sizes≥ 2, 000.

1.4 Roadmap

The remainder of this thesis is organized as follows:

Chapter 2 This chapter describes the related work on subsequence matching in time series and

biological sequence databases and places our contributionin the current literature.

10

Chapter 3 The first contribution of this thesis includes an analysis ofthe background on time

series subsequence matching, the description of the proposed method, EBSM, and an ex-

perimental evaluation against state-of-the-art time series subsequence matching methods.

Chapter 4 The second contribution of this thesis includes the definition of bidirectional subse-

quence embeddings and the method that uses them to perform efficient subsequence match-

ing under cDTW. Experiments show the superiority of the proposed method against state-

of-the-art constrained subsequence matching methods.

Chapter 5 The third contribution of this thesis is a reference based method for subsequence

matching (RBSA) in string databases.

Chapter 6 This last chapter provides a discussion of the proposed methods underlying their ma-

jor contributions and pointing out their limitations. Finally, directions for future work are

discussed.

1.5 List of related papers

Parts of this thesis are based on the material from the following published papers:

Chapter 3 is mostly based on:

V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios and D. Gunopulos. “Approximate

embedding-based subsequence matching of time series,” in ACM SIGMOD, pages 365–

378, 2008.

Chapter 5 is mostly based on:

P. Papapetrou, V. Athitsos, G. Kollios and D. Gunopulos. “Reference-Based Alignment of

Large Sequence Databases,” in VLDB, 2009 (To Appear).

11

Chapter 2

Related Work

2.1 Literature on Time Series Subsequence Matching

A large body of literature addresses the problem of efficientsequence matching. Several methods

assume that sequence similarity is measured using the Euclidean distance [19, 14, 55, 57] or

variants [3, 71, 91]. However, such methods cannot handle even the smallest misalignment caused

by time warps, insertions, or deletions. Robustness to misalignments is achieved using distance

measures based on dynamic programming (DP), such as DTW [42]. In the remaining discussion

we restrict our attention to the DTW distance measure, whichis the most popular measure for time

series.

Sequence matching methods can be divided into two categories: 1). methods for full sequence

matching, where the best matches for a query are constrainedto be entire database sequences,

and 2). methods for subsequence matching, where the best matches for a query can be arbitrary

subsequences of database sequences. Several well-known methods only address full sequence

matching [34, 76, 86, 93], and cannot be easily used for efficient retrieval of subsequences.

Some methods reduce subsequence matching to full sequence matching, by cutting database

sequences into small pieces, and requiring each query to correspond to an entire such piece. One

example is the query-by-humming system described by Zhu et al. [95], where each database song

is cut into smaller, disjoint pieces. Another example is themethod for word search in handwritten

documents described by Rath et al. [73], where, as preprocessing, the documents are segmented

automatically into words, and full sequence matching is performed between query words and

database words. Such approaches fail when the query corresponds to a database subsequence that

is not stored as a single piece.

12

An indexing structure for unconstrained DP-based subsequence matching is proposed by Park

et al. [66]. However, as database sequences get longer, the time complexity for that method

becomes similar to that of unoptimized DP-based matching. The method by Park et al. [67] can

handle such long database sequences; the key idea is to speedup DTW by reducing the length of

both query and database sequences. The length is reduced by representing sequences as ordered

lists of monotonically increasing or decreasing segments.By using monotonicity, that method

is only applicable to 1D time series. A related method that can be used for multidimensional

time series is proposed by Keogh et al. [36]. In that method, time series are approximated by

shorter sequences, obtained by replacing each constant-length part of the original sequence with

the average value over that part.

The SPRING method [75] has been developed for efficient subsequence matching under un-

constrained DTW. In that method, optimal subsequence matches are identified by performing full

sequence matching between the query and each database sequence. Subsequences are identified

by prepending to each query a “null” symbol that matches any sequence prefix with zero cost. The

complexity of that method is linear to both database size andquery size. Compared to SPRING,

the key source of computational savings in EBSM is that expensive DTW-based matching is only

performed between the query and a small fraction of the database, whereas in SPRING the query

is matched to the entire database using DTW. The price for this improved efficiency is that EBSM

cannot guarantee correct results for all queries, whereas SPRING is an exact method. Still, it is of-

ten desirable in database applications to trade accuracy for efficiency, and our method, in contrast

to SPRING, provides the capability to achieve such trade-offs.

The DTK method [56] is a method for subsequence matching under cDTW. DTK breaks the

database into small non-overlapping sequences and furtheremploys the piece-wise approximation

method (PAA) [36] for efficient indexing. This approach however, does not scale well as the query

size increases, as shown in the experiments of chapter 4. A similar approach is used to index time

series for sequence and subsequence matching under scalingand dynamic time warping [20].

Actually, when the scaling factor is 1 (no scaling at all), the indexing and query algorithm of

Moon et al. [56] are the same as the ones proposed by Fu et al. [20]. Therefore, since here we do

13

not consider scaling, we just use the DTK as a competitor BSE.

The more powerful lower-bounding methodLB Keogh for efficient time series matching

under cDTW is described in [34]. The main idea is to use the warping constraint to create an

envelope around the query sequence. Then, using a sliding window of size equal to the query,

we can estimate a lower bound of the matching cost between thequery and each possible subse-

quence. SinceLB Keogh gives a lower bound on the actual distance, this approach canbe used

to prune a large number of subsequences. For the subsequences that cannot be pruned, the exact

dynamic programming algorithm is used to compute the distances and ultimately find the best

match. However, as shown in our experiments, performance ofLB Keogh is highly dependent

on the warping width parameterw and the query size; performance deteriorates as warping width

and query size increase. The second method proposed in this thesis, BSE, achieves significant

speedups even for high warping widths and long query sizes (1000). Furthermore, computing

theLB Keogh for each possible subsequence can be time consuming for large databases. Note

that, although some improvements to theLB Keogh have been proposed (e.g. Shou et al. [78]),

these improvements achieve not more than a small constant factor in terms of both the tightness

of the lower bound and the query time performance. Therefore, we can useLB Keogh as a good

yardstick to evaluate the performance of BSE. Compared to EBSM, BSE is explicitly designed to

take advantage of the constraints of cDTW. This novel embedding stores additional information

at the same amount of space, and thus leads to better performance, as shown in the experiments.

Furthermore, EBSM embeddings are fixed regardless of the length of the query, whereas BSE

embeddings are customized online to the length of each query, so as to contain information highly

relevant for that query length.

The two time series subsequence matching methods proposed in this thesis are embedding-

based. Several embedding methods exist in the literature for speeding up distance computations

and nearest neighbor retrieval. Examples of such methods include Lipschitz embeddings [26],

FastMap [18], MetricMap [87], SparseMap [27], and BoostMap[4, 5]. Such embeddings can be

used for speeding up full sequence matching [4, 5, 27]. However, the above-mentioned embedding

methods can only be used for full sequence matching, not subsequence matching.

14

2.2 Literature on String Subsequence Matching

A preeminent group of methods for string subsequence matching are based on dynamic program-

ming [45]. Needleman et al. [62], describes a global alignment method, where both query and

database sequences are aligned along their entire lengths,usingmatch, mismatchandgapscores.

A similar, but generalized algorithm [28] for global alignment, handles sequences of intermittent

similarities. Smith and Waterman [79] developed a dynamic programming approach for local

alignment, where a subsequence of the query is matched to a subsequence of the database. Ukko-

nen et al. [83] exploits the fact that in approximate string searching we are looking for patterns

that match with substrings of the text with at mostk errors. Thus, it speeds up the dynamic

programming (DP) computation by pruning cells in the DP matrix with values larger thank.

Several q-gram-based methods [9, 10, 11, 37, 47, 48, 52, 60, 92] have been developed to solve

the problem of exact and approximate string matching in large sequence databases. Their main

characteristic is that they build a dictionary of words on a given database of sequences. At query

time the query is broken into a set of overlapping q-grams andthe index is searched for exact

matches of those q-grams. These matches provide candidate hits that are later refined to remove

false positives.

QUASAR [9] is a subsequence matching method that performs q-gram based filtering on a

sequence database. QUASAR is limited to relatively short queries (the maximum query length

on which the performance of QUASAR was evaluated was393 characters) of high similarity to

the database. A generalization of QUASAR, which uses gappedinstead of contiguous q-grams

is described in [10]. Similar q-gram based methods for approximate full string matching are

described in [47, 48, 92].

VGRAM [48] employs a q-gram dictionary where the words are ofvariable length and more

representative of the dataset. Again, the limitations to small queries persist (the experimental

evaluation reports queries of average size ranging from8 to 62 characters) and the performance

seriously deteriorates ask (the number of edit operations applied to the queries) increases (> 4).

An improved vgram-based method is described by Yang et al. [92], but is again limited to small

15

query sizes (varying between4 and 249 characters). Several methods [37, 11] employ a two

level q-gram index to speed up the database search. A q-gram based approximate string matching

method is described by Navarro et al. [60], where disjoint text substrings of length q are collected

by the index at fixed intervals. Finally, Li et al. [47] introduces several strategies for improving

the join cost of the gram lists found during a query search in an inverted q-gram index and shows

how to incorporate these strategies into existing filteringmethods to improve string matching.

A key property of q-gram based methods, such as the ones mentioned above, is the following:

if the query size is|Q| and we are searching for matches with edit distance withink, q can be at

most⌈|Q|/(k+1)⌉ to guarantee no false dismissals. It can be seen that ask increases,q decreases,

and thus, the index size becomes larger. Consequently, and also as shown in the experiments, q-

gram based approaches can only handle short queries of relatively high similarity to the database.

However, the biologically interesting types of queries (e.g. mutated genes) can be significantly

long (up to10, 000 nucleotides or more [43]) and thus, q-gram based methods arenot able to

handle them efficiently.

Another group of methods has been proposed forexact string matching, targeting exact oc-

currences of the query sequence in a database [8, 15, 16, 32, 39, 52, 53, 70, 84]. However, exact

string matching is quite different from the main focus of this paper and thus, these methods are

not discussed any further.

Several methods have been developed for aligning biological sequences. FASTA [51, 68]

detects locally similar regions between two sequences using only identities and no gaps, and then

based on some measure of similarity it re-scores them accordingly. Additional heuristics are

proposed in BLAST [1]. Given a query (DNA or protein), BLAST performs a linear scan on the

sequence database searching for a set of seeds belonging to the neighborhood of some substrings

of the query. Having identified a set of candidate hits, it then extends them both ways, until the

accumulated similarity score begins to decrease. Finally,BLAST reports as matches those regions

with high statistical significance.

A new version of BLAST, known as BLAST2 [2], improves accuracy by allowing a limited

number of insertions and deletions during the alignment formation and improves search speed

16

by imposing more stringent criteria when performing a localalignment. Further improvements

of BLAST include MegaBLAST [94], MPBLAST [40] and miBLAST [38]. MegaBLAST is a

greedy algorithm for detecting sequences that differ slightly as a result of sequencing. MPBLAST

and miBLAST are different versions of BLAST used for parallel queries.

BLAT [1] builds an index of the database and then given a query, it linearly scans the query

searching for matches in the index. Apart from using an inverse index, BLAT differs from BLAST

and BLAST2 in that it triggers extensions on any number of perfect hits whereas in BLAST

extensions are triggered when one or two hits occur in proximity to each other. Several hash-based

approaches [30, 63] have been developed for further speed up. A key limitation of all the above-

mentioned variants of BLAST is that their accuracy and retrieval cost deteriorates as the query

size increases. As the volume of biological sequence databases increases, all the aforementioned

exhaustive systems become prohibitively expensive.

Another key limitation of BLAST-like approaches is that there is no guarantee that the optimal

local alignment will be reported. Several methods have beendeveloped to handle this weakness.

OASIS [54] employs a best first search technique over a suffix tree for string alignment. The

algorithm outperforms BLAST by an order of magnitude, but only for small query sizes (5 to 60);

this is one of its major limitations. Another indexing method that uses suffix trees is discussed by

Navarro et al. [61], whereas Phoophakdee et al. [69] discusses an efficient method for suffix tree

construction in external memory. Finally, BWT-SW[43] employs a suffix array to speedup local

alignment search in biological sequences. It outperforms BLAST for queries of size up to1000;

for larger queries its performance deteriorates. Both OASIS and BWT-SW always find the best

local alignment according to Smith-Waterman.

Two reference-based indexing methods for full sequence matching are proposed by Venkateswaran

et al. [85] that use reference sequences to represent the database. At query time, the edit distance

of the query against each reference sequence is computed. Lower and upper bounds are applied to

efficiently filter candidate matches. DSIM[12] uses a set of selected reference words formed from

high-frequency data sub- strings. SST [21] is used for subsequence matching in biological se-

quences and maps the biological sequence database to ad-dimensional vector space; this mapping

17

is used to filter a significant portion of the database from consideration during the query process.

This method outperforms BLAST by an order of magnitude but only for applications where there

exists an extremely high similarity (95% and over) between the query sequence and its match in

the database.

The RBSA method proposed in this thesis is also related to EBSM [6], which uses precom-

puted alignments between database sequences and referencesequences for efficient subsequence

matching in time series databases. The key differences between RBSA and EBSM stem from the

fact that RBSA addresses near-exact string matching under the edit distance or Smith-Waterman,

whereas EBSM addresses general time series matching under DTW. RBSA exploits the metric

properties of the edit distance, and the additional near-exact matching constraint, to provide ei-

ther guaranteed correct results (for exact RBSA) or guaranteed high probability of correct results

(for approximate RBSA). No equivalent guarantees are present in EBSM. Furthermore, RBSA

can handle queries of arbitrary size (query lengths range from 40 to 10,000 in our experiments) by

breaking up queries into fixed-size segments, whereas EBSM requires that query lengths be within

a relatively narrow range (query lengths range from 152 to 426 in the experiments of EBSM), and

provides no mechanism for handling queries of arbitrary size.

18

Chapter 3

Embedding-based Subsequence Matching in Time Series

Databases

In this chapter we describe Embedding-Based Subsequence Matching (EBSM), an embedding-

based method for subsequence matching under Dynamic Time Warping (DTW). EBSM is an ap-

proximate method that uses an embedding index to filter candidate endpoint positions of a possible

match and then performs the expensive dynamic programming computation only for those candi-

dates. In the remainder of this chapter, we first provide somebackground on time series matching

under DTW, then we describe EBSM in detail, and finally we present an extensive experimental

evaluation on real time series data.

3.1 Background

In this section we define dynamic time warping (DTW), both as adistance measure between time

series, and as an algorithm for evaluating similarity between time series. We follow to a large

extent the descriptions in [34] and [75]. We use the following notation:

• Q, X, R, andS are sequences (i.e., time series).Q is typically a query sequence,X

is typically a database sequence,R is typically a reference sequence, andS can be any

sequence whatsoever.

• |S| denotes the length of any sequenceS.

• St denotes the t-th step of sequenceS. In other words,S = (S1, . . . , S|S|).

• Si:j denotes the subsequence ofS starting at positioni and ending at positionj. In other

words,Si:j = (Si, . . . , Sj), Si:j
t is thet − th step ofSi:j, andSi:j

t = Si+t−1.

19

• Dfull(Q,X) denotes the full sequence matching cost betweenQ andX. In full matching,

Q1 is constrained to match withX1, andQ|Q| is constrained to match withX|X|.

• D(Q,X) denotes the subsequence matching cost between sequencesQ andX. This cost

is asymmetric: we find the subsequenceXi:j of X (whereX is typically a large database

sequence) that minimizesDfull(Q,Xi:j) (whereQ is typically a query).

• Di,j(Q,X) denotes the smallest possible cost of matching(Q1, . . . , Qi) to any suffix of

(X1, . . . ,Xj) (i.e.,Q1 does not have to matchX1, butQi has to match withXj). Di,j(Q,X)

is also defined fori = 0 andj = 0, as specified below.

• Dj(Q,X) denotes the smallest possible cost of matchingQ to any suffix of(X1, . . . ,Xj)

(i.e.,Q1 does not have to matchX1, butQ|Q| has to match withXj). Obviously,Dj(Q,X) =

D|Q|,j(Q,X).

• ‖Xi − Yj‖ denotes the distance betweenXi andYj.

Given a query sequenceQ and a database sequenceX, the subsequence matching problem is

the problem of finding the subsequenceXi:j of X that is the best match for the entireQ, i.e., that

minimizesDfull(Q,Xi:j). In the next paragraphs we formally define what the best matchis, and

we specify how it can be computed.

3.1.1 Legal Warping Paths

A warping pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) defines an alignment between two se-

quencesQ andX. The i-th element ofW is a pair(wi,1, wi,2) that specifies a correspondence

between elementQwi,1
of Q and elementXwi,2

of X. The costC(Q,X,W) of warping pathW

for Q andX is theLp distance (for any choice ofp) between vectors(Qw1,1
, . . . , Qw|W |,1

) and

(Xw1,2
, . . . ,Xw|W |,2

):

C(Q,X,W) =
p

√

√

√

√

|W |
∑

i=1

‖Qwi,1
− Xwi,2

‖p . (3.1)

In the remainder of this section, to simplify the notation, we will assume thatp = 1. However, the

formulation we propose can be similarly applied to any choice ofp.

20

For W to be a legal warping path, in the context of subsequence matching under DTW,W

must satisfy the following constraints:

• Boundary conditions: w1,1 = 1 andw|W |,1 = |Q|. This requires the warping path to start

by matching the first element of the query with some element ofX, and end by matching

the last element of the query with some element ofX.

• Monotonicity: wi+1,1 − wi,1 ≥ 0, wi+1,2 − wi,2 ≥ 0. This forces the warping path indices

wi,1 andwi,2 to increase monotonically withi.

• Continuity: wi+1,1 − wi,1 ≤ 1, wi+1,2 − wi,2 ≤ 1. This restricts the warping path indices

wi,1 andwi,2 to never increase by more than1, so that the warping path does not skip any

elements ofQ, and also does not skip any elements ofX between positionsXw1,2
and

Xw|W |,2
.

• (Optional) Diagonality: w|W |,2−w1,2 = |Q|−1, wi,2 −w1,2 ∈ [wi,1−Θ(Q,wi,1), wi,1 +

Θ(Q,wi,1)], whereΘ(Q, t) is some suitably chosen function (e.g.,Θ(Q, t) = ρ|Q|, for

some constantρ such thatρ|Q| is relatively small compared to|Q|) . This is an optional

constraint, employed by some methods, e.g., [24, 34], and not employed by other methods,

e.g., [75]. The diagonality constraint imposes that the subsequenceXw1,2:w|W |,2 be of the

same length asQ. Furthermore, the diagonality constraint severely restricts the number of

possible positionswi,2 of X that can match positionwi,1 of Q, given the initial match match

(w1,1, w1,2). In this thesis, we will not consider this constraint, and inthe experiments this

constraint is not employed.

3.1.2 Optimal Warping Paths and Distances

The optimal warping pathW ∗(Q,X) betweenQ andX is the warping path that minimizes the

costC(Q,X,W):

W ∗(Q,X) = argminW C(Q,X,W). (3.2)

We define the optimal subsequence matchM(Q,X) of Q in X to be the subsequence ofX spec-

ified by the optimal warping pathW ∗(Q,X). In other words, ifW ∗(Q,X) = ((w∗
1,1, w

∗
1,2), . . . ,

21

(w∗
m,1, w

∗
m,2)), thenM(Q,X) is the subsequenceXw∗

1,2:w∗
m,2 . We define the partial dynamic time

warping (DTW) distanceD(Q,X) to be the cost of the optimal warping path betweenQ andX:

D(Q,X) = C(Q,X,W ∗(Q,X)). (3.3)

Clearly, partial DTW is an asymmetric distance measure.

To facilitate the description of our method, we will define two additional types of optimal

warping paths and associated distance measures. First, we defineW ∗
full(Q,X) to be the optimal

full warping path, i.e., the pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) minimizingC(Q,X,W)

under the additional boundary constraints thatw1,2 = 1 andw|W |,2 = |X|. Then, we can define

the full DTW distance measureDfull(Q,X) as:

Dfull(Q,X) = C(Q,X,W ∗
full(Q,X)). (3.4)

DistanceDfull(Q,X) measures the cost of full sequence matching, i.e., the cost of matching the

entireQ with the entireX. In contrast,D(Q,X) from Equation 3.3 corresponds to matching the

entireQ with asubsequenceof X.

We defineW ∗(Q,X, j) to be the optimal warping path matchingQ to a subsequence ofX

ending atXj , i.e., the pathW = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2)) minimizing C(Q,X,W)

under the additional boundary constraint thatw|W |,2 = j. Then, we can defineDj(Q,X) as:

Dj(Q,X) = C(Q,X,W ∗(Q,X, j)). (3.5)

We defineM(R,X, j) to be the optimal subsequence match forR in X under the constraint

that the last element of this match isXj :

M(R,X, j) = argminXi:jDfull(R,Xi:j). (3.6)

Essentially, to identifyM(R,X, j) we simply need to identify the start pointi that minimizes the

full distanceDfull betweenR andXi:j.

22

3.1.3 The DTW Algorithm

Dynamic time warping (DTW) is a term that refers both to the distance measures that we have just

defined, and to the standard algorithm for computing these distance measure and the corresponding

optimal warping paths.

