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ABSTRACT

Sequential data, such as time series and categorical seggjeraturally appear in a wide variety of
domains including financial and scientific data, human #gtiliological sequences, etc. In such
domains large databases of sequences are used as knowdedgéaries. Information retrieval
from such repositories is challenging, due to the large arhofidata that needs to be searched.

Our attention is focused on subsequence matching methatsrtiploy dynamic programming-
based distance measures. Such approaches are robust lignmisats and time warps and are
widely used for time series and DNA matching. Three methodgeoposed for efficient subse-
guence matching in large sequence databases.

The first method works for time series databases an@threamic Time Warping (DTWjis-
tance. It converts subsequence matching to vector matctsimg an embedding that maps each
database time series into a sequence of vectors. The emgdddiomputed by applying the full
DTW distance between each reference and database tims. S&triguery time, the embedding of
the query time series is computed in a similar manner. Religtiew areas of interest are identi-
fied by performing vector comparisons, and are then fully@gual using the exact DTW distance.
The second method defines a similar type of embedding thatsséalditional information into the

vector representation and significantly improves the &fficy of subsequence matching under the

Vv



constrained Dynamic Time Warping (cDTi¥tance.

The third method speeds up retrieval of optimal subsequeratehes in string databases, un-
der the Edit Distance and the Smith-Waterman similarity snea Filtering of candidate matches
is performed using precomputed alignment scores betweemmdabase sequence and a set of
fixed-length reference sequences. At query time, the quesyence is partitioned into segments
of the same length as the reference sequences. For eaclsefdagments, the alignment scores
between the segment and the reference sequences are uffaxidiotly identify a relatively small
number of candidate matches. Experiments show that theopespmethod outperforms BLAST
by over an order of magnitude in retrieval runtime for largeedes (up tol0,000 bases) and

similarity levels of up tal5%.

Vi



Contents

1

Introduction
1.1 Searching Time SeriesDatabases . . . . . .. .. .. .. ... ......
1.2 Searching String and Biological Sequence Databases ....... . . .. .. ..

1.3 Contributions . . . . . . . ..

1.4 Roadmap . . . . . . . e e e e

1.5 Listofrelatedpapers . . .. .. . . . . . . . .. .. e

Related Work
2.1 Literature on Time Series Subsequence Matching . . . .. ... ... ...

2.2 Literature on String Subsequence Matching

Embedding-based Subsequence Matching in Time Series Datases

3.1 Background . . . . ...
3.2 EBSM: An Embedding for Subsequence Matching

3.3 Filter-and-Refine Retrieval . . . . ... .. ... ... ... ... ... ...
3.4 Embedding Optimization . . . . . .. . . .. .. . . .. ... ...
3.5 Handling Large Ranges of Query Lengths . . . . . . ... ... ... ...
3.6 Experiments . . . . . ... e

3.7 SUMMANY . . . o e e e e e

Bidirectional Embedding-based Subsequence Matching inifne Series Databases
4.1 Background: The cDTW Algorithm . . . . . .. ... ... .. .......
4.2 Bidirectional Subsequence Embeddings . . . .. .. .. .. ... ...,
4.3 Computing Database Embeddings . . . . . ... .. ... .. ... .....

4.4 Filter-and-Refined Retrieval . . . . . . . . . . . . . . . . ... ... .

vii

11
11
14

18

.81

23
26
31
32

. 43



4.5 Embedding Optimization . . . . . . . . . .. .. .. ... .. .. .. ...
4.6 EXperiments . . . . . . . .. e e e e e e

A7 SUMMANY . . . . o o e e e e e e e e e e

5 Reference-based Alignment of Sequence Databases
5.1 Background . . . . . ...
5.2 RBSAforFixedQuerylLength . . ... ... ... ... ... .. .....
5.3 RBSAfor Variable QueryLength. . . . . .. ... ... ... ........
5.4 EXperiments . . . . . . .. e e e