We define an operation⊕ that takes as inputs a warping pathW = ((w1,1, w1,2), . . . , (w|W |,1,

w|W |,2)) and a pair(w′, w′′) and returns a new warping path that is the result of appending(w′, w′′)

to the end ofW :

W ⊕ (w′, w′′) = ((w1,1, w1,2), . . . , (w|W |,1, w|W |,2), (w
′, w′′)). (3.7)

The DTW algorithm uses the following recursive definitions:

D0,0(Q,X) = 0,Di,0(Q,X) = ∞,D0,j(Q,X) = 0 (3.8)

W0,0(Q,X) = (),W0,j(Q,X) = () (3.9)

A(i, j) = {(i, j − 1), (i − 1, j), (i − 1, j − 1)} (3.10)

(pi(Q,X),pj(Q,X)) = argmin(s,t)∈A(i,j)Ds,t(Q,X) (3.11)

Di,j(Q,X) = ‖Qi − Xj‖ + Dpi(Q,X),pj(Q,X)(Q,X) (3.12)

Wi,j(Q,X) = Wpi(Q,X),pj(Q,X) ⊕ (i, j) (3.13)

D(Q,X) = min
j=1,...,|X|

{D|Q|,j(Q,X)} (3.14)

The DTW algorithm proceeds by employing the above equationsat each step, as follows:

• Inputs. A short sequenceQ, and a long sequenceX.

• Initialization. ComputeD0,0(Q,X),Di,0(Q,X),D0,j(Q,X).

• Main loop. For i = 1, . . . , |Q|, j = 1, . . . , |X|:

1. Compute(pi(Q,X),pj(Q,X)).

2. ComputeDi,j(Q,X).

23

3. ComputeWi,j(Q,X).

• Output. Compute and returnD(Q,X).

The DTW algorithm takes timeO(|Q||X|). By definingD0,j = 0 we essentially allow ar-

bitrary prefixes ofX to be skipped (i.e., matched with zero cost) before matchingQ with the

optimal subsequence inX [75]. By definingD(Q,X) to be the minimumD|Q|,j(Q,X), where

j = 1, . . . , |X|, we allow the best matching subsequence ofX to end at any positionj. Overall,

this definition matches the entireQ with an optimal subsequence ofX.

For each positionj of sequenceX, the optimal warping pathW ∗(Q,X, j) is computed as

value W|Q|,j(Q,X) by the DTW algorithm (step 3 of the main loop) . The globally optimal

warping pathW ∗(Q,X) is simply W ∗(Q,X, jopt), wherejopt is the endpoint of the optimal

match:jopt = argminj=1,...,|X|{D|Q|,j(Q,X)}.

3.2 EBSM: An Embedding for Subsequence Matching

Let X = (X1, . . . ,X|X|) be a database sequence that is relatively long, containing for example

millions of elements. Without loss of generality, we can assume that the database only contains

this one sequenceX (if the database contains multiple sequences, we can concatenate them to

generate a single sequence). Given a query sequenceQ, we want to find the subsequence ofX

that optimally matchesQ under DTW. We can do that using brute-force search, i.e., using the

DTW algorithm described in the previous section. This thesis proposes a more efficient method.

Our method is based on defining a novel type of embedding function F , which maps every query

Q into a d-dimensional vector and every elementXj of the database sequence also into ad-

dimensional vector. In this section we describe how to definesuch an embedding, and then we

provide some examples and intuition as to why we expect such an embedding to be useful.

LetR be a sequence, of relatively short length, that we shall callareference objector reference

sequence. We will useR to create a 1D embeddingFR, mapping each query sequence into a real

24

numberF (Q), and also mapping each stepj of sequenceX into a real numberF (X, j):

FR(Q) = D|R|,|Q|(R,Q) . (3.15)

FR(X, j) = D|R|,j(R,X) . (3.16)

Naturally, instead of picking a single reference sequenceR, we can pick multiple reference

sequences to create a multidimensional embedding. For example, letR1, . . . , Rd bed reference

sequences. Then, we can define ad-dimensional embeddingF as follows:

F (Q) = (FR1(Q), . . . , FRd(Q)) . (3.17)

F (X, j) = (FR1(X, j), . . . , FRd(X, j)) . (3.18)

Computing the set of all embeddingsF (X, j), for j = 1, . . . , |X| is an off-line preprocessing

step that takes timeO(|X|
∑d

i=1 |Ri|). In particular, computing thei-th dimensionFRi can be

done simultaneously for all positions(X, j), with a single application of the DTW algorithm with

inputsRi (as the short sequence) andX (as the long sequence). We note that the DTW algorithm

computes eachFRi(X, j), for j = 1, . . . , |X|, as valueD|Ri|,j(Ri,X) (see Section 3.1.3 for more

details).

Given a queryQ, its embeddingF (Q) is computed online, by applying the DTW algorithmd

times, with inputsRi (in the role of the short sequence) andQ (in the role of the long sequence).

In total, these applications of DTW take timeO(|Q|
∑d

i=1 |Ri|). This time is typically negligible

compared to running the DTW algorithm betweenQ andX, which takesO(|Q||X|) time. We

assume that the sum of lengths of the reference objects is orders of magnitude smaller than the

length|X| of the database sequence.

Consequently, a very simple way to speed up brute force search for the best subsequence match

of Q is to:

• CompareF (Q) to F (X, j) for j = 1, . . . , |X|.

• Choose somej’s such thatF (Q) is very similar toF (X, j).

25

Q

R

X

Q
i' ji

R

X

Q
i' ji

R

(a)

(c)

(b)

Figure 3·1: (b) Example of a warping pathW ∗(R,X, j), aligning a refer-
ence objectR to a subsequenceXi:j of sequenceX. FR(X, j) is the cost of
W ∗(R,X, j). The queryQ from (a) appears exactly inX, as subsequenceXi′:j,
and i′ < i. Under these conditions,FR(Q) = FR(X, j). (c) Similar to (b),
except thati′ > i. In this case, typicallyFR(Q) 6= FR(X, j).

• For each suchj, and for some length parameterL, run dynamic time warping betweenQ

and(Xj−L+1:j) to compute the best subsequence match forQ in (Xj−L+1:j).

As long as we can choose a small number of such promising areas(Xj−L+1:j), evaluating

only those areas will be much faster than running DTW betweenQ andX. Retrieving the most

similar vectorsF (X, j) for F (Q) can be done efficiently by applying a multidimensional vector

indexing method to these embeddings [22, 89, 77, 13, 46, 17, 31, 88, 41, 82].

We claim that, under certain circumstances, ifQ is similar to a subsequence ofX ending at

Xj , and ifR is some reference sequence, thenFR(Q) is likely to be similar toFR(X, j). Here

we provide some intuitive arguments for supporting this claim.

Let’s consider a very simple case, illustrated in Figure 3·1. In this case, the queryQ is identical

to a subsequenceXi′:j. Consider a reference sequenceR, and suppose thatM(R,X, j) (defined

as in Equation 3.6) isXi:j, and thati ≥ i′. In other words,M(R,X, j) is a suffix ofXi′:j and

thus a suffix ofQ (sinceXi′:j = Q). Note that the following holds:

FR(Q) = D|R|,|Q|(R,Q) = D|R|,j(R,X) = FR(X, j). (3.19)

26

In other words, ifQ appears exactly as a subsequenceXi′:j of X, it holds thatFR(Q) =

FR(X, j), under the conditionthat the optimal warping path aligningR with X1:j does not start

before positioni′, which is where the appearance ofQ starts.

This simple example illustrates an ideal case, where the query Q has an exact matchXi′:j in

the database. The next case to consider is whenXi′:j is a slightly perturbed version ofQ, obtained,

for example, by adding noise from the interval[−ǫ, ǫ] to eachQt. In that case, assuming always

thatM(R,X, j) = Xi:j andi ≥ i′, we can show that|FR(Q) − FR(X, j)| ≤ (2|Q| − 1)ǫ. This

is obtained by taking into account that warping pathW ∗(R,X, j) cannot be longer than2|Q| − 1

(as long asi ≥ i′).

There are two cases we have not covered:

• Perturbations along thetemporalaxis, such as repetitions, insertions, or deletions. Unfortu-

nately, for unconstrained DTW, due to the non-metric natureof the DTW distance measure,

no existing approximation method can make any strong mathematical guarantees in the

presence of such perturbations.

• The case wherei < i′, i.e., the optimal path matching the reference sequence to asuffix of

X1:j starts before the beginning ofM(Q,X, j). We address this issue in Section 3.5.

Given the lack of mathematical guarantees, in order for the proposed embeddings to be useful

in practice, the followingstatistical property has to hold empirically: given positionjopt(Q),

such that the optimal subsequence match ofQ in X ends atjopt(Q), and given some random

positionj 6= jopt(Q), it should be statistically very likely thatF (Q) is closer toF (X, jopt(Q))

than toF (X, j). If we have access to query samples during embedding construction, we can

actually optimize embeddings so thatF (Q) is closer toF (X, jopt(Q)) than toF (X, j) as often

as possible, over many random choices ofQ andj. We do exactly that in Section 4.5.

3.3 Filter-and-Refine Retrieval

Our goal in this thesis is to design a method for efficiently retrieving, given a query, its best

matching subsequence from the database. In the previous sections we have defined embeddings

27

that map each query object and each database position to ad-dimensional vector space. In this

section we describe how to use such embeddings in an actual system.

3.3.1 General Framework

The retrieval framework that we use is filter-and-refine retrieval, where, given a query, the retrieval

process consists of a filter step and a refine step [26]. The filter step typically provides a quick

way to identify a relatively small number of candidate matches. The refine step evaluates each of

those candidates using the original matching algorithm (DTW in our case), in order to identify the

candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retrieval efficiency with small, or zero loss

in retrieval accuracy. Retrieval efficiency depends on the cost of the filter step (which is typically

small) and the cost of evaluating candidates at the refine step. Evaluating a small number of candi-

dates leads to significant savings compared to brute-force search (where brute-force search, in our

setting, corresponds to running SPRING [75], i.e., runningDTW betweenQ andX). Retrieval

accuracy, given a query, depends on whether the best match isincluded among the candidates

evaluated during the refine step. If the best match is among the candidates, the refine step will

identify it and return the correct result.

Within this framework, embeddings can be used at the filter step, and provide a way to quickly

select a relatively small number of candidates. Indeed, here lies the key contribution of this thesis,

in the fact that we provide a novel method for quick filtering,that can be applied in the context of

subsequence matching. Our method relies on computationally cheap vector matching operations,

as opposed to requiring computationally expensive applications of DTW. To be concrete, given a

d-dimensional embeddingF , defined as in the previous sections,F can be used in a filter-and-

refine framework as follows:

Offline preprocessing step:Compute and store vectorF (X, j) for every positionj of the

database sequenceX.

Online retrieval system: Given a previously unseen query objectQ, we perform the following

three steps:

28

• Embedding step: computeF (Q), by measuring the distances betweenQ and the chosen

reference sequences.

• Filter step: Select database positions(X, j) according to the distance between eachF (X, j)

andF (Q). These database positions are candidateendpointsof the best subsequence match

for Q.

• Refine step:Evaluate selected candidate positions(X, j) by applying the DTW algorithm.

In the next subsections we specify the precise implementation of the filter step and the refine

step.

3.3.2 Speeding Up the Filter Step

The simplest way to implement the filter step is by simply comparing F (Q) to every single

F (X, j) stored in our database. The problem with doing that is that itmay take too much time, es-

pecially with relatively high-dimensional embeddings (for example, 40-dimensional embeddings

are used in our experiments). In order to speed up the filtering step, we can apply well-known

techniques, such as sampling, PCA, and vector indexing methods. We should note that these three

techniques are all orthogonal to each other.

In our implementation we use sampling, so as to avoid comparing F (Q) to the embedding of

every single database position. The way the embeddings are constructed, embeddings of nearby

positions, such asF (X, j) and F (X, j + 1), tend to be very similar. A simple way to apply

sampling is to choose a parameterδ, and sample uniformly one out of everyδ vectorsF (X, j).

That is, we only store vectorsF (X, 1), F (X, 1 + δ), F (X, 1 + 2δ), GivenF (Q), we only

compare it with the vectors that we have sampled. If, for a database position(X, j), its vector

F (X, j) was not sampled, we simply assign to that position the distance betweenF (Q) and the

vector that was actually sampled among{F (X, j − ⌊δ/2⌋), . . . , F (X, j + ⌊δ/2⌋)}.

PCA can also be used, in principle, to speed up the filter step,by reducing the dimensionality

of the embedding. Moreover, vector indexing methods [22, 89, 77, 13, 46, 17, 31, 88, 41, 82] can

be applied to speed up retrieval of the nearest database vectors. Such indexing methods may be

29

particularly useful in cases where the embedding of the database does not fit in main memory;

in such cases, external memory indexing methods can play a significant role in optimizing disk

usage and overall retrieval runtime. Finally, a recent method [80] for nearest neighbor search in

high dimensional spaces could be embedded in the filter step for fast vector search.

Our implementation at this point is a main-memory implementation, where the entire database

embedding is stored in memory. In our experiments, using sampling parameterδ = 9, and without

any further dimensionality reduction or indexing methods,we get a very fast filter step: the average

running time per query for the filter step is about0.5% of the average running time of brute-force

search. For that reason, at this point we have not yet incorporated more sophisticated methods,

that might yield faster filtering.

3.3.3 The Refine Step for Unconstrained DTW

The filter step ranks all database positions(X, j) in increasing order of the distance (or estimated

distance, when we use approximations such as PCA, or sampling) betweenF (X, j) andF (Q).

The task of the refine step is to evaluate the topp candidates, wherep is a system parameter that

provides a trade-off between retrieval accuracy and retrieval efficiency.

Algorithm 4.1 describes how this evaluation is performed. Since candidate positions(X, j)

actually represent candidateendpointsof a subsequence match, we can evaluate each such candi-

date endpoint by starting the DTW algorithm from that endpoint and going backwards. In other

words, the end of the query is aligned with the candidate endpoint, and DTW is used to find the

optimal start (and corresponding matching cost) for that endpoint.

If we do not put any constraints, the DTW algorithm will go allthe way back to the beginning

of the database sequence. However, subsequences ofX that are much longer thanQ are very

unlikely to be optimal matches forQ. In our experiments,99.7% out of the1000 queries used

in performance evaluation have an optimal match no longer than twice the length of the query.

Consequently, we consider that twice the length of the queryis a pretty reasonable cut-off point,

and we do not allow DTW to consider longer matches.

One complication is a case where, as the DTW algorithm moves backwards along the database

30

sequence, the algorithm gets to another candidate endpointthat has not been evaluated yet. That

endpoint will need to be evaluated at some point anyway, so wecan save time by evaluating it

now. In other words, while evaluating one endpoint, DTW can simultaneously evaluate all other

endpoints that it finds along the way. The two adjustments that we make to allow for that are that:

• The “sink state”Q|Q|+1 matches candidate endpoints (that have not already been checked)

with cost 0 and all other database positions with cost∞.

• If in the process of evaluating a candidate endpointj we find another candidate endpointj′,

we allow the DTW algorithm to look back further, up to position j′ − 2|Q| + 1.

The endpoint array in Algorithm 4.1 keeps track, for every pair(i, j), of the endpoint that

corresponds to the cost stored incost[i][j]. This is useful in the case where multiple candidate

endpoints are encountered, so that when the optimal matching score is found (stored in variable

distance), we know what endpoint that matching score corresponds to.

Thecolumns variable, which is an output of Algorithm 4.1, measures the number of database

positions on which DTW is applied. These database positionsinclude both each candidate end-

point and all other positionsj for which cost[i][j] is computed. Thecolumns output is a very

good measure of how much time the refine step takes, compared to the time it would take for

brute-force search, i.e., for applying the original DTW algorithm as described in Section 5.1. In

the experiments, one of the main measures of EBSM efficiency (the DTW cell cost) is simply

defined as the ratio betweencolumns and the length|X| of the database.

We note that each application of DTW in Algorithm 4.1 stops when the minimumcost[i][j]

over alli = 1, . . . , |Q| is higher than the minimum distance found so far. We do that because any

cost[i][j − 1] will be at least as high as the minimum (over alli’s) of cost[i][j], except ifj − 1 is

also a candidate endpoint (in which case, it will also be evaluated during the refine step).

The refine step concludes with a final alignment/verificationoperation, that evaluates, using

the original DTW algorithm, the area around the estimated optimal subsequence match. In partic-

ular, if jend is the estimated endpoint of the optimal match, we run the DTWalgorithm between

Q andX(jend−3|Q|):(jend+|Q|). The purpose of this final alignment operation is to correctly handle

31

cases wherejstart andjend are off by a small amount (a fraction of the size ofQ) from the cor-

rect positions. This may arise when the optimal endpoint wasnot included in the original set of

candidates obtained from the filter step, or when the length of the optimal match was longer than

2|Q|.

3.4 Embedding Optimization

In this section, we present an approach for selecting reference objects in order to improve the

quality of the embedding. The goal is to create an embedding where the rankings of different

subsequences with respect to a query in the embedding space resemble the rankings of these

subsequences in the original space. Our approach is largelyan adaptation of the method proposed

in [85].

The first step is based on the max variance heuristic, i.e., the idea that we should select sub-

sequences that cover the domain space (as much as possible) and have distances to other subse-

quences with high variance. In particular, we select uniformly at randoml subsequences with

sizes between(minimum query size)/2and maximum query sizefrom different locations in the

database sequence. Then, we compute the DTW distances for each pair of them (O(l2) values)

and we select thek subsequences with the highest variance in their distances to the otherl − 1

subsequences. Thus we select an initial set ofk reference objects.

The next step is to use a learning approach to select the final set of reference objects assuming

that we have a set of samples that is representative of the query distribution. The input to this

algorithm is a set ofk reference objectsRSK selected from the previous step, the number of final

reference objectsd (whered < k) and a set of sample queriesQs. The main idea is to select

d out of thek reference objects so as to minimize the embedding error on the sample query set.

The embedding errorEE(Q) of a queryQ is defined as the number of vectorsF (X, j) in the

embedding space that the embedding of the queryF (Q) is closer to than it is to the embedding of

F (X, jQ), wherejQ is the endpoint of the optimal subsequence match ofQ in the database.

Initially, we selectd initial reference objectsR1, . . . , Rd and we create the embedding of

the database and the query setQs using the selectedRi’s. Then, for each query, we compute

32

the embedding error and we compute the sum of these errors over all queries, i.e.,SEE =
∑

Q∈Qs
EE(Q). The nest step, is to consider a replacement of thei-th reference object with

an object inRSK − {R1, . . . , Rd}, and re-estimate theSEE. If SEE is reduced, we make the

replacement and we continue with the next(i + 1)-th reference object. This process starts from

i = 1 until i = d. After we replace thed-th reference object we continue again with the first

reference object. The loop continues until the improvementof theSEE over all reference objects

falls below a threshold. The pseudo-code of the algorithm isshown in Algorithm 4.2. To reduce

the computation overhead of the technique we use a sample of the possible replacements in each

step. Thus, instead of considering all objects inRSK − {R1, . . . , Rd} for replacement, we con-

sider only a sample of them. Furthermore, we use a sample of the database entries to estimate the

SEE.

Note that the embedding optimization method described herelargely follows the method de-

scribed in [85]. However, the approach in [85] was based on the Edit distance, which is a metric,

and therefore a different optimization criterion was used.In particular, in [85], reference objects

are selected based on the pruning power of each reference object. Since DTW is not a metric, ref-

erence objects in our setting do not have pruning power, unless we allow some incorrect results.

That is why we use the sum of errors as our optimization criterion.

3.5 Handling Large Ranges of Query Lengths

In Section 3.2 and in Figure 3·1 we have illustrated that, intuitively, when the queryQ has a

very close matchXi:j in the database, we expectFR(Q) andFR(X, j) to be similar, as long as

M(R,X, j) is a suffix ofM(Q,X, j). If we fix the length|Q| of the query, as the length|R| of

the reference object increases, it becomes more and more likely thatM(R,X, j) will start before

the beginning ofM(Q,X, j). In those cases,FR(Q) andFR(X, j) can be very different, even in

the ideal case whereQ is identical toXi:j .

In our experiments, the minimum query length is 152 and the maximum query length is 426.

Figure 3·2 shows a histogram of the lengths of the 40 reference objectsthat were chosen by the

embedding optimization algorithm in our experiments. We note that smaller lengths have higher

33

50 100 150 200 250 300 350 400
0

1

2

3

4

reference sequence length

nu
m

be
r

of
 r

ef
er

en
ce

 s
eq

ue
nc

es

Figure 3·2: Distribution of lengths of the 40 reference objects chosen by the
embedding optimization algorithm in our experiments.

frequencies in that histogram. We interpret that as empirical evidence for the argument that long

reference objects tend to be harmful when applied to short queries, and it is better to have short

reference objects applied to long queries. Overall, as we shall see in the experiments section, this

40-dimensional embedding provides very good performance.

At the same time, in any situation where there is a large difference in scale between the shortest

query length and the longest query length, we are presented with a dilemma. While long reference

objects may hurt performance for short queries, using only short reference objects gives us very

little information about the really long queries. To be exact, given a reference objectR and a

database position(X, j), FR(X, j) only gives us information about subsequenceM(R,X, j). If

Q is a really long query andR is a really short reference object, proximity betweenF (Q) and

F (X, j) cannot be interpreted as strong evidence of a good subsequence match for the entireQ

ending at positionj; it is simply strong evidence of a good subsequence match ending at position

j for some smallsuffixof Q defined byM(R,Q, |Q|).

The simple solution in such cases is to use, for each query, only embedding dimensions cor-

responding to a subset of the chosen reference objects. Thissubset of reference objects should

have lengths that are not larger than the query length, and are not too much smaller than the

34

query length either (e.g., no smaller than half the query length). To ensure that for any query

length there is a sufficient number of reference objects, reference object lengths can be split into

d ranges[r, rs), [rs, rs2), [rs2, rs3), . . . [rsd−1, rsd), wherer is the minimum desired reference

object length,rsd is the highest desired reference object length, ands is determined givenr, d and

rsd. Then, we can constrain thed-dimensional embedding so that for each range[rsi, rsi+1) there

is only one reference object with length in that range.

We do not use this approach in our experiments, because the simple scheme of using all ref-

erence objects for all queries works well enough. However, it is important to have in mind the

limitations of this simple scheme, and we believe that the remedy we have outlined here is a good

starting point for addressing these limitations.

3.6 Experiments

We evaluate the proposed method on time series data obtainedfrom the UCR Time Series Data

Mining Archive [35]. We compare our method to the two state-of-the-art methods for subsequence

matching under unconstrained DTW:

• SPRING: the exact method proposed by Sakurai et al. [75], which applies the DTW algo-

rithm as described in Section 3.1.3.

• Modified PDTW: a modification of the approximate method based on piecewise aggregate

approximation that was proposed by Keogh et al. [36].

Actually, as formulated in [36], PDTW (given a sampling rate) yields a specific accuracy and

efficiency, by applying DTW to smaller, subsampled versionsof queryQ and database sequence

X. Even with the smallest possible sampling rate of 2, for which the original PDTW cost is25%

of the cost of brute-force search, the original PDTW method has an accuracy rate of less than

50%. We modify the original PDTW so as to significantly improve those results, as follows: in

our modified PDTW, the original PDTW of [36] is used as a filtering step, that quickly identifies

candidate endpoint positions, exactly as the proposed embeddings do for EBSM. We then apply

the refine step on top of the original PDTW rankings, using theexact same algorithm (Algorithm

35

Name 50Words Wafer Yoga
Length of each time series 270 152 426
Size of “training set” (used 450 1000 300
by us as set of queries)
Number of time series used for 192 428 130
validation (subset of set of queries)
Number of time series used for
measuring performance (subset 258 572 170
of set of queries)
Size of “test set” (used 455 6164 3000
by us to generate the database)

Table 3.1: For each original UCR dataset we show the sizes of the original train-
ing and test sets. We note that, in our experiments, we use theoriginal training
sets to obtain queries for embedding optimization and for performance evalua-
tion, and we use the original test sets to generate the long database sequence (of
length 2,337,778).

4.1) for the refine step that we use in EBSM. We will see in the results that the modified PDTW

works very well, but still not as well as EBSM.

We do not make comparisons to the subsequence matching method of [24], because the method

in [24] is designed for indexing constrained DTW (whereas inthe experiments we use uncon-

strained DTW), and thus would fail to identify any matches whose length is not equal to the query

length. As we will see in Section 3.6.3, the method in [24] would fail to identify optimal matches

for the majority of the queries.

3.6.1 Datasets

To create a large and diverse enough dataset, we combined three of the datasets from UCR Time

Series Data Mining Archive [35]. The three UCR datasets thatwe used are shown on Table 4.1.

Each of the three UCR datasets contains a test set and a training set. As can be seen on

Table 4.1, the original split into training and test sets created test sets that were significantly larger

than the corresponding training sets, for two of the three datasets. In order to evaluate indexing

performance, we wanted to create a sufficiently large database, and thus we generated our database

using the large test sets, and we used as queries the time series in the training sets.

36

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

accuracy

D
T

W
 c

e
ll

co
st

accuracy vs. DTW cell cost for PDTW and EBSM

PDTW−13
PDTW−11
PDTW−9
PDTW−7
EBSM−9

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

accuracy

re
tr

ie
va

l r
u

n
tim

e
 c

o
st

accuracy vs. retrieval runtime cost for PDTW and EBSM

PDTW−13
PDTW−11
PDTW−9
PDTW−7
EBSM−9

Figure 3·3: The top figure measures efficiency using the DTW cell cost, and
the bottom figure measures efficiency using the retrieval runtime cost. The costs
shown are average costs over our test set of 1000 queries. Note that SPRING,
being an exact method, corresponds to a single point (not shown on these figures),
with perfect accuracy 1 and maximal DTW cell cost 1 and retrieval runtime cost
1.

More specifically, our database is a single time seriesX, that was generated by concatenating

all time series in the original test sets: 455 time series of length 270 from the 50Words dataset,

6164 time series of length 152 from the Wafer dataset, and 3000 time series of length 426 from

the Yoga dataset. The length|X| of the database is obviously the sum of lengths of all these time

series, which adds up to 2,337,778.

Our set of queries was the set of time series in the original training sets of the three UCR

datasets. In total, this set includes 1750 time series. We randomly chose 750 of those time series

as a validation set of queries, that was used for embedding optimization using Algorithm 4.2. The

remaining 1000 queries were used to evaluate indexing performance. Naturally, the set of 1000

queries used for performance evaluation was completely disjoint from the set of queries used

during embedding optimization.

3.6.2 Performance Measures

Our method is approximate, meaning that it does not guarantee finding the optimal subsequence

match for each query. The two key measures of performance in this context are accuracy and

37

0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

ratio of subsequence match length to query length

n
u

m
b

e
r

o
f

q
u

e
ri
e

s

Figure 3·4: We note that a significant fraction of the optimal matches have
lengths that are not identical to the query length.

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

accuracy

D
T

W
 c

e
ll

co
st

accuracy vs. DTW cell cost for different sampling rates

EBSM−23
EBSM−15
EBSM−9
EBSM−1

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

accuracy

re
tr

ie
va

l r
u

n
tim

e
 c

o
st

accuracy vs. retrieval runtime cost for different sampling rates

EBSM−23
EBSM−15
EBSM−9
EBSM−1

Figure 3·5: The top figure measures efficiency using the DTW cell cost, and
the bottom figure measures efficiency using the retrieval runtime cost. The costs
shown are average costs over our test set of 1000 queries.

efficiency. Accuracy is simply the percentage of queries in our evaluation set for which the optimal

subsequence match was successfully retrieved. Efficiency can be evaluated using two measures:

• DTW cell cost: For each queryQ, the DTW cell cost is the ratio of number of cells[i][j]

visited by Algorithm 4.1 over number of cells[i][j] using the SPRING method (for the

SPRING method, this number is the product of query length anddatabase length). For

38

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

accuracy

D
T

W
 c

e
ll

co
st

accuracy vs. DTW cell cost for for different embedding construction methods

Random Reference Objects
After Max−Variance
Full Algorithm 2

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

accuracy

re
tr

ie
va

l r
u

n
tim

e
 c

o
st

accuracy vs. retrieval runtime cost for different embedding construction methods

Random Reference Objects
After Max−Variance
Full Algorithm 2

Figure 3·6: The top figure measures efficiency using the DTW cell cost, and
the bottom figure measures efficiency using the retrieval runtime cost. The costs
shown are average costs over our test set of 1000 queries.

PDTW with sampling rates, we add 1
s2 to this ratio, to reflect the cost of running the DTW

algorithm between the subsampled query and the subsampled database. For the entire test

set of 1000 queries, we report the average DTW cell cost over all queries.

• Retrieval runtime cost: For each queryQ, given an indexing method, the retrieval runtime

cost is the ratio of total retrieval time for that query usingthat indexing method over the

total retrieval time attained for that query using the SPRING method. For the entire test set,

we report the average retrieval runtime cost over all 1000 queries. While runtime is harder

to analyze, as it depends on diverse things such as cache size, memory bus bandwidth, etc.,

runtime is also a more fair measure for comparing EBSM to PDTW, as it includes the costs

of both the filter step and the refine step. The DTW cell cost ignores the cost of the filter

step for EBSM.

We remind the reader that the SPRING method simply uses the standard DTW algorithm of

Section 3.1.3. Consequently, by definition, the DTW cell cost of SPRING is always 1, and the

retrieval runtime cost of SPRING is always 1. The actual average running time of the SPRING

method over all queries we used for performance evaluation was: 4.43 sec/query for queries of

length 152, 7.23 sec/query for queries of length 270, and 11.30 sec/query for queries of length 426.

39

The system was implemented in C++, and run on an AMD Opteron 8220 SE processor running at

2.8GHz.

Trade-offs between accuracy and efficiency can be obtained very easily, for both EBSM and

the modified PDTW, by changing parameterp of the refine step (see Algorithm 4.1). Increasing

the value ofp increases accuracy, but decreases efficiency, by increasing both the DTW cell cost

and the running time.

We should emphasize the runtime retrieval cost depends on the retrieval method, the data set,

the implementation, and the system platform. On the other hand, the DTW cell cost only depends

on the retrieval method and the data set; different implementations of the same method should

produce the same results (or very similar, when random choices are involved) on the same data set

regardless of the system platform or any implementation details.

3.6.3 Results

We compare EBSM to modified PDTW and SPRING. We note that the SPRING method guar-

antees finding the optimal subsequence match, whereas modified PDTW (like EBSM) is an ap-

proximate method. For EBSM, unless otherwise indicated, weused a 40-dimensional embedding,

with a sampling rate of 9. For the embedding optimization procedure of Section 4.5, we used

parametersl = 1755 (l was the number of candidate reference objects before selection using the

maximum variance criterion) andk = 1000 (k was the number of candidate reference objects

selected based on the maximum variance criterion). The training time for the above settings was

approximately3.5 hours.

Figure 3·3 shows the trade-offs of accuracy versus efficiency achieved. We note that EBSM

provides very good trade-offs between accuracy and retrieval cost. Also, EBSM significantly

outperforms the modified PDTW, in terms of both DTW cell cost and retrieval runtime cost. For

many accuracy settings, EBSM attains costs smaller by a factor of 2 or more compared to PDTW.

As highlights, for99.5% retrieval accuracy our method is about 21 times faster than SPRING

(retrieval runtime cost = 0.046), and for90% retrieval accuracy our method is about 47 times

faster than SPRING (retrieval runtime cost = 0.021).

40

Figure 3·4 shows a histogram of the length of the optimal subsequence match for each query,

as a fraction of the length of that query. The statistics for this histogram were collected from all

1000 queries used for performance evaluation. We see that, although for the majority of cases the

match length is fairly close to the query length, it is only for a minority of queries that the match

length is exactly equal to the query length. We should note that the subsequence matching method

of [24] would fail to identify any matches whose length is notequal to the query length. As a

result, it would not be meaningful to compare the performance of our method versus the method

in [24] for this dataset.

Figure 3·5 shows how the performance of EBSM varies with different sampling rates. For

all results in that figure, 40-dimensional embeddings were used, optimized using Algorithm 4.2.

Sampling rates between 1 and 15 all produced pretty similar DTW cell costs for EBSM, but a

sampling rate of 23 produced noticeably worse DTW cell costs. In terms of retrieval runtime, a

sampling rate of 1 performed much worse compared to samplingrates of 9 and 15, because the

cost of the filter step is much higher for sampling rate 1: the number of vector comparisons is

equal to the length of the database divided by the sampling rate.

Figure 3·6 compares different methods for embedding construction. For all results in that

figure, 40-dimensional embeddings and a sampling rate of 9 were used. We notice that selecting

reference objects using the max variance heuristic (i.e., using only the first two lines of Algorithm

4.2) improves performance significantly compared to randomselection. Using the full Algorithm

4.2 for embedding construction improves performance even more.

Figure 3·7 shows how the performance of EBSM varies with different embedding dimen-

sionality, for optimized (using Algorithm 4.2) and unoptimized embeddings. For all results in

that figure, a sampling rate of 9 was used. For optimized embeddings, in terms of DTW cell

cost, performance clearly improves with increased dimensionality up to about 40 dimensions, and

does not change much between 40 and 160. Actually, 160 dimensions give a somewhat worse

DTW cell cost compared to 40 dimensions, providing evidencethat our embedding optimization

method suffers from a mild effect of overfitting as the numberof dimensions increases. When

reference objects are selected randomly, overfitting is notan issue. As we see in Figure 3·7, a

41

160-dimensional unoptimized embedding yields a significantly lower DTW cell cost than lower-

dimensional unoptimized embeddings.

In terms of offline preprocessing costs, selecting 40 reference sequences using Algorithm 4.2

took about 3 hours, and computing the 40-dimensional embedding of the database took about 240

seconds.

Code and datasets for duplicating the experiments described here are publicly available on our

project website, at two mirror sites:

• http://cs-people.bu.edu/panagpap/ebsm/

• http://crystal.uta.edu/˜athitsos/ebsm/

3.6.4 Replication of EBSM on other datasets

In order to run EBSM on a time series dataset, a few parametersneed to be set. These parameters

are:k (number of time series sequences used in the initial stage ofthe training phase),p (number

of database candidates to be evaluated), andd (embedding dimensionality). For the datasets used

in our experiments, we have tested different values of theseparameters and determined the ones

with the best retrieval runtime. These parameters however,are dataset-dependent, meaning that

EBSM might require a different setting of these parameters for each given dataset, to guarantee

best retrieval runtime.

Suppose that an individual wants to use EBSM for a given time series dataset. EBSM should

be tuned so as to achieve best performance in terms of retrieval runtime. For the training phase,

one approach is to ask the user to provide a sample of queries similar to those expected when

EBSM will be running online. Half of those queries will be used for training and the other half for

validation purposes. After settingk to be a large number, e.g.2, 000 reference sequences, Algo-

rithm 3.2 will be applied to determine the optimal reference sequences for different dimensionality

valuesd. Thed andp values with the best retrieval runtime on the validation setof queries will be

chosen for the online phase of EBSM.

Another approach is to setk, d, andp to an initial value empirically chosen based on datasets

42

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

accuracy

D
T

W
 c

e
ll

co
st

accuracy vs. DTW cell cost for different dimensions, for optimized embeddings

EBSM−160
EBSM−80
EBSM−40
EBSM−20
EBSM−10
EBSM−5

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

accuracy

re
tr

ie
va

l r
u

n
tim

e
 c

o
st

accuracy vs. retrieval runtime cost for different dimensions, for optimized embeddings

EBSM−160
EBSM−80
EBSM−40
EBSM−20
EBSM−10
EBSM−5

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

accuracy

D
T

W
 c

e
ll

co
st

accuracy vs. DTW cell cost for different dimensions, for unoptimized embeddings

EBSM−160
EBSM−80
EBSM−40
EBSM−20

0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

accuracy

re
tr

ie
v
a

l
ru

n
ti
m

e
 c

o
s
t

accuracy vs. retrieval runtime cost for different dimensions, for unoptimized embeddings

EBSM−160
EBSM−80
EBSM−40
EBSM−20

Figure 3·7: The plots on the left measure efficiency using the DTW cell cost,
and the plots on the right measure efficiency using the retrieval runtime cost. The
costs shown are average costs over our test set of 1000 queries. The top plots
show results for embeddings optimized using Algorithm 4.2.The bottom plots
show results for embeddings with randomly selected reference objects.

seen so far. Then, these parameters can be updated in an online manner. For the set of queries seen

so far we can keep track of the distribution of their pairwisedistances. When their distances start

increasing in variance, this means that possibly a new type of queries has entered our system and

thus it needs to be trained accordingly. Algorithm3.2 can be invoked to determine new values for

the parameters that yield the best retrieval runtime for thenew query sample.

43

3.7 Summary

EBSM was shown to significantly outperform the current state-of-the-art methods for subsequence

matching under unconstrained DTW. At the same time, the ideaof using embeddings to speed up

subsequence matching opens up several directions for additional investigation, both for improving

performance under unconstrained DTW, and for extending thecurrent formulation to additional

settings.

The discussion in this thesis has focused on finding the optimal subsequence match for each

query. It is pretty straightforward to also apply our methodfor retrieving top-k subsequence

matches: we simply modify the refine step to return the k-beststartpoint-endpoint pairs. It will be

interesting to evaluate how accuracy and efficiency vary with k.

44

input : Q: query.
X : database sequence.
sorted: an array of candidate endpointsj, sorted in decreasing order ofj.
p: number of candidates to evaluate.

output : (X, jstart), (X, jend): start and end point of estimated best subsequence match.
distance: distance between query and estimated best subsequence match.
columns: number of database positions evaluated by DTW.

for i = 1 to |X | do
unchecked[i] = 0;

end
for i = 1 to p do

unchecked[sorted[i]] = 1;

end
distance = ∞; columns = 0;
for k = 1 to p do

candidate = sorted[k];
if (unchecked[candidate] == 0) then continue;
j = candidate + 1;
for i = |Q| + 1 to 1 do

cost[i][j] = ∞;

end
while (true) do

j = j − 1;
if (candidate − j ≥ 2 ∗ |Q|) then break;
if (unchecked[j] == 1) then

unchecked[j] = 0; candidate = j; cost[|Q| + 1][j] = 0; endpoint[|Q| + 1][j] = j;

else
cost[|Q| + 1][j] = ∞; // j is not a candidate endpoint.

end
for i = |Q| to 1 do

previous = {(i+1, j), (i, j+1), (i+1, j+1)};(pi, pj) = argmin(a,b)∈previouscost[a][b];
cost[i][j] = |Qi − Xj | + cost[pi][pj]; endpoint[i][j] = endpoint[pi][pj];

end
if (cost[1][j] < distance) then

distance = cost[1][j]; jstart = j;jend = endpoint[1][j];

end
columns = columns + 1;
if (min{cost[i][j]|i = 1, . . . , |Q|} ≥ distance) then break;

end
end
start = jend − 3|Q|; end = jend + |Q|;
Adjust jstart andjstart by running the DTW algorithm betweenQ andXstart:end;

Algorithm 3.1. The refine step for unconstrained DTW.

45

input : X : database sequence.
QS : training query set.
d: embedding dimensionality.
RSK: initial set ofk reference subsequences.

output : R: set ofd reference subsequences.

// select d reference sequences with highest variance from RSK
R = {R1, .., Rd |Ri ∈ RSK with maximum variance}
CreateEmbedding(R, X);
oldSEE = 0;
for i = 1 to |QS | do

oldSEE+ = EE(QS [i]);

end
j = 1;
while (true) do

// consider replacingRj with another reference object
CandR = RSK − R;
for i = 0 to |CandR| do

CreateEmbedding(R − {Rj} + {CandR[i]}, X);
newSEE = 0;
for i = 1 to |QS| do

newSEE+ = EE(QS [i]);

end
if (newSEE < oldSEE) then

Rj = CandR[i];
oldSEE = newSEE;

end
end
j = (j mod d) + 1;

end

Algorithm 3.2. The training algorithm for selection of reference objects.

46

Chapter 4

Bidirectional Embedding-based Subsequence Matching in

Time Series Databases

The main focus of this chapter is time series similarity search under the constrained dynamic time

warping (cDTW) similarity measure. A new embedding (BSE) isdefined that differs from the

one used in EBSM in that it is constructed using both start andendpoint matches of the reference

sequences. Exploiting the additional constraints of cDTW,it is powerful enough to achieve very

high efficiency even without training, as opposed to EBSM. The remainder of this chapter is

organized as follows: first, some background is provided on time series similarity search under

cDTW, then BSE is described in more detail, and finally an experimental analysis on the proposed

methods is presented.

4.1 Background: The cDTW Algorithm

Constrained DTW (cDTW) is obtained from DTW simply by placing an additional constraint,

which narrows down the set of positions in one sequence that can be matched with a specific

position in the other sequence.

Consider the definition of DTW given in section 3.1.3. Given awarping widthw, this con-

straint is defined as follows:

Di,j(Q,X) = ∞ if |i − j| > w . (4.1)

The term “Sakoe-Chiba band” is often used to characterize the set of(i, j) positions for which

Di,j is not infinite. Notice that ifw = 0, cDTW becomes theLp distance. While a simple

modification of DTW, cDTW has been shown to be significantly more efficient than DTW for full

47

sequence matching [34], and to also produce more meaningfulmatching scores [72].

Given the above definitions, the subsequence match ofQ in a databaseX is the subsequence

Xopt = (Xj , . . . ,Xj+|Q|−1) that minimizesD(Q,Xopt). Similarly to other approaches for sub-

sequence matching under cDTW, namely LBKeogh [34] and DTK [56], we require that the sub-

sequence match have the same length as the query. A simple approach for finding the subsequence

match ofQ is the sliding-window approach: we simply compute the matching cost betweenQ and

every subsequence ofX that has length|Q|.

The LB Keogh [34] method speeds up the sliding window approach, often by orders of magni-

tude, by computing an efficient lower bound of the matching cost, that can be used to reject many

subsequences without computing the exact cDTW cost betweenQ and those subsequences. With

respect to LBKeogh, which is an exact method, the method proposed in this thesis can be seen

as an approximate alternative for quickly rejecting many candidate subsequences; in our method,

accuracy can be easily traded for efficiency, so as to achievesignificantly larger speedups than

LB Keogh.