55 Summary . ..o e e e e

6 Conclusions and Future Work
6.1 Discussion of Contributions and Limitations . . . . . . .. ... . ... ...

6.2 Future Work and Other Interesting Directions
References

Curriculum Vitae

viii

98

105



List of Tables

3.1

4.1
4.2

4.3

4.4

4.5

4.6
4.7

5.1

5.2

5.3

Description of the three UCR datasets we combined torgeneur dataset. . . . 35

Description of the three UCR datasets we combined torgeneur dataset. . . . 55
Comparison of Cell Cost for BSE constructed using maawae, EE constructed

using max variance, DTK and LBeogh for the UCR dataset. . . .. .. .. .. 58
Comparison of Retrieval Runtime for BSE constructedgishax variance, EE
constructed using max variance, DTK and_KBogh for the UCR dataset. . . . . 58
Runtime (in seconds) for the filter step of BSE with sangpliate9 and dimen-
sionality 40 and for the filter step of LBKeogh for the UCR dataset. . . . . . . . 58

Behavior of BSE (for 95% retrieval accuracy) vs. IKBogh for different warping

widths for the Random Walk dataset. . . . . . ... ... ............. 61
Effect of query size on Cell Cost for the Random Walk dettas . . . . . . . .. 61
Effect of query size on the retrieval runtime cost for Rendom Walk dataset. . . 61

Cell cost of Q-grams vs. E-RBSA-ED (exact RBSA using dditance at the
refine step) for different query sizes and differentvalues.o. . . . . . . .. .. 84
RRP and cell cost of E-RBSA-ED (exact RBSA using editadice at the refine

step) for various query sizes and variaugalues without applying letter collaps-

ING. . . e e 84
RRP and cell cost of E-RBSA-ED (exact RBSA using editadlice at the refine
step) and E-RBSA-SW (exact RBSA using Smith-Waterman atetfiee step) for

various query sizes antl=15%. . . . . . . ... ..o 85



5.4 RRP of BLAST and BWT-SW vs. A-RBSA-SW (approximate RBS#ng Smith-
Waterman at the refine step) and E-RBSA-SW (exact RBSA usimthSVaterman
attherefinestep). . . . . . . . . . .. . e

5.5 Cell cost of BLAST and BWT-SW vs. A-RBSA-SW (approxim&8SA using
Smith-Waterman at the refine step) and E-RBSA-SW (exact RBS#g Smith-

Waterman atthe refinestep). . . . . . . . . . . .. ... .. ... 87

5.6 RRP and cell cost of E-RBSA-SW (exact RBSA using Smithiewhan at the
refine step) varying the number of reference objects asdigmeeach database
POINL. . . e e e e

5.7 RRP and cell cost of RBSA vs. competitors for variablalues. . . . . . . . ..



List of Figures

11

31

32

33

34

35

36

37

41

4.2

4.3

Flowchart of the offline and the online stages of EBSM. . . ...... . . .. .. 4

(a) Example of an optimal warping pathi* (R, Q, |Q|) aligning a reference object
Rto a suffix of Q. FE(Q) isthe costofV*(R,Q,[Q]). . . . . o v v v v oo .. 25
Distribution of lengths of the 40 reference objects chdsgthe embedding opti-
mization algorithm in our experiments. . . . . . . .. .. ... ... ..... 33
Comparing the accuracy versus efficiency trade-offs &ekiéy EBSM with sam-

pling rate 9 and by modified PDTW with sampling rates 7,9, b, 3. . . . . . 36
Distribution of lengths of optimal subsequence matchssgréetions of the query
length) for the 1000 queries used for performance evaloatio. . . . . . . ... 37
Accuracy vs. efficiency for EBSM with sampling rates 1, 9,46d 23. . . . .. 37
Accuracy vs. efficiency for EBSM, using embeddings comséd randomly, op-
timized with the max variance heuristic, and optimized gsiigorithm 4.2 for
embedding optimization. . . . . .. .. ... ... 38

Accuracy vs. efficiency for EBSM, using embeddings witliediént dimensionality. 42