4.2 Bidirectional Subsequence Embeddings

In this section we introduce Bidirectional Subsequence Embeddings (BSE), a new embedding-

based method for subsequence matching under cDTW. Following [34] and [56], we require that

the length of the subsequence match has to be equal to the query length.

Our starting point is similar to that of EBSM: we use reference sequences to define 1D em-

beddings. Given a reference sequenceR, and given the definition in Section 4.1 of the matching

costD for cDTW, we define a 1D embeddingHR as follows:

HR(Q) =

D(R, (Q|Q|−|R|+1, . . . , Q|Q|)) if |R| ≤ |Q|

0 otherwise
(4.2)

HR
Q(X, j) =

D(R, (Xj−|R|+1, . . . ,Xj)) if |R| ≤ |Q|

0 otherwise
(4.3)

If we compare the above two equations with the correspondingequations??and?? for EBSM,

48

we notice two important differences: first, if the referencesequence is longer than the query, then

the query is mapped to zero. Second, the embeddingHR
Q(X, j) depends not only onX andj, but

also on the length of the query:HR
Q(X, j) = 0 when the reference sequenceR is longer thanQ.

These changes have a simple interpretation: they effectively force us to ignore, given a queryQ,

any reference sequence longer thanQ.

If R1, . . . , Rd ared reference sequences, then ad-dimensional embeddingH is defined as

follows:

H(Q) = (HR1(Q), . . . ,HRd(Q)) . (4.4)

HQ(X, j) = (HR1

Q (X, j), . . . ,HRd

Q (X, j)) . (4.5)

Again, we note that the embedding of the database position(X, j) also depends on the length of

the query.

If Q is exactly identical to a database subsequence ending at position (X, j∗), thenH(Q) =

HQ(X, j∗). If we perturb that subsequence match(Xj∗−|Q|+1, . . . ,Xj∗) so that it is not identical

to Q anymore, we expect that small perturbations will lead to small changes inHQ(X, j∗), so

that H(Q) will still be fairly similar to HQ(X, j∗). Therefore, embeddingsH are useful for

identifying candidate endpoints of subsequence matches. Because of that, we refer to embeddings

H asendpoint embeddings.

We can easily adapt the definition of endpoint embeddingsH to also define startpoint embed-

dingsG, that can be used to identify candidate start points of subsequence matches. We define 1D

startpoint embeddingsGR and multidimensional startpoint embeddingsG as follows:

GR(Q) =

D(R, (Q1, . . . , Q|R|)) if |R| ≤ |Q|

0 otherwise
(4.6)

GR
Q(X, j) =

D(R, (Xj , . . . ,Xj+|R|−1)) if |R| ≤ |Q|

0 otherwise
(4.7)

49

G(Q) = (GR1(Q), . . . , GRd(Q)) . (4.8)

GQ(X, j) = (GR1

Q (X, j), . . . , GRd

Q (X, j)) . (4.9)

Suppose that we have chosen reference sequences and using those sequences we have defined

startpoint embeddingsG and endpoint embeddingsH. Given a queryQ, every possible subse-

quence match(Xj−|Q|+1|, . . . ,Xj) corresponds to a startpoint embeddingGQ(X, j − |Q| + 1)

and an endpoint embeddingHQ(X, j). If Q is similar to (Xj−|Q|+1|, . . . ,Xj) we expect both

G(Q) to be similar toGQ(X, j − |Q| + 1), andH(Q) to be similar toHQ(X, j). To capture the

correspondence, givenQ, between startpoint embeddingGQ(X, j − |Q| + 1) and endpoint em-

beddingHQ(X, j), we define a unified embeddingF , which we call abidirectional subsequence

embedding(BSE), that combines startpoint and endpoint embeddings. The BSE embeddingF is

simply a concatenation of the startpoint and endpoint embeddings:

F (Q) = (G(Q),H(Q)) . (4.10)

FQ(X, j) = (GQ(X, j − |Q| + 1),HQ(X, j)) . (4.11)

Figure 4·1 illustrates the construction of a BSE embedding given a query Q and a reference

objectR.

A key difference between the EBSM method of [6] and the BSE method we have described

(in addition to the fact that EBSM is formulated for unconstrained DTW, and BSE is formulated

for cDTW) is that EBSM uses only the equivalent of endpoint embeddings. The question of how

to combine startpoint embeddings and endpoint embeddings in unconstrained DTW is nontrivial.

On the other hand, using the constraints available in cDTW wecan easily combine startpoint and

endpoint embeddings, online, based on the length of the query. As we shall see in the experiments,

this combination leads to improved performance over using only endpoint embeddings.

4.3 Computing Database Embeddings

Suppose that we have chosend reference sequencesR1, . . . , Rd. We note that applying Equations

4.7 and 4.3 to compute embeddingsGQ(X, j) andHQ(X, j) requires knowing the query, or, at

50

Figure 4·1: An example that illustrates the construction of the bidirectional em-
bedding given a query Q and a reference object R.

least, the length of the query. At the same time, computingGQ(X, j) and HQ(X, j) online,

given a query, is too expensive (actually, even more expensive than using brute force to find the

subsequence match of the query), unless we can make use of some precomputed information.

This precomputed information is in the form of query-independent embeddingsG(X, j) and

H(X, j), that are simply defined by dropping the dependency on the query length. Given reference

sequencesR1, . . . , R
d, we define:

GR(X, j) = D(R, (Xj , . . . ,Xj+|R|−1)) (4.12)

G(X, j) = (GR1(X, j), . . . , GRd(X, j)) (4.13)

HR(X, j) = D(R, (Xj−|R|+1, . . . ,Xj)) (4.14)

H(X, j) = (HR1(X, j), . . . ,HRd(X, j)) (4.15)

EmbeddingsG(X, j) andH(X, j) do not depend on the query, and so they can be precom-

puted off-line and stored. Given a queryQ, GQ(X, j) andHQ(X, j) can be obtained by putting

a 0 to all embedding dimensions corresponding to reference sequences longer thanQ. Even more

simply, those embedding dimensions can be ignored when computing Euclidean distances.

51

It is also important to note thatGR andHR are related as follows:

GR(X, j) = HR(X, j + |R| − 1) . (4.16)

This means that, in practice, only startpoint embeddingsG(X, j) need to be precomputed and

stored. EmbeddingsH(X, j), and the query-sensitive embeddingsFQ(X, j), can be easily ob-

tained, online, from the precomputed embeddingsG(X, j). As we will see in the experiments, the

total retrieval time, that includes these online computations, is still much faster than the retrieval

time obtained using brute force or alternative exact methods such as LBKeogh [34] and DTK

[56].

4.4 Filter-and-Refined Retrieval

The BSE embeddings we have defined map each query object and each database position to a

d-dimensional vector space. Our goal is to design a method forefficiently retrieving, given a

query, its best matching subsequence from the database. In this section we describe how such

embeddings are used in an online system.

The retrieval framework that we use is filter-and-refine retrieval. Given a query, the retrieval

process consists of a filter step and a refine step [26]. A set ofcandidate matches is identified

during the filter step and it is forwarded to the refine step which evaluates each of those candidates

using the original matching algorithm (cDTW in our case). The candidate that best matches the

query is identified and reported during the refine step.

The goal in filter-and-refine retrieval is to improve retrieval efficiency with small, or zero

loss in retrieval accuracy. Retrieval efficiency depends onthe cost of the filter step and the cost of

evaluating candidates at the refine step. Retrieval accuracy, given a query, depends on whether that

best match is included among the candidates evaluated during the refine step. If the best match

is among the candidates, the refine step will identify it and return the correct result. Apparently,

reducing the number of candidates can significantly speedupthe method, assuming that the best

match is included in the set of candidates.

Given this framework, embeddings can be used at the filter step, and provide a computation-

52

ally efficient way to quickly select a relatively small number of candidates, as vector matching

operations are computationally cheaper than cDTW. In particular, given embeddingsG, H, and

F = (G,H), defined as in the previous sections,F can be used in a filter-and-refine framework

as follows:

Offline preprocessing step:Compute and store vectorG(X, j) for every positionj of the

database sequenceX. Computing embeddingsG(X, j), for j = 1, . . . , |X|, is an off-line prepro-

cessing step that takes timeO(|X|
∑d

i=1 |Ri|
2).

Online retrieval system: Given a previously unseen query objectQ, we perform the following

three steps:

• Embedding step: computeG(Q) andH(Q), by measuring the cDTW matching cost be-

tweenQ and the reference sequences. ConcatenateG(Q) andH(Q) to form vectorF (Q).

Also, givenQ and the precomputedG(X, j), form vectorsGQ(X, j),HQ(X, j), and

FQ(X, j).

• Filter step: For some user-defined parameterp, selectp database positions(X, j) according

to the Euclidean distance between eachFQ(X, j) and F (Q). These database positions

define candidate subsequence matches(Xj−|Q|+1, . . . ,Xj) for Q.

• Refine step: Evaluate the selected candidate subsequence matches. Evaluation proceeds

by first applying LBKeogh [34] to establish a lower bound of the matching cost, and then

evaluating the exact cDTW matching cost for enough candidates to assure that the best

matching candidate has been found, as described in [34].

We note that the refine step, instead of simply measuring the cDTW matching cost between

the query and all candidate subsequence matches, uses LBKeogh to speed up computations.

LB Keogh is an exact method, so it guarantees that, if the correct subsequence match has been

included in the candidates, the refine step will identify that match. At the same time, the correct

subsequence match will not be retrieved unless it has been identified as a candidate during the filter

step. Our method is approximate, and it is possible that, forsome queries, the correct subsequence

match will be rejected during the filter step. At the same time, the user can easily trade accuracy

53

for efficiency by adjusting parameterp, which specifies how many candidates to select during the

filter step. Larger values ofp lead to higher accuracy and lower efficiency.

4.4.1 Faster Filtering Using Sampling

The cost of the filter step can be a significant part of the overall retrieval cost, as filtering involves

comparisons between high-dimensional vectors. In our implementation we use sampling, so as

to avoid comparingF (Q) to the embedding of every single database position. The way the em-

beddings are constructed, embeddings of nearby positions,such asFQ(X, j) andFQ(X, j + 1),

tend to be very similar. A simple way to apply sampling is to choose a parameterδ, and sam-

ple uniformly one out of everyδ vectorsFQ(X, j). GivenF (Q), we only compare it with vectors

FQ(X, 1), FQ(X, 1+δ), FQ(X, 1+2δ), If, for a database position(X, j), its vectorFQ(X, j)

was not sampled, we simply assign to that position the distance betweenF (Q) and the vector that

was actually sampled among{FQ(X, j − ⌊δ/2⌋), . . . , FQ(X, j + ⌊δ/2⌋)}.

4.5 Embedding Optimization

In this section, we present two approaches for selecting reference objects in order to improve the

quality of the embedding. These approaches have already been described in [85] and [6]; in this

section we provide a short summary for easy reference.

The first approach is based on the max variance heuristic, i.e., the idea that we should select

reference sequences that cover the domain space (as much as possible) and have distances to other

reference sequences with high variance. To define our reference sequences, we select randomlyl

subsequences with sizes between(minimum query size)/2andmaximum query sizefrom different

locations in the database sequence. Then, we compute the DTWdistances for each pair of them

(O(l2) values). Then, if we wantd reference sequences, we can simply choose thed subsequences

with the highest variance in their distances to the otherl − 1 subsequences.

The second approach is a learning approach that minimizes the embedding error, defined as

follows: the embedding errorEE(Q) of a queryQ is defined as the number of vectorsFQ(X, j) in

the embedding space that the embedding of the queryF (Q) is closer to than it is to the embedding

54

of FQ(X, jQ), wherejQ is the endpoint of the optimal subsequence match ofQ in the database.

The embedding error on a setQs of sample queries is simply the sum of the individual embedding

errors:SEE =
∑

Q∈Qs
EE(Q).

Given a sample setQs of queries, the embedding error is minimized via a greedy training

algorithm. First, we selectk candidate reference sequences using the max variance heuristic.

Second, we selectd reference sequences randomly out of thek candidates. Then, in the main

loop, we evaluate a large number of substitutions: each substitution involves replacing one of the

selectedd reference sequences with one of the remainingk − d candidate reference sequences. If

that substitution reduces the embedding error it is kept, otherwise it is reverted. This process stops

when the embedding error stops decreasing.

The advantage of using just the max variance heuristic is that no training set of queries needs to

be available during embedding construction. Obtaining a representative training set of queries may

not always be feasible. Furthermore, the distribution of queries can vary widely over time, and a

training set that used to be representative during embedding construction may not be representative

after a while. The max variance heuristic, by not requiring atraining set of queries, does not suffer

from these drawbacks.

On the other hand, if the distribution of queries is static over time, and if a representative set of

queries is available for training, then the learning methodoutlined above can be used to optimize

embedding performance. For the datasets used in our experiments, the max variance heuristic

is sufficient for constructing embeddings that give state-of-the-art results. The learning method

improves performance even further.

4.6 Experiments

The proposed method is evaluated on time series data obtained from the UCR Time Series Data

Mining Archive [35] and also on an additional random walk synthetic dataset. Our method is

compared to two state-of-the-art methods for subsequence matching under constrained DTW:

• LB Keogh with sliding window: Given a query of length|Q|, a sliding window of size|Q|

scans the time series database, performing the LBKeogh lower bounding technique at each

55

Name 50Words Wafer Yoga
Length of each time series 270 152 426
Size of “training set” (used 450 1000 300
by us as set of queries)
Number of time series used
for embedding optimization 192 428 130
(subset of set of queries)
Number of time series used for
measuring performance (subset 258 572 170
of set of queries)
Size of “test set” (used 450 1000 300
by us to generate the database)

Table 4.1: For each original UCR dataset we show the sizes of the original train-
ing and test sets. We note that, in our experiments, we use theoriginal training
sets to obtain queries for embedding optimization and for performance evalua-
tion, and we use the original test sets to generate the long database sequence (of
length 2337778).

step.

• DTK: the exact subsequence matching method proposed in [56]. We note that this method

has been designed to work for external memory, but here we evaluate it on main memory

datasets. Therefore, first we buffer the complete index in main memory and then we run the

queries. Thus, all the operations are executed in main memory.

Both BSE and LBKeogh were implemented in C++. The code for DTK has been obtained

from the authors [56]. All experiments were run on an AMD Opteron 8220 SE processor running

at 2.8GHz.

The main focus of the experimental evaluation is to demonstrate the main contributions of our

work and the robustness of the proposed method with respect to query size and warping width. In

particular, our experiments demonstrate:

• significant speedups, at the cost of modest loss in retrievalaccuracy, compared to the exact

methods LBKeogh [34] and DTK [56].

• the performance gains of bidirectional embeddings, compared to using only endpoint em-

56

beddings, as done in [6].

• the effect of training in the new embedding scheme, and the fact that competitive results are

obtained even when not using training.

• the robustness of our method with respect to query size and warping width.

4.6.1 Datasets

To create a large and diverse enough dataset, we combined three of the datasets from UCR Time

Series Data Mining Archive [35]. The three UCR datasets thatwe used are shown on Table 4.1.

Each of the three UCR datasets contains a test set and a training set. As can be seen on

Table 4.1, the original split into training and test sets created test sets that were significantly larger

than the corresponding training sets, for two of the three datasets. In order to evaluate indexing

performance, we wanted to create a sufficiently large database, and thus we generated our database

using the large test sets, and we used as queries the time series in the training sets.

More specifically, our database is a single time seriesX, that was generated by concatenating

all time series in the original test sets: 455 time series of length 450 from the 50Words dataset,

6164 time series of length 152 from the Wafer dataset, and 3000 time series from the Yoga dataset.

The length|X| of the database is obviously the sum of length of all these time series, which adds

up to 2337778.

Our set of queries was the set of time series in the original training set of the three UCR

datasets. In total, this set includes 1750 time series. 750 of those queries were set aside and used as

a sample set of queries for the learning method discussed in Section 4.5, that performs embedding

optimization. We should emphasize that embedding construction using the max variance heuristic

did not use that sample set at all; only the learning method used the sample set. The remaining

1000 queries were used for performance evaluation of all methods.

To further evaluate the robustness of BSE we created a randomwalk synthetic dataset. In

this dataset the database time seriesX was generated as follows: for each valueXi we produce

a random real numberr and if r is positive,Xi = Xi−1 + 0.005, elseXi = Xi−1 − 0.005. X0

57

50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

accuracy %

D
T

W
 c

e
ll

co
st

 %

accuracy vs. DTW cell cost for BSE, EE and LBKeogh

EE40−9 with training
BSE40−9 with training
LBKeogh

50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

accuracy %

re
tr

ie
va

l r
u

n
tim

e
 in

 s
e

c

accuracy vs. retrieval runtime for BSE and EE

EE−9 with training
BSE40−9 with training

Figure 4·2: Warping width is 5% of the query size. The cell cost is also shown for
LB Keogh (corresponding to 100% accuracy). The cell cost for DTK is 18.73%.
The retrieval runtime is 8.21 sec for LBKeogh, and 17.93 sec for DTK.

50 55 60 65 70 75 80 85 90 95 100
0

1

2

3

4

5

6

7

8

9

10

accuracy %

D
T

W
 c

e
ll

co
st

 %

accuracy vs. DTW cell cost for BSE, EE and LBKeogh

EE40−9 without training
BSE40−9 without training
LBKeogh

50 55 60 65 70 75 80 85 90 95 100
0

1

2

3

4

5

6

7

8

9

10

accuracy %

re
tr

ie
va

l r
u

n
tim

e
 in

 s
e

c

accuracy vs. retrieval runtime for BSE, EE and LBKeogh

EE−9 without training
BSE40−9 without training
LBKeogh

Figure 4·3: Dimensionality =40 and sampling rate =9. Warping width is 5%
of the query size. Results are also shown for LBKeogh, as horizontal bars cor-
responding to the costs for 100% retrieval accuracy. The cell cost for DTK is
18.73%, and the retrieval runtime for DTK is 17.93 sec.

is set to1.5. Queries were generated in the same way. The query size varied from 100 to 1000 in

increments of100. We used100 queries per query size.

4.6.2 Performance Measures

Our method is approximate, meaning that it does not guarantee finding the optimal subsequence

match for each query. The two key measures of performance in this context are accuracy and

58

Accuracy BSE40-9 EE40-9 DTK LB Keogh
100% 18.73% 0.72%
99% 1.58% 6.77%
98% 1.24% 5.79%
95% 1.02% 3.66%
90% 0.61% 2.44%
85% 0.45% 2.08%
80% 0.38% 1.59%

Table 4.2: Note that DTK and LBKeogh are exact and thus have 100% retrieval
accuracy.

Accuracy BSE40-9 EE40-9 DTK LB Keogh
100% 17.93 8.21
99% 0.52 2.40
98% 0.46 2.02
95% 0.37 1.31
90% 0.29 0.82
85% 0.26 0.71
80% 0.21 0.60

Table 4.3: Note that DTK and LBKeogh are exact and thus have 100% retrieval
accuracy.

efficiency. Accuracy is simply the percentage of queries in our evaluation set for which the optimal

subsequence match was successfully retrieved. Efficiency can be measured based on theruntime

cost in seconds for each query. We report the average runtime costfor each group of queries. To

compute the runtime cost for a query, we measure the total runtime of the entire retrieval algorithm

for that query, including both the filter and the refine steps.Efficiency can also be measured based

on thecell costfor each query, which is the percentage of the number of database positions visited

during the refine step divided by the database size.

Query Size BSE40-9 (sec) LB Keogh (sec)
152 0.04 4.36
270 0.04 7.87
426 0.04 13.51

Table 4.4: Runtime (in seconds) for the filter step of BSE with sampling rate9
and dimensionality40 and for the filter step of LBKeogh for the UCR dataset.

59

Trade-offs between accuracy and efficiency can be obtained very easily, for BSE, by changing

parameterp of the refine step (see Section 4.4). Increasing the value ofp increases accuracy, but

decreases efficiency, by increasing both cell cost and retrieval runtime.

4.6.3 Parameter Settings

One parameter that we need to set is the dimensionality of theBSE embedding. Unless noted

otherwise, we use a 40-dimensional embedding. In Section 4.6.5 we discuss the effect of changing

the dimensionality of the embedding.

The other parameter that we need to set for our method isδ, the sampling rate discussed in

Section 4.4.1. Unless noted otherwise, we useδ = 9. In Section 4.6.5 we discuss the effect of

different sampling rates.

4.6.4 Comparison to Other Methods

In this section, BSE is compared with the two aforementionedstate-of-the-art methods, LBKeogh

and DTK.

Accuracy vs. Efficiency

Applying LB Keogh with a sliding window on the UCR dataset yielded a cell cost of0.72% with

an average retrieval runtime of8.21 seconds per query. On the other hand, the performance of

DTK is poor in terms of both cell cost (18.73%) and retrieval runtime (17.93 sec). In Figures

4·2 and 4·3 we see results with respect to cell cost and retrieval runtime; the results are also

summarized in Tables??, ??, 4.2, and 4.3. For an accuracy of99% BSE embeddings (constructed

via learning) are faster than LBKeogh by a factor of22.2 in terms of retrieval runtime. For an

accuracy of80%, BSE embeddings (constructed via learning) yield a speedupof two orders of

magitude compared to LBKeogh and DTK. As seen in Table 4.3, BSE embeddings constructed

via max variance (and thus not requiring a training set of queries) also perform well, being faster

by a factor of 15.8 and 39.1 over LBKeogh, for retrieval accuracy99% and80% respectively.

In terms of cell cost LBKeogh appears to have a better performance for accuracies above95%.

However, the cell cost does not consider the cost of the filterstep. The filter step of LBKeogh is

60

much more expensive than that of BSE. This can be seen in Table4.4 for the UCR dataset.

Robustness

Here we present experimental results that demonstrate thatthe performance of BSE embeddings

is more robust than that of LBKeogh and DTK, with respect to changes in the warping widthw

and changes in the length of queries.

Table 4.5 shows the effect of the warping widthw for both LB Keogh and BSE, as measured

on the random walk dataset. For BSE, we selected an accuracy of 95%, a dimensionality of

40 and a sampling rate of9. It can be seen that asw increases, the pruning power of LBKeogh

deteriorates fast. A similar observation is also made in [78]. The runtime of BSE also deteriorates,

but at a much smaller pace: increasingw from 0.5% of the query length to20% of the query length

makes LBKeogh 32 times slower, and BSE about 13 times slower.

The effect of query size is studied next, by setting the warping width to5% and varying the

query size from100 to 1000. Tables 4.6 and 4.7 summarize our findings regarding cell cost

and retrieval runtime respectively, for the two competitormethods and BSE, as measured on the

random walk dataset. For BSE, we selected an accuracy of95%, a dimensionality of40 and

a sampling rate of9. For query sizes up to300 the performance of DTK is improved as the

query sizes increases; after that point, DTK deteriorates rapidly as the query size keeps increasing.

Overall, increasing the query length from 100 to 1000 makes LB Keogh more than 250 times

slower, DTK about 38 times slower, and BSE about 8.6 times slower; BSE clearly demonstrates

the slowest deterioration with increasing query length.

4.6.5 Further Analysis of our Method

This section provides a further analysis of BSE. We compare BSE embeddings with endpoint em-

beddings (EE), we compare performance of BSE embeddings optimized using the max variance

heuristic vs. BSE embeddings optimized using learning, andwe analyze the effects of dimension-

ality and sampling rate on the performance of BSE.

61

LB Keogh BSE
Warping width Cell Cost Runtime Cell Cost Runtime
0.5% 0.52% 1.91 0.81% 0.23
1.0% 0.93% 2.87 0.82% 0.34
2.5% 1.61% 4.65 0.89% 0.55
5.0% 2.68% 7.89 0.97% 0.81
10.0% 4.68% 12.62 1.02% 1.36
15.0% 10.19% 25.33 1.16% 2.09
20.0% 25.22% 61.73 1.27% 2.86

Table 4.5: Query size is set to400.

Query size BSE40-9 (95%) LB Keogh DTK
100 0.375% 0.0672% 12.14%
200 0.552% 0.1972% 10.53%
300 0.765% 0.9082% 9.55%
400 0.974% 2.6834% 13.63%
500 1.183% 3.8764% 17.34%
600 1.212% 6.8772% 28.35%
700 1.491% 7.8972% 36.86%
800 1.527% 13.7644% 52.88%
900 1.753% 32.0987% 77.71%
1000 1.849% 46.5289% 89.35%

Table 4.6: Warping width is set to 5% of the query size. For BSE we show the
cell costs for 95% accuracy.

Query size BSE40-9 (95%) LB Keogh DTK
100 0.66 1.19 15.89
200 0.72 3.42 11.23
300 0.75 5.32 9.52
400 0.81 8.57 13.56
500 0.97 14.35 19.66
600 1.35 25.92 42.33
700 1.84 49.22 84.47
800 2.58 98.80 156.22
900 3.22 173.33 311.18
1000 5.65 302.57 609.56

Table 4.7: Warping width is set to 5% of the query size. For BSE we show the
cell costs for 95% accuracy.

62

Bidirectional vs. Endpoint Embeddings

The performance of BSE is compared with that of using only endpoint embeddings (denoted as

EE embeddings). In Figures 4·2 and 4·3 we can see the performance of BSE vs. EE with respect to

cell cost and retrieval runtime; the results are also summarized in Tables 4.2, and 4.3. In terms of

retrieval runtime, BSE embeddings outperform EE embeddings across the board. The difference

is even more pronounced for embeddings optimized via max variance; as Table 4.3 shows, BSE

embeddings lead to runtimes between 2.5 and 4.5 times smaller compared to the runtimes attained

using EE embeddings.

Effect of Training

In Figures 4·2 and 4·3, and Tables 4.2, and 4.3 we see the results obtained using BSE embeddings

constructed using each of the two methods described in Section 4.5: the max variance heuristic and

the greedy learning algorithm that uses a training set of queries. We see that the greedy learning

algorithm invariably produces better results.

It is also interesting to compare how using learning affectsBSE embeddings and EE em-

beddings. Comparing Figures 4·2 and 4·3 it can be seen that the learning method affects the

performance of BSE embeddings much less than it affects the performance of EE embeddings.

For example, for99% accuracy the retrieval runtime is decreased by a factor of1.4 for BSE em-

beddings, and by a factor of4.44 for EE embeddings. In these experiments, BSE embeddings are

shown to be less reliant on learning than EE embeddings. Thisis an additional advantage of BSE

embeddings, as the learning method is not always a realisticoption, as discussed in Section 4.5.

Effect of Dimensionality

For this set of experiments, the sampling rate was set to1 and the dimensionality of the embed-

ding varied from10 to 160. In Figure 4·4 we can see the performance of BSE (optimized using

learning) with respect to accuracy vs. cell cost and retrieval runtime respectively. We note that an

embedding of dimensionality40 produces the best accuracy with respect to both cell cost andre-

trieval runtime. The fact that the cell cost (which excludesthe cost of comparing high-dimensional

63

70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

accuracy %

re
tr

ie
va

l r
u

n
tim

e
 %

accuracy vs. retrieval runtime for BSE−1

BSE160−1
BSE80−1
BSE40−1
BSE20−1
BSE10−1

70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

accuracy %

D
T

W
 c

e
ll

co
st

 %

accuracy vs. DTW cell cost for BSE−1

BSE160−1
BSE80−1
BSE40−1
BSE20−1
BSE10−1

Figure 4·4: Sampling rate was set to1 and the dimensionality of the embedding
varies from10 to 160. Warping width is 5% of the query size.

vectors) increases as the dimensionality goes from 40 to 80 and 160 is evidence that the learning

algorithm suffers from overfitting, i.e., it tries to fit the training data too much. Using more training

data is the standard way to avoid overfitting.

Effect of Sampling

Finally, the effect of sampling on both cell cost and retrieval runtime is studied. For this set of

experiments, the dimensionality of the embedding was set to40 and the sampling rate varied

from 1 to 15. In Figure 4·5 we can see a comparison of accuracy vs. cell cost and retrieval

runtime respectively for BSE. Based on the experimental evaluation on the UCR dataset, for the

best dimensionality determined in the previous paragraph,the best sampling rate is9. At the same

time, we note that sampling rates of 5, 7, 9, and 11 give results fairly similar to each other, and

thus the performance of BSE embeddings is not particularly sensitive to the choice of sampling

rate.

4.6.6 Replication of BSE on other datasets

For the same reasons discussed in section 3.6.4 of chapter 3,we are now going to describe how

to set the parameters for BSE, given a new time series dataset. Notice that as opposed to EBSM,

BSE does not require any training.

64

75 80 85 90 95 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

accuracy %

D
T

W
 c

e
ll

co
st

 %

accuracy vs. DTW cell cost for BSE40 for different sampling rates

BSE40−1
BSE40−5
BSE40−7
BSE40−9
BSE40−11
BSE40−15

70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

accuracy %

re
tr

ie
va

l r
u

n
tim

e
 in

 s
e

c

accuracy vs. retrieval runtime for BSE40 for different sampling rates

BSE40−1
BSE40−5
BSE40−7
BSE40−9
BSE40−11
BSE40−15

Figure 4·5: The dimensionality of the embedding is set to40 and the sampling
rate varies from1 to 15. Warping width is 5% of the query size. Training has
been performed on BSE.

BSE should be set up so that best performance can be achieved in terms of retrieval runtime.

For the reference sequence selection phase, in a similar manner as EBSM, one approach is to ask

the user to provide a sample of queries similar to those expected when BSE will be running online.

Applying the maximum variance heuristic, out ofk = 2, 000 reference sequences taken randomly

from the database, thosed sequences with the maximum variance will be selected. Thosed andp

values with the best retrieval runtime on the query sample will be assigned for the online phase of

BSE.

Another approach is to setk, d, andp to an initial value empirically chosen based on datasets

seen so far. Then, during the online phase, for the set of queries seen so far, we can keep track of

the distribution of their pairwise distances. When their distances start increasing in variance (i.e.

possibly a new type of queries has entered the system), the maximum variance heuristic can be

applied and determine new values for the parameters, if these values can achieve a better retrieval

runtime on the new query sample.

4.7 Summary

We have described Bidirectional Subsequence Embeddings (BSE), a novel method for efficient

subsequence matching of time series under constrained DTW.BSE embeddings take advantage of

65

the constraints of cDTW to associate, given a query, a vectorto each possible subsequence match

in the database. By comparing the embedding of the query to the embeddings of the possible

subsequence matches, a relatively short number of candidate matches can be efficiently identified.

Experiments with real and synthetic datasets demonstrate the computational savings obtained

using BSE, and a speedup of one to two orders of magnitude compared to the state-of-the-art exact

methods for this problem, at the cost of some modest loss in retrieval accuracy. A speedup of over

one order of magnitude is obtained while still maintaining 99% retrieval accuracy. A speedup

of two orders of magnitude is achieved at the cost of getting correct results for only 80% of the

queries. Furthermore, BSE embeddings are shown to be significantly more robust than competing

methods in their ability to tolerate large warping widths and large query lengths.

66

Chapter 5

Reference-based Alignment of Sequence Databases

Two reference-based methods (one exact and one approximate) for similarity search in large se-

quence databases are described in this chapter. Both methods use a set of reference sequences to

map each database point to a real value. The similarity measure used for this case is the edit dis-

tance (ED) and thus, due to its metric property, lower boundscan be defined and used to efficiently

filter candidate matches. A letter collapsing technique is also used to improve performance.

In the remainder of this chapter, we provide some backgroundon similarity search in string

databases (mainly DNA sequence databases), then we describe the two methods in more detail

and finally present the experimental evaluation of our methods against state-of-the-art biological

sequence similarity search methods.

5.1 Background

In this section we define the edit distance and Smith-Waterman measures used to evaluate sim-

ilarity between strings (e.g. DNA). We use the terms “string” and “sequence” interchangeably.

Throughout this section, the following notation will be used:

• Q, X are sequences of length|Q| and|X| respectively.Q denotes a query sequence andX

denotes a database sequence. Typically|X| ≫ |Q|. Without loss of generality we assume

that the database contains a single very long sequence, since we can always concatenate all

the strings stored in the database into a single string.

• Subscripts denote elements of sequences. For example,Q = (Q1, . . . , Q|Q|).

• For any sequenceX = (X1, . . . ,X|X|), given start and end positionss andt respectively,

we can definesubsequenceXs:t to be the sequence(Xs, . . . ,Xt), i.e., the part ofX that

67

starts at positions and ends at positiont. Then,Xs:t
i is thei-th element ofXs:t, and is equal

to Xs+i−1.

5.1.1 The Edit Distance

The edit distance∆(A,B) is a function measuring howdissimilar two stringsA andB are. For

a more general definition of the edit distance we need to specify a cost for each editing operation,

i.e., for each insertion, deletion, and substitution. In this thesis we denote these costs as follows:

• Cins denotes the cost of the edit operation that inserts a letter to stringA.

• Cdel denotes the cost of the edit operation that deletes a letter from stringA.

• Csub(Aj , Bt) denotes the cost of the edit operation that replaces letterAj with some letter

Bt 6= Aj .

In the general case,∆(A,B) is the smallest possible cost of convertingA to B using inser-

tions, deletions, and substitutions. In the most common version of ED,Cins = Cdel = Csub = 1,

and in that case∆(A,B) is the smallest total number of insertions, deletions, and substitu-

tions that can convertA to B. For simplicity, in the remainder of this thesis we assume that

Cins = Cdel = Csub = 1.

Given a query sequenceQ and a database sequenceX, the best (optimal)subsequence match

of Q in X is the subsequenceXs:t that minimizes∆(Q,Xs:t). We define the subsequence match-

ing costD(Q,X) as:

D(Q,X) = min{∆(Q,Xs:t)|s ∈ {1, . . . , t}, t ∈ {1, . . . , |X|}} . (5.1)

In describing how to computeD(Q,X) and the corresponding subsequence matchXs:t, it is

useful to define an auxiliary distanceDj,t, as the smallest possible distance betweenQ1:j and a

suffixXs:t of X1:t:

Dj,t(Q,X) = min{∆(Q1:j ,Xs:t)|s ∈ {1, . . . , t}} . (5.2)

68

We also define an auxiliary functionC(Qj,Xt) that denotes the cost of matching letterQj

with letterXt:

C(Qj,Xt) =

Csub if Qj 6= Xt

0 if Qj = Xt

(5.3)

ComputingD(Q,X) and the corresponding best subsequence match ofQ in X can be per-

formed using dynamic programming, by computingDj,t(Q,X) for j = 1, . . . , |Q| and t =

1, . . . , |Q|, as follows:

initialization:

D0,0 = 0,Dj,0 = ∞,D0,t = 0 . (5.4)

loop:

Dj,t(Q,X) = min

Dj,t−1(Q,X) + Cins

Dj−1,t(Q,X) + Cdel

Dj−1,t−1(Q,X) + C(Qj ,Xt)

(5.5)

(j = 1, . . . , |Q|; t = 1, . . . , |X|) .

termination:

t∗ = argmint=1,...,|X|{D
|Q|,t(Q,X)} . (5.6)

D(Q,X) = D|Q|,t∗(Q,X) . (5.7)

It should be clear that evaluatingD(Q,X) takes timeO(|Q||X|). We should also note that the

optimal matching sequence can be found by keeping track, in each application of Equation 5.5, of

the predecessor selected for each(j, t), and by backtracking, at termination, starting at position

(|Q|, t∗).

69

5.1.2 The Smith-Waterman Measure

A similarity measureΛ(A,B), in contrast to a distance measure, measures howsimilar two strings

A andB are. IfΛ(A,B) = 0 thenA andB are maximally different from each other. The Smith-

Waterman measure [79] is a frequently used similarity measure for strings. In order to specify

the Smith-Waterman measure, we need to choose valuesPmatch, Psub andPgap, that stand for the

following terms:

• Pmatch is a positive number that denotes the reward for a letter ofA being equal to the

corresponding letter inB.

• Psub is a negative number that denotes the penalty for a letter ofA being substituted by

another letter.

• Pgap is a negative number that denotes the penalty for deleting a letter ofA, or inserting a

letter toA.

In the remainder of the thesis, and in our experiments, we usePmatch = 2, Psub = −1, and

Pgap = −1, which are commonly used choices for these parameters.

Given a query stringQ and a database stringX, finding the best (optimal)local alignment

betweenQ andX is the task of finding subsequencesQi:j andXs:t that maximizeΛ(Qi:j,Xs:t).

We define the Smith-Waterman similarity scoreL(Q,X) as:

L(Q,X) = max{Λ(Qi,j,Xs:t)|i ∈ {1, . . . , j}, j ∈ {1, . . . , |Q|},

s ∈ {1, . . . , t}, t ∈ {1, . . . , |X|}} . (5.8)

In describing how to computeL(Q,X) and the corresponding optimally matching subse-

quencesQi:j andXs:t, it is useful to define an auxiliary scoreSj,t, as the highest matching score

between a suffixQi:j of Q1:j and asuffixXs:t of X1:t:

Lj,t(Q,X) = max{Λ(Qi:j ,Xs:t)|i ∈ {1, . . . , j}, s ∈ {1, . . . , t}} . (5.9)

70

We also define an auxiliary functionP (Qj ,Xt) that denotes the reward or penalty of matching

letterQj with letterXt:

P (Qj,Xt) =

Psub if Qj 6= Xt

Pmatch if Qj = Xt

(5.10)

Given Q and X, the Smith-Waterman algorithm identifies optimal subsequencesQi:j and

Xs:j and the corresponding similarity scoreL(Q,X) = Λ(Qi:j,Xs:t). The Smith-Waterman

algorithm is very similar to the algorithm computing the edit distance, and also proceeds using

dynamic programming, by computingLj,t for j = 1, . . . , |Q| andt = 1, . . . , |Q|, as follows:

initialization:

Lj,0 = 0, L0,t = 0 . (5.11)

Lj,t(Q,X) = max

Lj,t−1(Q,X) + Pgap

Lj−1,t(Q,X) + Pgap

Lj−1,t−1(Q,X) + P (Qj,Xt)

0

(5.12)

(j = 1, . . . , |Q|; t = 1, . . . , |X|) .

termination:

L(Q,X) = max
j=1,...,|Q|,t=1,...,|X|

{Lj,t(Q,X)} . (5.13)

Similar to the edit distance, Smith-Waterman takes timeO(|Q||X|), and finding the subse-

quences ofQ andX that give the maximum similarity score can be easily done using backtrack-

ing.

5.2 RBSA for Fixed Query Length

In this section, we describe the proposed RBSA (Reference-Based String Alignment) method for

queries of fixed length. We denote that fixed length asq. In Section 5.3, we will generalize RBSA

to queries of arbitrary length.

71

RBSA follows a filter-and-refine approach. A set of random reference sequences is generated.

For each database position, an alignment score with each reference sequence is computed, and

an embedding-based index is constructed using those scores. The embedding is used for fast

filtering of database positions that can lead to a potential match. Those positions are then passed

to the refine step where the computationally expensive distance measure (edit distance or Smith-

Waterman) is applied.

5.2.1 Embedding Queries and Database Positions

LetQ be a query sequence of fixed length|Q| = q, andX be the database sequence. At the core of

our method is an embedding definition, that we use to produce one-dimensional(1D) mappings,

that map every query sequenceQ to a number, and that map every database position(X, t) also to

a number. We will use these1D mappings to obtain bounds for the optimal subsequence matching

or local alignment scoreendingat each database position(X, t), and then we will use those bounds

to efficiently prune significant portions of the database.

Let R be a sequence of the same fixed lengthq as the queries. UsingR we can define a 1D

embeddingFR, mapping each query sequence into a real numberFR(Q), and also mapping each

database position(X, t) into a real numberFR(X, t):

FR(Q) = D|R|,|Q|(R,Q) . (5.14)

FR(X, t) = D|R|,t(R,X) . (5.15)

The above equations can be interpreted intuitively as follows: the embeddingFR(Q) of the

query is the smallest edit distance matchingR to a suffix ofQ. The embeddingFR(X, t) of

database position(X, t) is the smallest edit distance matchingR to a suffix ofX1:t. If a very close

match toQ appears asXs:t in X, then we expectFR(Q) to be very similar toFR(X, t). Any

sequenceR used to define an embeddingFR is called areference sequence.

72

5.2.2 Reference-based Bounds for the Edit Distance and Smith-Waterman

Let Q be a query string,X be the database sequence, andt be a position onX. As a reminder,

∆(A,B) is the edit distance between stringsA andB, andD|Q|,t(Q,X) is the smallest edit dis-

tance betweenQ and any subsequence ofX ending at position(X, t). To establish an exact

reference-based filtering method for the subsequence matching problem, our first step is to estab-

lish a lower bound forD|Q|,t(Q,X) based onFRi(Q) andFRi(X, t), whereRi is any reference

sequence.

Proposition 1 For any queryQ, database position(X, t), and reference sequenceRi, define

lbi,t
ED(Q) as follows.

lbi,t
ED(Q) = FRi(X, t) − FRi(Q). (5.16)

Then, it holds that:

lbi,t
ED(Q) ≤ D|Q|,t(Q,X), (5.17)

and thuslbi,t
ED(Q) is a lower bound for the smallest possible edit distance betweenQ and a

subsequence ofX ending at(X, t).

Proof: First, we need to make the following auxiliary definitions:

M(A,B, t) = argminBs:t|s=1,...,t{∆(A,Bs:t)}, (5.18)

Q′ = M(Ri, Q, |Q|). (5.19)

In words,M(A,B, t) is the subsequence ofB ending at position(B, t) that has the smallest edit

distance fromA, andQ′ is the suffix ofQ that has the smallest edit distance fromRi. Then, we

can prove Proposition 1 as follows:

lbi,t
ED(Q) = FRi(X, t) − FRi(Q) (5.20)

= ∆(Ri,M(Ri,X, t)) − ∆(Ri, Q
′) (5.21)

≤ ∆(Ri,M(Q′,X, t)) − ∆(Ri, Q
′)) (5.22)

≤ ∆(M(Q′,X, t), Q′) (5.23)

≤ ∆(M(Q,X, t), Q). (5.24)

73

To justify the above derivation, we note the following:

• ∆(Ri,M(Ri,X, t)) ≤ ∆(Ri,M(Q′,X, t)) since both

M(Ri,X, t) andM(Q′,X, t) are subsequences ofX ending at(X, t), andM(Ri,X, t) is

defined as the subsequence ofX ending at(X, t) that has the smallest distance withRi.