An example that illustrates the construction of the bidimnal embedding given
aquery Q and areference objectR. . . . . . .. ... .. . L0 a.. 50
Plots of cell cost (left) and retrieval time (right) vs. ieval accuracy attained by
BSE embeddings and endpoint embeddings (B&th embeddings constructed
using learning, for the UCR dataset. Dimensionality48 and sampling rate 8. 57
Plots of cell cost (left) and retrieval time (right) vs. meval accuracy attained by
BSE embeddings and endpoint embeddings (B&th embeddings constructed

using the max variance heuristi¢ for the UCR dataset. . . . . .. .. ... .. 57

Xi



4.4 Cell Cost and Retrieval Runtime of BSE embeddings optichida learning for
the UCR dataset, for different embedding dimensionalities . . . . . . . . .. 63
4.5 Cell Cost and Retrieval Runtime of BSE embeddings optichida learning for

the UCR dataset, for different samplingrates. . . ... ... ...... ..... 64

51 RRP (on left column) and cell cost (on right column) of BLA&Td BWT-SW vs.
A-RBSA-SW (approximate RBSA using Smith-Waterman at tHaeestep) and
E-RBSA-SW (exact RBSA using Smith-Waterman at the refing)ste. . . . . . 88

Xii



List of Abbreviations

1D One-dimensional

2D Two-dimensional

EBSM ... .......... Embedding-Based Subsequence Majchin
BSE  .............. Bidirectional Subsequence Embeddings
RBSA .............. Reference-Based Sequence Alignment
DP L Dynamic Programming

ED ... Edit Distance

SW Smith Waterman

DTW ... . ..., Dynamic Time Warping

cDTW ... constrained Dynamic Time Warping

PAA .. Piecewise Aggregate Approximation

LB Lower Bound

Xiii



To my mother Vasiliki, the most important person in my life.

Xiv



Chapter 1

Introduction

Subsequence matching is the problem of identifying, givejuery sequence and a database of
sequences, the databasésequencehat best matches the query sequence. Achieving efficient
subsequence matching is an important problem in domainsathe database sequences are much
longer than the queries, and where the best subsequench foat query can start and end at
any position of any database sequence. Motivating apmitainclude keyword-based search in
handwritten documents, DNA and protein matching, querhbsnming, etc.

Identifying optimal subsequence matches assumes theeeesbf a similarity measure be-
tween sequences, that can be used to evaluate each matchrefyjigement for such a measure is
that it should be robust to small misalignments betweenesseps, so as to allow for time warps
in time series data and insertions/deletions in stringspicBlly, similarity between sequences
is measured using algorithms based on dynamic programmiRy. (n particular, dynamic time
warping (DTW) [42] is widely used for time series data, and #dit distance [45] is used for
strings and biological sequences.

This thesis is focused on two types of sequences: time samgbiological sequences.
1.1 Searching Time Series Databases

Time series data naturally appear in a wide variety of dosjairtiuding financial data (e.g. stock
values), scientific measurements (e.g. temperature, lityn@hrthquakes), medical data (e.g.
electrocardiograms), audio, video and human activity.roaed algorithms for time series subse-
guence matching can make a big difference in real-worldiegibns such as query by humming
[95], word spotting in handwritten documents, and contsaged retrieval in large video databases

and motion capture databases.



For the case of time series sequences, one commonly usddrigiymmeasure is the Euclidean
Distance and generally the, measures. However, these measures fail to identify mizalents
and warps in the time axis. Typically, similarity betweemdi series is measured using dynamic
time warping (DTW) [42], which is indeed robust to misaligents and time warps, and has given
very good experimental results for applications such ae 8eries mining and classification [34].