• The edit distance is metric, so the triangle inequality holds, and∆(Ri,M(Q′,X, t)) −

∆(Ri, Q
′) ≤ ∆(M(Q′,X, t), Q′).

• We can prove∆(M(Q′,X, t), Q′) ≤ ∆(M(Q,X, t), Q) by considering that when we per-

form the minimal set of edit operations that convertQ to M(Q,X, t), those same operations

suffice to convertQ′ (which is a suffix ofQ) to a suffix ofM(Q,X, t). Therefore, the small-

est possible edit distance betweenQ′ and a subsequence ofX ending at(X, t) cannot be

greater than∆(M(Q,X, t), Q).

�

If we are actually interested in retrieving optimal matchesunder the Smith-Waterman simi-

larity measure, as opposed to the edit distance, we can easily convert the lower bound of the edit

distance to an upper bound for Smith-Waterman. We can prove the following:

Proposition 2 For any queryQ and database position(X, t), defineubi,t
SW (Q) as follows:

ubi,t
SW (Q) = 2|Q| − lbi,t

ED(Q). (5.25)

Suppose that we define a Smith-Waterman similarity measure usingPmatch = 2, Pgap = −1, and

Psub = −1. Then, it holds that:

ubi,t
SW (Q) ≥ L|Q|,t(Q,X), (5.26)

whereL|Q|,t(Q,X) is the highest Smith-Waterman score betweenQ and a subsequence ofX

ending at(X, t). Thusubi,t
SW (Q) is an upper bound for the Smith-Waterman score betweenQ and

any subsequence ofX ending at(X, t).

Proof: First, we need to make the following auxiliary definition:

MSW (Q,X, t) = argmaxXs:t|s=1,...,t{Λ(Q,Xs:t)}. (5.27)

74

In words,MSW (Q,X, t) is the subsequence ofX ending at position(X, t) that has the highest

Smith-Waterman score withQ. Then, we can prove Proposition 2 as follows:

ubi,t
SW (Q) = 2|Q| − lbi,t

ED(Q) (5.28)

≥ 2|Q| − ∆(Q,M(Q,X, t)) (5.29)

≥ 2|Q| − ∆(Q,MSW (Q,X, t)) (5.30)

≥ L|Q|,t(Q,X) (5.31)

In justifying the above derivation, the most important stepis showing that2|Q| −

∆(Q,MSW (Q,X, t)) ≥ L|Q|,t(Q,X). The argument for that is as follows: Consider the op-

timal alignment (according to Smith-Waterman) betweenQ andMSW (Q,X, t). If Q perfectly

matchesMSW (Q,X, t), then the alignment score is2|Q|, since we get a reward ofPmatch = 2

for every letter ofQ. Any mismatch and gap in the optimal alignment causes the alignment score

to decrement by at least 1. Therefore, we know that the numberof mismatches and gaps in the

optimal alignment cannot be greater than2|Q| − L|Q|,t(Q,X). At the same time, the optimal

alignment betweenQ andMSW (Q,X, t) defines a sequence of edit operations (substitutions for

mismatches and insertions or deletions for gaps) that convertsQ to MSW (Q,X, t). Consequently,

the edit distance betweenQ andMSW (Q,X, t)) cannot exceed2|Q| − L|Q|,t(Q,X).

�

Notice that since Smith-Waterman is a similarity score (andnot a distance measure) upper

bounds established efficiently during a filtering step can beused to prune away candidate database

matches, while guaranteeing that the correct answer will not be pruned. This is quite analogous to

the use of lower bounds for efficient filtering when looking for the best matches under a distance

measure.

5.2.3 Offline Selection of Reference Sequences

We have shown how to use reference-based alignment scores computed for database positions and

for the query in order to obtain lower bounds of the edit distance or upper bounds for the Smith-

75

Waterman similarity score between the query and subsequences ending at each database position.

We say that, for a queryQ, database position(X, j) is pruned usingRi, if lbi,j
ED(Q) > δq, where

lbi,j
ED(Q) is as defined in Eq. 5.16, andδ is the maximum amount (expressed as fraction of the

query length) of difference between the query and its subsequence match that we are willing to

tolerate. We note that, if the best match has an edit distanceof more thanδq from Q, we are not

interested in retrieving that match.

The filter step of RBSA, which is described in Section 5.2.4, prunes database positions using

information from reference sequences. However, given a query Q, it would take too much time

to check for each database position if it can be pruned using every single reference sequence.

Therefore, we perform an off-line preprocessing step, at which we identify, for every database

position, the best reference sequences (out of thousands ofavailable sequences) to use for that

position. Intuitively, reference sequencesR for which FR(X, j) is high (meaning thatR is far

from any subsequence ofX ending at positionj) tend to provide tighter lower bounds according

to Eq. 5.16. Our reference selection method is inspired by that of [85], although that approach

was proposed in the context of full sequence matching.

For the reference selection process, we use two sets: 1) a setQsample = {Q1, . . . , Q|Qsample|}

of randomly generated queries with|Qi| = q, and 2) a set of randomly generated reference objects

R = {R1, . . . , R|R|} with |Ri| = q. For each database position(X, j), the set of reference objects

to use for that position are selected using a greedy approach. More specifically, for each position

(X, j), we first choose reference objectR1
j to be the reference sequenceR that prunes position

(X, j) for the largest number of queries inQsample. Then, the queries for which(X, j) is pruned

by R1
j are removed fromQsample. Similarly, we choose reference objectRi

j to be the reference

sequenceR that prunes position(X, j) for the largest number of queries inQsample, whereQsample

has been modified to exclude queries for which(X, j) is pruned using the previously chosen

reference objectsR1
j , . . . , R

i−1
j .

The final outcome is the setRK = {RK
1 , . . . ,RK

|X|}, whereRK
j contains the topK reference

objects for position(X, j). For each position(X, j) we also store all valuesFRi
j(X, j), for i =

1, . . . ,K. The pseudocode for selecting reference objects for each database position is given in

76

Algorithm 1. We should note that the selection of reference objects is an offline process and is

executed only once.

5.2.4 Filter Step

Next we describe the online behavior of RBSA at query time, for queries of fixed sizeq. The re-

trieval process, givenQ, consists of a filter step and a refine step. Given a queryQ, its embeddings

FRi(Q) under all reference objects inR are computed. Then, for each database position(X, j),

eachRi
j ∈ RK

j is considered, until either anRi
j is found that prunes(X, j), or all Ri

j ∈ RK
j

have been considered. In the latter case, position(X, j) is a candidate endpoint of a subsequence

match, that will be considered by the refine step. The filter step is described in Algorithm 2.

5.2.5 Refine Step

The filter step produces setcandidates that contains endpoints of possible database matches for

the query. At the refine step, each of those candidates is evaluated. Naturally, depending on

whether we want to retrieve the best matches according to theedit distance or Smith-Waterman,

we use respectively the edit distance or Smith-Waterman to evaluate each candidate endpoint.

For the case of the edit distance, the refine step is shown in Algorithm 3. It is fairly straight-

forward to adapt that algorithm to work for the Smith-Waterman similarity measure.

5.2.6 Alphabet Collapsing

The filtering power of RBSA is improved by employing an alphabet collapsing technique. In

particular, for the case of DNA sequences the alphabet isΣ = {A,C,G, T}. We can reduce the

alphabet size to 2 by applying four possible collapsing schemes:

• Scheme0: No collapsing (letters remain unchanged).

• Scheme1: A andC map toX, G andT map toY .

• Scheme2: A andG map toX, C andT map toY .

• Scheme3: A andT map toX, C andG map toY .

77

A combination of the four schemes is used to improve the filtering power of RBSA. LetTi be

a transformation function that converts an input string defined in alphabetΣ to its corresponding

string defined in schemei. In the offline selection of reference sequences for each database posi-

tion (Section 5.2.3), each reference sequenceR ∈ R eventually generates four different reference

sequences:T0(R), T1(R), T2(R) andT3(R). The same transformations are also applied to the

database thus producingT0(X), T1(X), T2(X) andT3(X).

Reference objectTi(R) can be used to obtain bounds and prune database positions(X, j) by

comparingF Ti(R)(Ti(Q)) with

F Ti(R)(Ti(X), j)). Bounds obtained using any of the transformationsTi are still true for the

untransformed sequences, since we can easily show that, forany of the fourTi’s, the edit dis-

tance∆(A,B) ≥ ∆(Ti(A), Ti(B)). The offline process for reference selection considers eachof

theTi(R)’s as a separate candidate reference sequence and typicallychooses, for each database

position, reference sequences obtained from all letter collapsing schemes.

At query time, the queryQ is also converted into each of the four representations,T0(Q),

T1(Q), T2(Q) and T3(Q). Filtering is modified to include these transformations. For each

database position(X, j), lower bounds are computed for eachTi.

We have found empirically that we get more pruning power by combining bounds from the

untransformed sequences and bounds from the transformed sequences obtained using letter col-

lapsing. Reference objects obtained via letter collapsinghave a larger variance in their distances

to database subsequences, thus leading to better pruning. We should underline that in [85] it is

also noted (in the context of full sequence matching) that pruning power improves when using

reference objects whose distances to database sequences have higher variance, but that approach

did not use letter collapsing.

5.3 RBSA for Variable Query Length

The discussion in Section 5.2 addressed the problem of efficient retrieval of subsequence matches

for query sequences of fixed lengthq. In this section we describe how to build upon the solutions

proposed for the fixed query length problem to obtain solutions for the variable query length

78

problem. We assume that we have already prepared an index, asdescribed in Section 5.2.3, for

processing queries of fixed sizeq. In our experiments,q = 40.

Let Q be a query. In principle,Q can have arbitrary size, but for simplicity we assume that

|Q| = αq, for someα ∈ N. No constraints are placed onα, andα can be different for each

query. At query time, the query is broken into non-overlapping segmentsQ1, . . . , Qα of sizeq.

We now proceed to describe two different methods, one exact,and one approximate, for using

results obtained for the different segmentsQi in order to identify the subsequence match for the

entire query.

5.3.1 Exact RBSA

The exact version of RBSA is based on a simple observation: ifQ has a subsequence match

with edit distance≤ δ|Q|, then at least one of the query segmentsQi has a subsequence match

with edit distance≤ δq. This can be seen by observing that each of the edit operations that

transformsQ into its subsequence match is applied to one of the individual query segments. After

all edit operations have been applied, each query segmentQi has been transformed to a database

subsequence. If each query segmentQi needed more thanδq edit operations to be converted to its

optimal database match, then the entire query would need more thanαδq = δ|Q| operations to be

converted to its optimal database match.

Let Xs:t be a subsequence match for the entire queryQ, with distance≤ δ|Q|. Then, we

can show that there exists at least oneQi that has, withinXs:t, a subsequence matchXs′:t′ with

distance≤ δq, and such thatt′ ∈ {t − q(α − i) − δ|Q|, . . . , t − q(α − i) + δ|Q|}. Conversely,

if for some segmentQi we have found a matchXs′:t′ with distance≤ δq, this generates a set of

candidate endpoints for a subsequence match of the entire query. This set of candidate endpoints

is equal to{t′ + q(α − i) − δ|Q|, . . . , t + q(α − i) + δ|Q|}.

Let sorted be the union of the sets of candidate endpoints generated from all matches of all

segmentsQi, and let’s assume thatsorted is sorted in descending order. Then, evaluating those

candidate endpoints can be done by invoking Algorithm 3, i.e., the exact same algorithm that was

used for the refine step of the fixed-query-length version. Itshould be clear from the preceding

79

paragraphs that this algorithm is guaranteed to identify the correct subsequence match, as long

as that match is within edit distanceδ|Q| from Q. As in the fixed-length case, Algorithm 3 can

easily be adapted to use Smith-Waterman instead of the edit distance, so as to identify the optimal

Smith-Waterman match for the query (but still assuming an edit distance≤ δ|Q| from Q).

5.3.2 Approximate RBSA

In the exact version of RBSA we try to find subsequence matcheswithin δq edit distance of each

of theα query segmentsQi. An important question, whose answer forms the foundation of the

approximate version of RBSA, is the following: what if, instead of using all segmentsQi, we used

a single randomQi? What would be the probability of the endpoint of the subsequence match for

the entire query being included in the set of candidate endpoints generated by that singleQi? It

turns out, as we prove next, that under some fairly reasonable assumptions, this probability is at

least50%.

In order to prove the above claim, we need to make some assumptions about the distribution

of edit operations needed to convertQ into its optimal subsequence match. We denote the best

subsequence match ofQ in X asM(Q,X). Since we assume that∆(Q,M(Q,X)) ≤ δ|Q|, at

mostδ|Q| edit operations are needed to convertQ to M(Q,X). Each of these edit operations

is applied to one and only one of theα segmentsQi that the query has been partitioned to. We

denote byQcm the query segment where them-th edit operation is applied, and byP (cm = i) the

probability that them-th edit operation is applied to segmentQi.

Proposition 3 LetQ be a query, andM(Q,X) be the optimal subsequence match ofQ in X. We

assume that∆(Q,M(Q,X))

= n ≤ δ|Q|, α ≥ 4, P (cm = i) is uniform over alli, and the distributionsP (cm = i) corre-

sponding to allm are mutually independent. In other words, we assume that thedistribution of

cm does not depend on anycn, for n 6= m. Consider the optimal sequence of edit operations that

convertQ to M(Q,X). Given anyQi, there is a probability of at least50% that, out of those edit

operations, at mostδq edit operations are applied toQi.

Proof: The probability that exactlyk out of then edit operations are applied toQi follows

a binomial distribution, where we haven trials, “success” is the case where an edit operation is

80

applied toQi, and the probability of success for an individual trial (i.e., a specific edit operation)

is 1
α

. The expected number of successes overn trials is n
α

(as a reminder,α is defined as|Q|/q). If

α ≥ 4, as we assume, the probability of success is≤ 0.25, and for that case it has been shown [23]

that there is at least a50% probability that the number of successes will not exceed theexpected

valuen/α. Sincen ≤ δ|Q|, it follows that n
α
≤ δ |Q|

α
= δq, and the probability that at mostδq edit

operations are applied toQi is at least50%.

�

Based on Proposition 3, by choosing a singleQi, and generating candidate endpoints for the

subsequence match of the entire query based on subsequence matches retrieved forQi, we have

a probability of at least50% to include the correct endpoint (i.e., the endpoint of the optimal

subsequence match for the entire query) in those candidates. If the correct point is not included

in those candidates, it follows that more thanδq edit operations were applied toQi. In that case,

for anyj 6= i, the probability that at mostδq edit operations are applied toQj is still at least50%,

and it is actually higher now that we know that more thanδq edit operations were applied toQi.

By extending that reasoning, if we generate candidate endpoints for the match of the entire

Q usingp segmentsQi1 , . . . , Qip , the probability of not including the correct endpoint in those

candidates is at most12p , and thus drops exponentially with respect top. If the correct endpoint

is indeed included in those candidates, then the optimal subsequence match is guaranteed to be

identified using the same refine step as in exact RBSA, and as inAlgorithm 3. In our experiments,

we usep = 10, so that the probability of retrieving the correct result isat least99.9%.

5.4 Experiments

The performance of RBSA is evaluated on biological data obtained from the NCBI repository.

RBSA is compared with state-of-the-art methods for string matching under the edit distance and

the Smith-Waterman similarity measure. With respect to theedit distance, we have compared with

Q-grams. With respect to Smith-Waterman, we have compared with:

• BLAST2[2]: the expect valueE has been adjusted to achieve retrieval accuracies of95%,

81

98%, and100%. In the tables and figures that follow, this adjustment is denoted as

BLASTX, which means that theE values have been adjusted to guaranteeX% retrieval

accuracy compared to Smith-Waterman.

• BWT-SW[43]: a local alignment method that guarantees100% retrieval accuracy.

For the purposes of the experimental evaluation, we denote the exact version of RBSA as E-

RBSA, and the approximate version as A-RBSA. For notation purposes, the distance/similarity

measure (edit distance (ED) or Smith-Waterman (SW)) used inthe refine step of RBSA is added

as a suffix at the end of each notation. For example, E-RBSA-EDis the exact version of RBSA

using the edit distance at the refine step, whereas A-RBSA-SWdenotes the approximate version

of RBSA using Smith-Waterman at the refine step. In the following sections, we use the term

RBSA to refer to our method in general. The other notation is only used to distinguish within

different versions of RBSA when needed.

5.4.1 Datasets

RBSA has been tested on Human Chromosome22. The size of this chromosome is35,059,634

bases. For the experiments described in section 5.4.2, the database sequence consisted of the

first 184,309 bases of the chromosome. For the rest of the experiments, thedatabase sequence

consisted of the whole chromosome, and thus had a length of35,059,634 letters. Queries have

been extracted from random chromosomes of the mouse genome.Their size varied from40 to

10K nucleotides (i.e.,40 to 10K letters) and their similarity to the database varied within5%,

10%, and15% edit operations, which, as also discussed earlier, is a reasonable range ofδ values

needed for the applications targeted by this thesis. Several sets of queries have been created, one

for each combination of the above parameters. Each set contains 200 queries.

Performance Measures

The two key measures of performance in this context are accuracy and efficiency. E-RBSA is

exact meaning that it is always guaranteed to find the optimal matchfor each query. Hence its

accuracy is always100%. On the other hand, A-RBSA isapproximate, therefore we use the term

82

Retrieval Accuracy (RA) to express the percentage of the correct nearest neighbors found over

the total number of queries. Efficiency is measured based on theRetrieval Runtime Percentage

(RRP) for each query. RRP is defined as follows:

RRP =
RBSA in sec

brute force in sec
100%. (5.32)

For our experiments the brute-force case is the full dynamicprogramming algorithm. Effi-

ciency is also measured based on thecell costfor each query, which is the percentage of database

positions visited during the refine step.

Specifically, two sets of experiments have been performed: for the first set, the edit distance

has been used at the refine step, whereas for the second we usedthe Smith-Waterman similarity

measure. The system was implemented in C++, and run on an AMD Opteron 8220 SE processor

running at 2.8 GHz. For all the experiments, parameterK of Algorithm 1 was set to50. The

runtime of Algorithm1 to determine the best50 reference sequences for a single database point

was approximately81 seconds, and for the whole Human Chromosome22 it was approximately

5 days.

5.4.2 Experimental Results

First we show the experimental performance of RBSA when the edit distance is used at the refine

step. In this case, the main competitors are the q-gram basedmethods. Then, we compare the

performance of RBSA on Smith-Waterman against BLAST and BWT-SW. To provide a thorough

experimental analysis we show the performance of RBSA considering the following factors: 1)

the effect of letter collapsing, 2) the effect of query size and δ, and 3) the effect of the number of

reference objects used for the filter step.

Edit Distance: Comparison with Q-grams

The major competitors in the case of edit distance are the q-gram based approaches. Their in-

efficiency for long queries with a relatively large deviation from the database has already been

discussed earlier in this thesis. In Table 5.1 we show that their pruning power deteriorates for

83

queries of size larger than100 and for values ofδ that exceed5%. For this experiment only, we

used a small dataset that included the first184,309 bases of Human Chromosome22. The queries

had a match withinδ = 5%, 10%, and15%. The experiment was organized as follows: for each

query size|Q|, we used a set of sliding windowsW with size varying in[|Q|(1− δ), |Q|(1 + δ)].

The database was scanned usingW, and all possible sequences were enumerated. For each query

size andδ value, we show the cell cost for the optimalq value. Clearly, for query sizes larger

than100 or δ values greater than10%, the pruning power of q-grams deteriorates significantly,

rendering them inappropriate for such string searches in large string databases. Due to this obser-

vation, we did not perform any further experiments with q-gram based state-of-the-art methods for

subsequence matching. Also, an application of a full sequence matching q-gram based algorithm

like [47, 48] would not work either as these algorithms are designed for full sequence matching

(as pointed out by one of the authors of [47, 48]).

For the experiments described in the remainder of this section the database sequence is the

whole Human Chromosome22. Next, we show the performance of E-RBSA-ED in terms of

retrieval runtime percentage and cell cost for various query sizes and variousδ values on Human

Chromosome22. E-RBSA-ED is not significantly affected by the query size asregards its retrieval

runtime percentage. We also note that larger query sizes lead to smaller cell cost. This behavior

is expected since the longer the query size the more segmentswill be used for pruning; thus the

pruning power increases. With respect toδ, it is clear that, as the similarity of the query to the

database increases, E-RBSA-ED improves both in terms of retrieval runtime percentage and cell

cost. Table 5.2 summarizes the results.

Effect of Alphabet Collapsing

Table 5.3 shows how alphabet collapsing affects the performance of E-RBSA-ED and E-RBSA-

SW. From the experiments we can see that applying alphabet collapsing can improve the perfor-

mance of E-RBSA in most cases by factors of1.3 and1.55 or more, in terms of retrieval runtime

percentage and cell cost respectively.

84

Cell cost of E-RBSA-ED vs. Q-grams
Method |Q| δ=5% δ=10% δ=15%
Q-grams 20 2.1% (q=9) 8.2% (q=6) 28.4% (q=4)
RBSA 40 0.55% 1.02% 1.47%
Q-grams 40 3.2% (q=10) 9.3% (q=7) 31.9% (q=5)
Q-grams 100 15.3% (q=15) 27.4% (q=8) 58.8% (q=6)
RBSA 200 0.32% 0.89% 1.22%
Q-grams 200 32.9% (q=17) 45.5% (q=9) 73.7% (q=6)

Table 5.1: For E-RBSA-ED, alphabet collapsing has not been applied. For q-
grams, the bestq value for each case is shown. Notice that the database used in
this experiment contains the first184,309 nucleotides of Human Chromosome22,
i.e. |X| = 184,309.