The classical DTW algorithm can be applied for full sequemedching, so as to compute the
distance between two time series. With small modificatitims DTW algorithm can also be used
for subsequence matching, so as to find, for one time sehieshdst matching subsequence in
another time series [44, 58, 64, 75]. Constrained DynamueTWarping (cDTW) is a modifica-
tion of DTW that places constraints on the possible aligrirbetween two sequences [34, 76]. In
cDTW each position in one sequence can only be matched tatavedy short range of positions
in the other sequence. These constraints have been shomptovie the meaningfulness of the
results in many applications, as measured for example basetkarest neighbor classification
accuracy [72]. Constraints can improve accuracy by elitmigafrom consideration pathological
cases, i.e., accidental alignments that are legal (in teerade of constraints) and produce optimal
scores, but do not capture a meaningful correspondencesbatthe two time series.

The aforementioned DP-based algorithms can be used bdihilifeequence and subsequence
matching, and identify the globally optimal subsequencéchéor a query in time linear to the
length of the database [44, 58, 64, 75]. While this compyeistdefinitely attractive compared
to exhaustively matching the query with every possible lolga subsequence, in practice, subse-
guence matching is still a computationally expensive dpsran many real-world applications,
especially in the presence of large database sizes.

The first contribution of this thesis is an approximate mdtlior Embedding-Based Sub-
sequence Matching (EBSM) [6]. Embeddings are defined by mirajcqueries and database
sequences with so-calledference sequencese., a relatively small number of preselected se-
guences. The expensive operation of matching databaseetarénce sequences is performed
offline. At runtime, the embedding of the query is computedratching the query with the ref-

erence sequences, which is typically orders of magnitusiefahan matching the query with all



database sequences. Then, the nearest neighbors of thddedlzpiery are identified among the
database vectors. An additional refinement step is peridrmbere subsequences corresponding
to the top vector-based matches are evaluated using the DJatitam.

Converting subsequence matching to vector retrieval ispetationally advantageous for the

following reasons:

e Sampling and dimensionality reduction methods can easilggplied to reduce the amount
of storage required for the database vectors, and the anobtinte per query required for

vector matching.

e Numerous internal-memory and external-memory indexinghods exist for speeding up
nearest neighbor retrieval in vector and metric spacesg79@]. Converting subsequence
matching to a vector retrieval problem allows us to use suethods for additional compu-

tational savings.

EBSM is an approximate method that does not guaranteeviatyi¢he correct subsequence
match for every query. Performance can be easily tuned tagedifferent trade-offs between
accuracy and efficiency. In experiments with real time sedata, EBSM provides very good
trade-offs, by significantly speeding up subsequence matdeval, even when only small losses
in retrieval accuracy (incorrect results for less thdi of the queries) are allowed. Figurell
illustrates the flowchart of the offline and the online stagithe proposed method. The key idea
behind EBSM is that the subsequence matching problem caarially converted to the much
more manageable problem of nearest neighbor retrieval @abvalued vector space. This con-
version is achieved by defining an embedding that maps edabats®e sequence into a sequence
of vectors. There is a one-to-one correspondence betwednseah vector and a position in the
database sequence. The embedding also maps each quesyirsteri vector, in such a way that
if the query is very similar to a subsequence, the embedditigeoquery is likely to be similar to
the vector corresponding to the endpoint of that subseauenc

The second topic studied in this thesis is efficient subgsegpienatching under cDTW. An

approximate method is proposed, that introduces a new edlirigedcalled Bidirectional Subse-
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time serieq)), its optimal subsequence match in the database.

refine step
(DTW)

subsequene
match

guence Embedding (BSE), that manages to trade accuracffitdercy and can yield significant
performance gains in practice. Each query is mapped inte®rend each database sequence is
mapped into an equally long sequence of vectors. Given g/giere is a one-to-one correspon-
dence between each database vector and a possible sulzsemedoh for the query. If the query
is very similar to a subsequence, we expect the embeddifeafuery to be similar to the vector
corresponding to that subsequence. This approach alloewtively short number of candidate
matches to be identified using efficient vector comparisdihe main differentiation from EBSM
is that BSE exploits some properties of cDTW and uses bothpeitt and start-point embed-
dings to define the embedding index. Experiments on real sienies data have shown significant
speedups (of at least one order of magnitude) in contrast sténdard methods for time series
matching under cDTW.