RRP of E-RBSA-ED
δ |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
15% 3.49% 3.50% 3.52% 3.56%
10% 0.89% 0.91% 0.91% 0.94%
5% 0.27% 0.28% 0.28% 0.29%

Cell cost of E-RBSA-ED
δ |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
15% 1.12% 1.01% 0.87% 0.76%
10% 0.11% 0.10% 0.088% 0.077%
5% 0.01% 0.011% 0.009% 0.008%

Table 5.2: The number of reference objects used at the filter step is50.

RBSA-SW: Comparison with BLAST and BWT-SW

For the remaining part of our experimental analysis, we focus on the performance of RBSA on

local alignment, i.e., when the Smith-Waterman similaritymeasure is used at the refine step.

The performance of RBSA-SW is compared against two state-of-the-art local alignment meth-

ods, BLAST and BWT-SW, for various query sizes andδ values. We also show the significant

improvement on both retrieval runtime percentage and cell cost for the approximate version of

RBSA (i.e. A-RBSA-SW). For the following experiments, alphabet collapsing has been applied.

Notice that A-RBSA-SW has not been studied for query sizes40 and200 since the number of pos-

sible chunks in both cases is extremely small to guarantee a high retrieval accuracy. Our findings

are summarized in Tables 5.4 and 5.5. For clarity purposes, the same results are also shown in

Figure 5·1. It can be seen that A-RBSA outperforms BLAST by more than anorder of magnitude

85

RRP of E-RBSA-ED with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 2.342% 2.386% 2.400% 2.473%
Uncoll. 3.49% 3.50% 3.52% 3.56%

Cell cost of E-RBSA-ED with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 0.735% 0.663% 0.571% 0.499%
Uncoll. 1.12% 1.01% 0.87% 0.76%

RRP of E-RBSA-SW with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 2.630% 2.679% 2.695% 2.777%
Uncoll. 3.579% 3.638% 3.660% 3.754%

Cell cost of E-RBSA-SW with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 0.826% 0.745% 0.641% 0.560%
Uncoll. 1.358% 1.224% 1.055% 0.921%

Table 5.3: The first column describes whether alphabet collapsing has been used
(Coll.) or not (Uncoll.). The number of reference objects used at the filter step
is 50.

for large queries (2, 000 and10, 000). The retrieval accuracy of A-RBSA is≥ 99.5% for all the

experiments described in this section. Forδ = 15% and10%, A-RBSA has a retrieval accuracy of

99.5% when|Q| = 2, 000, and100% when|Q| = 10, 000. Forδ = 5%, A-RBSA achieves100%

accuracy for both query sizes. As regards BWT-SW, in terms ofretrieval runtime percentage it

outperforms BLAST and E-RBSA by over an order of magnitude for |Q| = 40 and is up to almost

3 times faster than BLAST for|Q| = 200. Its performance deteriorates, however, as|Q| becomes

larger.

RBSA-SW: Effect of the Number of Reference Objects used for Filtering

In the experiments we have seen so far, it is assume that50 reference objects are assigned to each

database position. In this section, we show the effect of thenumber of reference objects assigned

per database point on the performance of RBSA-SW. We experiment on two query sizes,200 and

2, 000 with δ = 10%. Also for these experiments alphabet collapsing has been applied. Table 5.6

summarizes our findings with respect to retrieval runtime percentage and cell cost. Clearly as the

86

RRP of RBSA-SW vs. BWT-SW and BLAST forδ = 15%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.476% 0.086%
E-RBSA 2.630% 2.679% 2.695% 2.777%
BWT-SW 0.34% 3.30% 8.63% 12.72%
BLAST95 11.17% 7.57% 7.46% 7.84%
BLAST98 16.34% 7.88% 7.60% 8.11%
BLAST100 19.35% 9.29% 8.20% 9.66%

RRP of RBSA-SW vs. BWT-SW and BLAST forδ = 10%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.087% 0.018%
E-RBSA 0.481% 0.490% 0.493% 0.508%
BWT-SW 0.204% 2.600% 6.889% 8.900%
BLAST95 4.623% 3.133% 3.086% 3.243%
BLAST98 6.783% 3.271% 3.155% 3.362%
BLAST100 8.251% 3.965% 3.498% 4.118%

RRP of RBSA-SW vs. BWT-SW and BLAST forδ = 5%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.019% 0.0053%
E-RBSA 0.106% 0.108% 0.109% 0.112%
BWT-SW 0.083% 0.688% 2.170% 5.460%
BLAST95 4.293% 2.910% 2.866% 3.011%
BLAST98 6.231% 3.005% 2.898% 3.089%
BLAST100 7.437% 3.573% 3.153% 3.711%

Table 5.4: The number of reference objects used at the filter step is50. Results
are shown forδ = 15%, 10%, and5%.

number of reference objects decreases, both retrieval runtime percentage and cell cost deteriorate.

In particular, if less that30 reference objects are used, RBSA-SW outperforms the brute-force

Smith-Waterman by a factor smaller than3.5, and for10 reference objects this factor is less than

2.

RBSA-SW: Experiment on Queries with Variousδ Values

Finally we created a set of queries whereδ varies from1% to 15% in increments of2%. Two

query sizes have been studied,200 and2, 000. We have created one query set per query size using

differentδ values. The total number of queries in each set is400. Also, 50 reference objects have

been used at the filter step. Results on retrieval runtime percentage and cell cost are summarized

87

Cell cost of RBSA-SW vs. BWT-SW and BLAST forδ = 15%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.126% 0.024%
E-RBSA 0.826% 0.745% 0.641% 0.560%
BWT-SW 0.017% 1.298% 6.107% 7.347%
BLAST95 6.032% 3.972% 3.751% 4.641%
BLAST98 8.98% 4.73% 4.55% 5.56%
BLAST100 9.35% 5.87% 5.44% 6.6%

Cell cost of RBSA-SW vs. BWT-SW and BLAST forδ = 10%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.016 0.003%
E-RBSA 0.103% 0.093% 0.080% 0.070%
BWT-SW 0.015% 1.166% 5.483% 6.596%
BLAST95 4.974% 3.175% 2.793% 3.127%
BLAST98 7.917% 4.170% 4.011% 4.902%
BLAST100 9.862% 4.936% 4.574% 5.550%

Cell cost of RBSA-SW vs. BWT-SW and BLAST forδ = 5%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.001% 0.0002%
E-RBSA 0.010% 0.009% 0.008% 0.007%
BWT-SW 0.012% 0.911% 4.285% 5.155%
BLAST95 4.428% 2.397% 1.800% 2.512%
BLAST98 5.998% 3.216% 2.242% 3.123%
BLAST100 6.150% 4.583% 3.278% 3.479%

Table 5.5: The number of reference objects used at the filter step is50. Results
are shown forδ = 15%, 10%, and5%.

in Table 5.7. For the set of queries with size2, 000 we show the approximate version of RBSA.

At the refine step we have used the Smith-Waterman similaritymeasure. For both query sizes,

RBSA is at least one order of magnitude faster than BLAST and BWT-SW. The retrieval accuracy

of A-RBSA is99.75%.

To summarize our findings, A-RBSA can support relatively large queries without signifi-

cant loss in retrieval accuracy and outperforms current state-of-the-art local alignment methods

(BLAST and BWT-SW) by over an order of magnitude in terms of retrieval runtime percentage.

For completeness we should mention that the average retrieval runtime for the brute-force local

alignment computation for queries of size40, 200, 2, 000 and10, 000 is 28.5, 132.4, 1317.8 and

6620.1 seconds respectively.

88

40 200 2000 10000
0

2

4

6

8

10

12

14

query size

re
tr

ie
v
a

l
ru

n
ti
m

e
 p

e
rc

c
e

n
ta

g
e

RRP of RBSA vs. BWT−SW and BLAST with delta 15%

A−RBSA−SW
E−RBSA−SW
BTW−SW
BLAST95
BLAST98
BLAST100

40 200 2000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

query size

c
e

ll
 c

o
s
t
in

 %

Cell Cost of RBSA vs. BWT−SW and BLAST with delta 15%

A−RBSA−SW
E−RBSA−SW
BTW−SW
BLAST95
BLAST98
BLAST100

40 200 2000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

query size

re
tr

ie
v
a

l
ru

n
ti
m

e
 p

e
rc

c
e

n
ta

g
e

RRP of RBSA vs. BWT−SW and BLAST with delta 10%

A−RBSA−SW
E−RBSA−SW
BTW−SW
BLAST95
BLAST98
BLAST100

40 200 2000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

query size

c
e

ll
 c

o
s
t
in

 %

Cell Cost of RBSA vs. BWT−SW and BLAST with delta 10%

A−RBSA−SW
E−RBSA−SW
BTW−SW
BLAST95
BLAST98
BLAST100

40 200 2000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

query size

re
tr

ie
v
a

l
ru

n
ti
m

e
 p

e
rc

c
e

n
ta

g
e

RRP of RBSA vs. BWT−SW and BLAST with delta 5%

A−RBSA−SW
E−RBSA−SW
BTW−SW
BLAST95
BLAST98
BLAST100

40 200 2000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

query size

c
e

ll
 c

o
s
t
in

 %

Cell Cost of RBSA vs. BWT−SW and BLAST with delta 5%

A−RBSA−SW
E−RBSA−SW
BTW−SW
BLAST95
BLAST98
BLAST100

Figure 5·1: The number of reference objects used at the filter step is50. Also,
δ = 15% on top row,δ = 10% on middle row, andδ = 5% on bottom row.
Notice that A-RBSA has only been applied for query sizes of2, 000 and10, 000
and for the latter it can be barely seen due to its low cost.

5.4.3 Replication of RBSA on other datasets

Suppose that an individual wants to use RBSA for a given DNA dataset. RBSA should be tuned

accordingly so as to provide best performance in terms of retrieval runtime and accuracy.

For the offline phase, as opposed to EBSM and BSE, there is no need for the user to provide

any sample queries. This is due to the small DNA alphabet size(four bases). In fact, in the

experiments described in this section, all reference sequences and queries used for the reference

sequence selection process have been randomly generated.

Thus, given a new DNA database, we can generate a set of randomqueries and follow the

reference sequence selection described in Algorithm5.1 for a fixed reference sequence size (this

89

RRP and cell cost of RBSA-SW varying # of references
RRP Cell Cost

of references |Q|=200 |Q|=2,000 |Q|=200 |Q|=2,000
50 0.490% 0.493% 0.093% 0.080%
40 1.143% 1.149% 0.217% 0.187%
30 7.873% 7.920% 1.498% 1.290%
20 28.440% 28.609% 5.411% 4.661%
10 64.743% 65.126% 9.012% 8.931%

Table 5.6: RRP and cell cost of E-RBSA-SW (exact RBSA using Smith-
Waterman at the refine step) varying the number of reference objects assigned
to each database point.

RRP and cell cost of RBSA-SW vs. BWT-SW and BLAST
RRP Cell Cost

Method |Q|=200 |Q|=2,000 |Q|=200 |Q|=2,000
RBSA 0.530% 0.098% 0.088% 0.018%
BWT-SW 1.370% 2.958% 0.873% 4.233%
BLAST95 2.727% 2.406% 2.651% 2.640%
BLAST98 2.575% 2.483% 3.823% 3.815%
BLAST100 3.927% 3.304% 4.431% 4.454%

Table 5.7: For query size2, 000 we have used A-RBSA (the approximate version
of RBSA using Smith-Waterman at the refine step). The number of reference
objects used at the filter step is50.

can be initially set to50) and fixedK = 50 (number of reference sequences for each database

position). Notice that this reference selection process requires a significant amount of time (for the

experimental settings described in this section, the time needed to assign reference sequences to

one database position is approximately81 seconds. Parameterδ (target dissimilarity percentage)

should be given by the user. The above process should be repeated for different reference sequence

sizes and differentK ’s and determine those values with the best pruning power fora given dataset.

5.5 Summary

The proposed RBSA method uses precomputed alignment scoresbetween reference sequences

and database positions in order to efficiently identify, given a queryQ, a relatively small number

of candidate subsequence matches in the database. RBSA has an exact version, that is guaranteed

to find the correct subsequence match, as long as that subsequence match has edit distance of at

90

mostδ|Q| to the query. In our experiments, for query sizes≥ 200, the exact version of RBSA

outperforms state-of-the-art competitors such as BLAST, BWT, and q-grams.

Furthermore, an approximate version of RBSA has been developed that, for large queries, can

efficiently identify candidate matches by considering onlya relatively small number of fixed-size

segments of the query. We show that, under some pretty realistic assumptions, the probability of

failing to retrieve the correct match for approximate RBSA drops exponentially with the number of

query segment that we consider. It is important to note that the number of query segments needed

to guarantee a certain probability of success is independent of the actual length of the query, which

makes the approximate version scale very well with large query lengths. The approximate version

achieves significant speedups over the exact version of RBSA, and produces speedups of one to

two orders of magnitude compared to the best results from existing competitors for|Q| ≥ 2, 000.

91

input : Qsample: a set of randomly generated queries.
R: a set of reference objects.
{FRi(X, j)}: the embeddings of all positions(X, j) under allRi ∈ Rj .
X : database sequence.
δ: target dissimilarity percentage.
K: number of reference objects to be returned for each database position.

output : {RK
j }: for each database position(X, j), the setRK

j of K reference objects to use for that
position.

for j = 1 to |X | do
// initializeRK

j to the empty set.
RK

j = {};
// insert all queries into a listQ.
Q = list(Qsample);
for r = 1 to K do

// initialize pruned to zero.
pruned = uchar[|R|] = 0;
for eachRi ∈ R do

for k = 1 to |Q| do
// compute lower bound for thekth query.
if (lbi,j

ED(Q) > qδ) then pruned[i]++;

end
end
BestRef = null; BestPrune = −1;
for i = 1 to |R| do

if pruned[i] > BestPrune then
BestPrune = pruned[i];
BestRef = Ri;

end
end
RK

j = RK
j ∪ {BestRef};

// remove pruned queries fromQ usingQPrune
Q = EliminatePruned(Q, j, BestRef);

end
end

Algorithm 1. Selecting reference sequences per database position.

92

input : Q: query.
X : database sequence.
δ: target dissimilarity percentage.
FR(Q) = {FRi(Q): embeddings of queryQ.
{RK

j }: the set of reference sequences selected for position(X, j).

{FRi
j (X, j)}: embedding of each database position(X, j) under each reference object

Ri
j ∈ RK

j .

output : candidates: database positions to be passed to the refine step.

// insert all database positions into listcandidates.
candidates = {1, . . . , |X |};
// define lower bound cut-off threshold.
threshold = qδ;
for i = 1 to K do

for j = 1 to |X | do
x = FRi

j (X, j) − FRi
j (Q);

if x > threshold then
candidates = candidates − {j};

end
end

end

Algorithm 2. Filtering with maximum pruning.

93

input : Q: query.
X : database sequence.
δ: target dissimilarity percentage.
sorted: an array of candidate endpointsj, sorted in decreasing order ofj.

output : (X, jstart), (X, jend): start and end point of estimated best alignment.
distance: distance betweenQ and estimated best alignment.
columns: number of database positions evaluated by the edit distance DP.

for i = 1 to |X | do
unchecked[i] = 0;

end
for i = 1 to |sorted| do

unchecked[sorted[i]] = 1;

end
distance = δ × |Q| + 1; columns = 0; n = |sorted|;

for k = 1 to n do
candidate = sorted[k];
if (unchecked[candidate] == 0) then continue;
j = candidate + 1;
for i = |Q| + 1 to 1 do

cost[i][j] = ∞;

end
while (true) do

j = j − 1;
if (candidate − j ≥ |Q|δ + 1) then break;
if (unchecked[j] == 1) then

unchecked[j] = 0; candidate = j;
cost[|Q| + 1][j] = 0; endpoint[j + 1] = j;

else
cost[|Q| + 1][j] = ∞; // j is not a candidate endpoint.

end
for i = |Q| to 1 do

previous = {(i + 1, j), (i, j + 1), (i + 1, j + 1)};
(pi, pj) = argmin(a,b)∈previouscost[a][b];
cost[i][j] = D(Qi, Xj) + cost[pi][pj]; endpoint[i][j] = endpoint[pi][pj];

end
columns = columns + 1;

end
end

Algorithm 3. The refine step for the edit distance.

94

Chapter 6

Conclusions and Future Work

In this final chapter of the thesis we summarize the main lessons learned from the described work,

and point out open questions and interesting directions forfuture research.

6.1 Discussion of Contributions and Limitations

The proposed methods in this thesis are the first subsequencematching methods for unconstrained

DTW, cDTW and edit distance that convert, at least partially, the subsequence matching problem

into a much easier vector matching problem. As a result, a relatively small number of database

areas of interest can be identified very fast, over two ordersof magnitude faster compared to

brute-force search in our experiments. The computationally expensive dynamic programming

algorithm is still employed within EBSM, BSE and RBSA, but only to refine results by evaluating

the identified database areas of interest. The resulting end-to-end retrieval system is one to two

orders of magnitude faster than brute-force search, with relatively small losses in accuracy, and

provides state-of-the-art performance in the datasets used in our experiments.

A major limitation of both EBSM and BSE is the fact that both unconstrained DTW and

cDTW are non-metric. This is one of the barriers that makes both methods approximate. Providing

theoretical guarantees for both systems is a great challenge and we are planning to investigate it

in the future. Another limitation of EBSM is that its performance depends on the training phase

where the embedding index is constructed. This means that prior knowledge of the types of the

expected queries is needed in order to achieve better performance. As opposed to EBSM and BSE,

RBSA uses a metric distance measure (edit distance) to definethe embedding index and thus it

can provide100% guarantees of finding the correct match. An important limitation of RBSA is

the costly training phase, which has a much larger time requirement than that of the training phase

95

of EBSM. Another limitation is that it is designed for near-exact homology search, for which it

manages to outperform standard methods by orders of magnitude. According to the experiments,

asδ increases the performance of RBSA deteriorates.

6.2 Future Work and Other Interesting Directions

The topic of using embeddings for efficient subsequence matching is relatively new and there are

many open problems in both time series and biological sequence databases.

6.2.1 Time Series Matching

One open problem is to adopt the idea of BSE to EBSM and combinestartpoint and endpoint

embeddings under the unconstrained DTW, where the subsequence match can have a different

length than the query. Another related problem is to remove the constraint that the match must have

the same length as the query for cDTW. This constraint is currently used not only by our method,

but also by the other existing methods for subsequence matching under cDTW, i.e.,LB Keogh

[34] and DTK [56].

Another interesting direction for future work for both EBSMand BSE is to compress the size

of the embedding. One way of doing this, is to view each embedding dimension as a time series

and apply standard time series segmentation techniques [81]. Each segment will be represented

by an upper and a lower value. This type of compression may reduce the filter step, as it will not

be required to perform Euclidean distance computations on the whole embedding.

Another open problem is using vector indexing methods to further speed up the embedding-

based filter step for both EBSM and BSE. An additional challenge here is that BSE embeddings

are query-sensitive: the reference sequences used depend on the query length, and the final combi-

nation of startpoint and endpoint embeddings also depends on the query length. Applying standard

vector indexing methods [7, 25] in this setting is not a straightforward task, and developing ap-

propriate indexing methods is an interesting topic for future work. An interesting work that can

be used to improve similarity search over arbitrary subspaces under anLp norm distance appeared

recently [50] and is related to this problem.

96

Furthermore, it should be clear by the discussion in chapter4 thatLB Keogh and similar

bounds for cDTW cannot be applied directly for unconstrained subsequence matching as they

require the match length to be equal to the query length (which is not the case in unconstrained

subsequence matching). It would be challenging to define distance measures for unconstrained

subsequence matching that are metric and/or allow the definition of tight bounds that can be used

to efficiently speedup the filter step.

Finally, as mentioned earlier, a very challenging direction for future work would be to deeper

investigate the non-metric property of both DTW and cDTW, and try to provide theoretical guar-

antees for both EBSM and BSE.

6.2.2 Sequence Alignment

An interesting direction for future work on RBSA is to compress the size of the embedding. As

opposed to EBSM and BSE, the challenge here is the fact the each database point is represented by

a set of reference sequences. One approach is to break the database sequence into small segments

using a standard DNA segmentation technique [49] and then represent each segment with theK

references with the best pruning power in that segment.

Another interesting topic for future work is the fact that DNA is not random, as it consists

of coding regions(mainly genes) andnon-coding regions(regions that do not contain any useful

information). RBSA should be able to handle those regions effectively by not allowing reference

sequences to be selected from non-coding regions. We shouldalso note that there exist long-range

dependencies in DNA sequences and it would be very interesting to see if such dependencies could

be used to improve the performance of RBSA.

Another open question regarding RBSA, is whether it could beextended so that it does not

require matches to be within edit distanceδ|Q| from the query. Also, the reference sequence

selection of RBSA is a costly step. An interesting future direction is to investigate other alterna-

tive ways of reference sequence selection with a lower cost.It will also be interesting to study

more extensively the effects of letter collapsing, and to analyze theoretically the reasons that letter

collapsing improves performance. Also, we believe that letter collapsing may turn out to lead to

97

more significant improvements in domains with larger alphabet sizes, such as proteins. We aim to

explore these issues in future work.