As mentioned earlier, in many domains cDTW has been showdetatify more meaningful
matches than unconstrained DTW [72]. A method that is eilylidesigned for efficient sub-
sequence matching under cDTW can help obtain these meahiegllts more efficiently, and
can make the use of cDTW a realistic option for larger datagegtn it was possible with existing
methods. While EBSM is an embedding method for subsequeatehing under unconstrained

DTW [6], BSE focuses on embedding-based subsequence mguehder cDTW.



1.2 Searching String and Biological Sequence Databases

There are many applications that require fast searchinganence databases that consist of col-
lections of strings. Given a query string, the goal is to fihd thost similar substrings in the
database using a distance/similarity measure such as ihdigednce (ED) or Smith-Waterman
(SW). Applications in this area include 1) spell-checkiggien some input text the spell-checker
consults its dictionary to find words of high similarity toethext, so as to identify potential typos,
2) data cleaning: data obtained from different sources trdghtain inconsistencies which can be
eliminated by looking for similar entities (strings) in tata, 3) homology search in biological
sequences: given different genomes we want to find regiohigybfsimilarity that were the result
of a mutation, etc. Being able to efficiently answer such igseis crucial, especially for online
string search applications.

In order to generate and interpret complete genomes ofreiffeorganisms, various searches
need to be performed that 1) involve queries of large lereytl, 2) only targehear exacimatches
[21, 29]. We focus on these two major requirements: we walet@ble to retrievenear-exact
matchesof long query sequencesfficiently. As a motivating example for large query lengths
consider large EST (Expressed Sequence Tag) databagemntain portions of genes expressed
as mature mRNA. In such databases, large scale searchedmnbedperformed against other
genomic databases to determine locations of genes [29faktipe, genes can vary in size from
hundreds to millions of nucleotides. Searches can als@tampole chromosomes, where the
goal is to find chromosome similarities across differentamigms. Since chromosomes can be
relatively large (e.g. Human Chromosorés approximately272 million bases), such searches
require algorithms that can handle large queries effigientl

In many applications, database matches are of interestifotiigir deviation from the query
does not exceed a certain, relatively small, fraction ofcthery length [9, 21, 33]. We denote that
fraction asy and focus on values @fup to15%, which is typical in applications, such as shotgun
sequencing [59] and mutation analysis [74]. Notice thatfoaus is on DNA sequences, where

the alphabet size is small)(and the query size can be large (upl@@000 bases). In this setting,



only near homology search is biologically significant, wdasremote homology seards more
meaningful and mostly used not for DNA, but for protein setes.

In this thesis, we propose a novel method, called referbased string alignment (RBSA)
[65] for efficient subsequence matching in large databagesriogs under the edit distance or
the Smith-Waterman similarity measure. In RBSA, we decasepihne subsequence matching

problem into two distinct problems:

e The fixed query length problem: achieve efficient retrieval assuming that all queries have

the same length.

e The variable query length problem: using a solution to the fixed query length problem,

achieve efficient retrieval for queries of arbitrary length

To solve the fixed query length problem, RBSA precomputes,ech position of every
database string, alignment scores corresponding to €iffeieference sequences. These align-
ment scores are based on the edit distance. Given a quamyadnt scores between the query
and all reference sequences are computed online. Thesenglig scores are used to prune away
large portions of the database, so as to leave a relativedyl smimber of candidate matches. We
can guarantee that the optimal subsequence match will hedeat among the candidates. Exact
alignment scores (using the edit distance or Smith-Wateyraee then computed to identify the
optimal match among the remaining candidates. One of tha omaitributions in this thesis is in
showing how to use alignment scores with reference seqaeoncachieve efficient subsequence
matching for fixed query lengths.