Finally, the experimental evaluation of RBSA showed very promising results in terms of re-

trieval runtime and accuracy. However, we have only focusedon performance in terms of database

dissimilarity and database size, and did not further study the impact that RBSA might have in Bi-

ology. Indeed it would be challenging to see if this significant performance is also meaningful in

the biological domain and can lead to the development of a widely used tool for homology search

in DNA and protein sequences. Thus, one of our future plans isto study the potential impact of

RBSA in Biology.

A very difficult and challenging problem is to provide algorithms for subsequence matching

with provable sublinear retrieval running time. Developing index structures for non-Euclidean

and non-metric spaces that allow approximate nearest neighbor retrieval in time sublinear to the

database size will enable many important applications, like fast recognition and similarity-based

matching in large databases of DNA and protein sequences, financial data, fingerprints, speech

and audio data.

98

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local Alignment
Search Tool.Journal of Molecular Biology, 215:403–410, 1990.

[2] S. F. Altschul, T. L. Madden, R. A. Schffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lip-
man. Gapped blast and psi-blast: a new generation of proteindatabase search programs.
Nucleic Acids Res, 25:3389–3402, 1997.

[3] T. Argyros and C. Ermopoulos. Efficient subsequence matching in time series databases
under time and amplitude transformations. InInternational Conference on Data Mining
(ICDE), pages 481–484, 2003.

[4] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. BoostMap: A method for efficient ap-
proximate similarity rankings. InIEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 268–275, 2004.

[5] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff. Query-sensitive embeddings.
In ACM International Conference on Management of Data (SIGMOD), pages 706–717,
2005.

[6] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, andD. Gunopulos. Approximate
embedding based subsequence matching of time series. InACM International Conference
on Management of Data (SIGMOD), pages 365–378, 2008.

[7] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Computing
Surveys, 33(3):322–373, 2001.

[8] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, 1977.

[9] S. Burkhardt, A. Crauser, P. Ferragina, H-P. Lenhof, E. Rivals, and M. Vingron. Q-gram
based database searching using a suffix array (quasar). InInternational Conference on
Computational Molecular Biology (RECOMB), pages 77–83, 1999.

[10] S. Burkhardt and J. Kärkkäinen. Better filtering withgapped q-grams. Fundam. Inf.,
56(1,2):51–70, 2002.

[11] C. Cao, L. C. Shuai, and A. K. H. Tung. Indexing DNA sequences using q-grams.Database
Systems for Advanced Applications, 3453:4–16, 2005.

[12] X. Cao, B. C. Ooi, A. K. H. Tung, H. H. P., and K. L. Tan. DSIM: A distance-based
indexing method for genomic sequences. InIEEE Symposium on Bioinformatics and
Bioengineering (BIBE), pages 97– 104, 2005.

99

[13] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to in-
dexing high dimensional spaces. InInternational Conference on Very Large Data Bases
(VLDB), pages 89–100, 2000.

[14] K. P. Chan and A. W. C. Fu. Efficient time series matching by wavelets. InIEEE Interna-
tional Conference on Data Engineearing (ICDE), pages 126–133, 1999.

[15] W. I. Chang and E. L. Lawler. Sublinear expected time approximate string matching and
biological applications. Technical Report CSD-91-654, University of California at Berke-
ley, 1991.

[16] M. Crochemore and T. Lecroq. Pattern matching and text compression algorithms. 28:39–
41, 1996.

[17] Ö. Egecioglu and H. Ferhatosmanoglu. Dimensionality reduction and similarity distance
computation by inner product approximations. InInternational Conference on Informa-
tion and Knowledge Management (CIKM), pages 219–226, 2000.

[18] C. Faloutsos and K. I. Lin. FastMap: A fast algorithm forindexing, data-mining and vi-
sualization of traditional and multimedia datasets. InACM International Conference on
Management of Data (SIGMOD), pages 163–174, 1995.

[19] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-
series databases. InACM International Conference on Management of Data (SIGMOD),
pages 419–429, 1994.

[20] A. W. C. Fu, E. Keogh, L. Y. H. Lau, C. Ratanamahatana, andR. C.-W. Wong. Scaling
and time warping in time series querying.The Very Large DataBases (VLDB) Journal,
17(4):899–921, 2008.

[21] E. Giladi, M. G. Walker, J. Z. Wang, and W. Volkmuth. SST:an algorithm for finding
near-exact sequence matches in time proportional to the logarithm of the database size.
Bioinformatics, 18(6):873–877, 2002.

[22] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In
International Conference on Very Large Databases (VLDB), pages 518–529, 1999.

[23] K. Hamza. The smallest uniform upper bound on the distance between the mean and the
median of the binomial and poisson distributions.Statistics and Probability Letters,
23(1):21–25, 1995.

[24] W. S. Han, J. Lee, Y. S. Moon, and H. Jiang. Ranked subsequence matching in time-series
databases. InInternational Conference on Very Large Data Bases (VLDB), pages 423–
434, 2007.

[25] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces.ACM
Transactions on Database Systems (TODS), 28(4):517–580, 2003.

100

[26] G. R. Hjaltason and H. Samet. Properties of embedding methods for similarity searching in
metric spaces.IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
25(5):530–549, 2003.

[27] G. Hristescu and M. Farach-Colton. Cluster-preserving embedding of proteins. Technical
Report 99-50, CS Department, Rutgers University, 1999.

[28] X. Huang and K.-M. Chao. A generalized global alignmentalgorithm. Bioinformatics,
19(2):228–233, 2003.

[29] C. V. Jongeneel. Searching the expressed sequence tag (est) databases: Panning for genes.
Bioinformatics, 1:76–92, 2000.

[30] K. J. Kalafus, A. R. Jackson, and A. Milosavljevic. Pash: Efficient genome-scale sequence
anchoring by positional hashing.Genome Resources, 14(4):672678, 2004.

[31] K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionalityreduction for similarity search-
ing in dynamic databases. InACM International Conference on Management of Data
(SIGMOD), pages 166–176, 1998.

[32] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31(2):249–260, 1987.

[33] W. J. Kent. BLAT–the BLAST-like alignment tool.Genome Research, 12(4):656–664,
2002.

[34] E. Keogh. Exact indexing of dynamic time warping. InInternational Conference on Very
Large Databases (VLDB), pages 406–417, 2002.

[35] E. Keogh. The UCR time series data mining archive. http://www.cs.ucr.edu/ eamonn/tsdma,
2006.

[36] E. Keogh and M. Pazzani. Scaling up dynamic time warpingfor data mining applications.
In International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages
506–510, 2000.

[37] M. S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-Gram/2L: A space and time efficient
two-level n-gram inverted index structure. InInternational Conference on Very Large
Data Bases (VLDB), pages 325–336, 2005.

[38] Y. J. Kim, A. Boyd, B. D. Athey, and J. M. Patel. miBLAST: scalable evaluation of a batch
of nucleotide sequence queries with blast.Nucleic Acids Res, 33:4335–4344, 2005.

[39] D. E. Knuth. The art of computer programming.Sorting and Searching, 3, 1973.

[40] I. Korf and W. Gish. MPBLAST : improved BLAST performance with multiplexed queries.
Bioinformatics, 16:1052–1053, 2000.

[41] N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung. LDC: Enabling search by par-
tial distance in a hyper-dimensional space. InIEEE International Conference on Data
Engineearing (ICDE), pages 6–17, 2004.

101

[42] J. B. Kruskall and M. Liberman. The symmetric time warping algorithm: From continuous
to discrete. InTime Warps. Addison-Wesley, 1983.

[43] T. W. Lam, W. K. Sung, S. L. Tam, C.K. Wong, and S.M. Yiu. Compressed indexing and
local alignment of DNA.Bioinformatics, 24(6), 2008.

[44] H. K. Lee and J.H. Kim. An HMM-based threshold model approach for gesture recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 21(10):961–
973, October 1999.

[45] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics, 10(8):707–710, 1966.

[46] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold. Clustering for approximate sim-
ilarity search in high-dimensional spaces.IEEE Transactions on Knowledge and Data
Engineering (TKDE), 14(4):792–808, 2002.

[47] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate string
searches. InIEEE International Conference on Data Engineering (ICDE), pages 257–
266, 2008.

[48] C. Li, B. Wang, and X. Yang. VGRAM: improving performance of approximate queries
on string collections using variable-length grams. InInternational Conference on Very
Large Data Bases (VLDB), pages 303–314, 2007.

[49] W. Li, P. Bernaola-Galvan, H. Fatameh, and I. Grosse. Applications of recursive segmenta-
tion to the analysis of DNA sequences.Computes and Chemistry, 26(2):491–510, 2002.

[50] X. Lian and L. Chen. Similarity search in arbitrary subspaces under lp-norm. InIEEE
International Conference on Data Engineearing (ICDE), pages 317–326, 2008.

[51] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches.Science,
227(4693):1435–1441, March 1985.

[52] W. Litwin, R. Mokadem, P. Rigaux, and T. Schwarz. Fast nGram-based string search over
data encoded using algebraic signatures. InInternational Conference on Very Large Data
Bases (VLDB), pages 207–218, 2007.

[53] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. InACM
SIAM Symposium On Discrete Algorithms (SODA), pages 319–327, 1990.

[54] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An online andaccurate technique for local-
alignment searches on biological sequences. InInternational Conference on Very Large
Data Bases (VLDB), pages 910–921, 2003.

[55] Y. S. Moon, K. Y. Whang, and W. S. Han. General match: a subsequence matching method
in time-series databases based on generalized windows. InACM International Confer-
ence on Management of Data (SIGMOD), pages 382–393, 2002.

102

[56] Y. S. Moon, K. Y. Whang, and W. S. Han. Ranked subsequencematching in time-series
databases. InInternational Conference on Very Large Data Bases (VLDB), pages 423–
434, 2007.

[57] Y. S. Moon, K. Y. Whang, and W. K. Loh. Duality-based subsequence matching in time-
series databases. InIEEE International Conference on Data Engineering (ICDE), pages
263–272, 2001.

[58] P. Morguet and M. Lang. Spotting dynamic hand gestures in video image sequences using
hidden Markov models. InIEEE International Conference on Image Processing (ICIP),
pages 193–197, 1998.

[59] G. Myers. Whole-genome DNA sequencing.Computing in Science and Engg., pages
33–43, 1999.

[60] C. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximate q-grams.
In Symposium on Combinatorial Pattern Matching (CPM), pages 350–363, 2000.

[61] G. Navarro and R. Baeza-yates. A new indexing method forapproximate string matching.
In Symposium on Combinatorial Pattern Matching (CPM), pages 163–185, 1999.

[62] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins.Journal on Molecular Biology,
48(3):443–53, 1970.

[63] Z. Ning, A. J. Cox, and J. C. Mullikin. SSAHA: A fast search method for large DNA
databases.Genome Resources, 11(10):1725–1729, 2001.

[64] R. Oka. Spotting method for classification of real worlddata. The Computer Journal,
41(8):559–565, July 1998.

[65] P. Papapetrou, V. Athitsos, G. Kollios, and D. Gunopulos. Reference-based alignment
of large sequence databases. InInternational Conference on Very Large Data Bases
(VLDB), 2009 (To Appear).

[66] S. Park, W. W. Chu, J. Yoon, and J.I. Won. Similarity search of time-warped subsequences
via a suffix tree.Information Systems, 28(7), 2003.

[67] S. Park, S.W. Kim, and W. W. Chu. Segment-based approachfor subsequence searches in
sequence databases. InACM Symposium on Applied Computing (SAC), pages 248–252,
2001.

[68] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
Proceedings of the Natural Academy of Sciences (PNAS) U S A, 85(8):2444–2448, April
1988.

[69] B. Phoophakdee and M. J. Zaki. TRELLIS+: an effective approach for indexing genome-
scale sequences using suffix trees. InPacific Symposium on Biocomputing. Pacific Sym-
posium on Biocomputing, pages 90–101, 2008.

103

[70] D. E. Knuth J. Pratt and R. Vaughan. Fast pattern matching in strings. SIAM Journal on
Computing, 6(2):323–350, 1977.

[71] D. Rafiei and A. O. Mendelzon. Similarity-based queriesfor time series data. InACM
International Conference on Management of Data (SIGMOD), pages 13–25, 1997.

[72] C. Ratanamahatana and E. J. Keogh. Three myths about dynamic time warping data mining.
In SIAM International Data Mining Conference (SDM), pages 506–510, 2005.

[73] T. M. Rath and R. Manmatha. Word image matching using dynamic time warping. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages
521–527, 2003.

[74] G. J. Russell and J. H. Subak-Sharpe. Similarity of the general designs of protochordates
and invertebrates.Nature, 266:533–536, 1977.

[75] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream monitoring under the time warping
distance. InIEEE International Conference on Data Engineering (ICDE), pages 1046–
1055, 2007.

[76] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: fast similarity search under the time
warping distance. InPrinciples of Database Systems (PODS), pages 326–337, 2005.

[77] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An index structure for
high-dimensional spaces using relative approximation. InInternational Conference on
Very Large Databases (VLDB), pages 516–526, 2000.

[78] Y. Shou, N. Mamoulis, and D. Cheung. Fast and exact warping of time series using adaptive
segmental approximations.Machine Learning, 58(2-3):231–267, 2005.

[79] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.Jour-
nal of Molecular Biology, 147:195–197, 1981.

[80] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high dimensional nearest
neighbor search. InProceedings of the International Conference on Managementof Data
(SIGMOD), pages 563–576, 2009.

[81] E. Terzi and P. Tsaparas. Efficient algorithms for sequence segmentation. InProceedings
of the Sixth SIAM International Conference on Data Mining, pages 316–327, 2006.

[82] E. Tuncel, H. Ferhatosmanoglu, and K. Rose. VQ-index: An index structure for similarity
searching in multimedia databases. InACM Multimedia, pages 543–552, 2002.

[83] E. Ukkonen. Algorithms for approximate string matching. Information Control, 64(1-
3):100–118, 1985.

[84] E. Ukkonen. On-line construction of suffix trees.Algorithmica, 14(3):249–260, 1995.

[85] J. Venkateswaran, D. Lachwani, T. Kahveci, and C. Jermaine. Reference-based indexing
of sequence databases. InInternational Conference on Very Large Databases (VLDB),
pages 906–917, 2006.

104

[86] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E.J. Keogh. Indexing multi-dimensional
time-series with support for multiple distance measures. In ACM International Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD), pages 216–225, 2003.

[87] X. Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,and K. Zhang. An index
structure for data mining and clustering.Knowledge and Information Systems, 2(2):161–
184, 2000.

[88] R. Weber and K. Böhm. Trading quality for time with nearest-neighbor search. InInter-
national Conference on Extending Database Technology (EDBT): Advances in Database
Technology, pages 21–35, 2000.

[89] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. InInternational Conference on
Very Large Databases (VLDB), pages 194–205, 1998.

[90] D. A. White and R. Jain. Similarity indexing: Algorithms and performance. InStorage and
Retrieval for Image and Video Databases (SPIE), pages 62–73, 1996.

[91] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shirato, and D. R. Kaeli. Subsequence
matching on structured time series data. InACM International Conference on Manage-
ment of Data (SIGMOD), pages 682–693, 2005.

[92] X. Yang, B. Wang, and C. Li. Cost-based variable-length-gram selection for string collec-
tions to support approximate queries efficiently. InACM International Conference on
Management Of Data (SIGMOD), pages 353–364, 2008.

[93] B. K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences
under time warping. InIEEE International Conference on Data Engineering (ICDE),
pages 201–208, 1998.

[94] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedyalgorithm for aligning DNA
sequences.Journal of Computational Biology, 7:203–214, 2000.

[95] Y. Zhu and D. Shasha. Warping indexes with envelope transforms for query by humming.
In ACM International Conference on Management of Data (SIGMOD), pages 181–192,
2003.

Curriculum Vitae

Panagiotis Papapetrou

Address:
14 Buswell Street, Apt 416
Boston, MA 02215

Email: panagpap@cs.bu.edu
Phone: 617-230-1050
Web page: http://cs-people.bu.edu/panagpap

Research Interests

Data Mining, Databases, Time Series Analysis, Bioinformatics, Multimedia Indexing, Machine
Learning, Motion Mining, Sequential and Temporal Pattern Mining, Computational Biology.

Current Position

PhD Candidate
Boston University, Computer Science Department
Boston, MA
Dates: January 2004-present

Education

January 2004 - July 2009Ph.D. Student, Computer Science Department, Boston University. Ad-
visor: Prof. George Kollios, Co-Advisor: Prof. Vassilis Athitsos.

January 2004 - January 2007M.A. in Computer Science, Computer Science Department, Boston
University. Advisor: Prof. George Kollios.

September 1999 - June 2003B.Sc. in Computer Science, Department of Computer Science,
University of Ioannina, Greece. Advisor: Prof. Dimitrios Fotiadis.

Publications

Journals

1. Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos,Mining
Frequent Arrangements of Temporal Intervals, to appear in Knowledge and Information
Systems (KAIS), 2009.

Conferences

106

1. Panagiotis Papapetrou, Vassilis Athitsos, George Kollios, and Dimitrios Gunopulos,Reference-
Based Alignment in Large Sequence Databases, to appear in Very Large DataBases (VLDB),
August 2009, Lyon, France.

2. Panagiotis Papapetrou, Paul Doliotis and Vassilis Athitsos,Towards Faster Activity Search
Using Embedding-based Subsequence Matching, in proceedings of the PETRA Workshop
on Multimedia Event Analysis for Assistive Environments (EventAnalysis), June 2009,
Corfu, Greece.

3. Vassilis Athitsos, Panagiotis Papapetrou, Michalis Potamias, George Kollios, and Dimitrios
Gunopulos,Approximate Embedding-Based Subsequence Matching of TimeSeries, in pro-
ceedings of ACM SIGMOD, June 2008, Vancouver, Canada.

4. Vassilis Athitsos, Michalis Potamias, Panagiotis Papapetrou, and George Kollios,Nearest
Neighbor Retrieval Using Distance-Based Hashing, in proceedings of IEEE ICDE, April
2008, Cancun, Mexico.

5. Panagiotis Papapetrou, Gary Benson, and George Kollios,Discovering Frequent Poly-Regions
in DNA Sequences, in proceedings of the IEEE ICDM Workshop on Data Mining in Bioin-
formatics (DMB), December 2006, Hong Kong.

6. Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos,Discover-
ing Frequent Arrangements of Temporal Intervals, in proceedings of IEEE ICDM, Novem-
ber 2005, Houston, Texas.

Technical Reports

1. Panagiotis Papapetrou, Gary Benson, and George Kollios,Generalized Methods for Discov-
ering Frequent Poly-Regions in DNA Sequences, Department of Computer Science, Boston
University, October 2008.

2. Ching Chang, Raymond Sweha, Panagiotis Papapetrou,Extending snBench to Support a
Graphical Programming Interface for a Sensor Network Tasking Language (STEP), De-
partment of Computer Science, Boston University, July 2006.

Research Experience

• Computer Science Department, Boston University, Boston, MA. January 2004-present.
Research Assistant for Prof. George Kollios

– Motion Mining Project: Development and testing of methods for indexing, retrieval,
and data mining of human motion trajectories in video databases. Implementation on
ASL.

– Subsequence MatchingProject: Development and testing of methods for indexing
and retrieval of time series and categorical sequence databases. Implementation on
real time series data and DNA sequences.

107

Teaching Experience

• Computer Science Department, Boston University, Summer 2008.
Instructor for the undergraduate course on introduction tocomputer science; responsible for
teaching.

• Computer Science Department, Boston University, Spring 2004, Summer/Fall/Spring 2007,
Spring/Fall 2008.
Teaching assistant for the undergraduate course on introduction to computer science; re-
sponsible for teaching, grading and tutorials.

• Computer Science Department, Boston University, Fall 2005, Spring 2006.
Teaching assistant for the undergraduate course on introduction to web computing; respon-
sible for teaching, grading and tutorials.

• Computer Science Department, Boston University, Summer 2007.
Teaching assistant for the undergraduate course on analysis of algorithms; responsible for
teaching, grading and tutorials.

• Computer Science Department, Boston University, Spring 2007, Spring 2008.
Teaching assistant for the graduate course on database systems; responsible for teaching,
grading and tutorials.

• Computer Science Department, Boston University, Fall 2006.
Teaching assistant for the undergraduate course on software engineering; responsible for
teaching, grading and tutorials.

Professional Activities

• Student Member of IEEE.

• External reviewer for the following conferences: VLDB (2009), CIKM (2006, 2009), ICDM
(2005, 2006), KDD (2006, 2008), DASFAA (2004).

• Reviewer for journals: TKDE.

Qualifications

• Programming skills: Matlab, C/C++, PHP and Web developmenttools. Familiar with
WML, XML, Python, OpenGL, SQL and Visual Basic.

• Operating systems: Windows, Unix.

• Language skills: Greek (Native), English (Excellent), German (Very good), Spanish (Ele-
mentary).

• Other skills: Theory of Music (Excellent), Church Organ (Very Good).

References

Available upon request.