To solve the variable query length problem, the RBSA firsakseup that problem into multi-
ple fixed query length problems, by partitioning the querguEnce into segments of fixed length.
In the exact version of RBSA, all query segments are consijemd subsequence matches found
for those segments are used to identify candidate subsegueatches for the entire query. In the
approximate version of RBSA, only a subset of query segmisrdsnsidered. Another contribu-
tion in this thesis consists in showing that the probabdityailing to find the optimal match drops

very fast (exponentially) as we increase the number of gaegynents that we consider, and thus



we can achieve both significantly improved efficiency ang vegh accuracy rates by considering
only a relatively small number of segments.

An important advantage of RBSA compared to BLAST and itsaras is that RBSA has an
exact version that provably achieve30% accuracy, and as shown in the experimental evaluation
outperforms BLAST (which is the most widely used method feamexact homology search in
DNA sequences) by more than an order of magnitude even fge lquery lengths. Compared to
other exact methods, such as OASIS[54] and BWT-SWI[43] atetsed for near-exact homology
search of short queries in biological sequences, RBSA aebia retrieval runtime of more than
one order of magnitude. Moreover, RBSA differs from (MV an®PM85] in that it is developed

for substring matching and not for full string matching.

1.3 Contributions

The main contributions of this thesis are summarized below.

EBSM (Embedding-Based Subsequence Matching$ a method for speeding up subse-
quence matching in time series databases. It is the first gtoexthe usage of embed-
dings for subsequence matching for unconstrained DTW. Egaliferentiating features of

EBSM are the following:

e EBSM converts, at least partially, subsequence matchimpruBbTW into a much
easier vector matching problem. Vector similarity retekss used to identify very fast
a relatively small number of candidate matches. The contipuglly expensive DTW

algorithm is only applied to evaluate those candidate nestch

e EBSM is the first indexing method, in the context of subseqaanatching, that fo-
cuses on unconstrained DTW, where optimal matches do net twakiave the same
length as the query. The only alternative method for thisregt PDTW, which uses
piecewise aggregate approximation (PAA) [36], is a generéthod for speeding up
DTW.

¢ In experiments with real time series data, EBSM provideshibst performance in



terms of accuracy versus efficiency, compared to the custate-of-the-art methods
for subsequence matching under unconstrained DTW: the &&RING method [75]

that uses the standard DTW algorithm, and the approximaf&/?hethod.

BSE (Bidirectional Subsequence Embedding$$ a bi-directional embedding-based method

for subsequence matching under cDTW. The main features Bf@& described below:

¢ On the algorithmic side, we exploit the constraints of cDTédefine a new embed-
ding, BSE, that includes more information than previousigpmsed embeddings for
this problem. This information includes startpoint emhbadd that are defined in a
manner similar to that of endpoint embeddings. An intengsteature of BSE embed-

dings is that they are customized, online, to the length o emery.

¢ On the practical side, we provide experimental results ahtime series data where
our method produces speedups of one to two orders of magndachpared to the
state-of-the-art methods of LBeogh [34] and DTK [56], at the cost af% to 20%
loss in retrieval accuracy. We believe that this trade-@ffWeen accuracy and effi-
ciency is highly desirable for many real world settings. thRarmore, our method has
shown speedups that significantly outperform competindghoust by over an order of
magnitude. It is also able to tolerate large warping widtha krge query lengths as

shown in the experiments.

e Another important practical result is that, unlike resyteviously published on un-
constrained DTW [6], our embedding method has very goodopesince without
using training data for embedding optimization. Not rempgjrtraining data makes it

much easier to implement and deploy our method in real-wayklems.

¢ Inthe experiments we apply our method to real-world datasktime series as well as
random walk synthetic datasets. The proposed BSE embesiginificantly speeds up
subsequence retrieval with relatively small losses in emgu(by at mos5%), and per-
formance compares favorably to that of existing statehefdart methods (LB<eogh

[34] and DTK [56]) for constrained subsequence matching.r @athod also out-



performs the embedding method of [6], thanks to the novelastdimgs, explicitly

designed for cDTW, that we introduce in this thesis.

RBSA (Reference-Based Sequence Alignmeng)the first reference based method for sub-
sequent matching in string databases that both guaranbefadse dismissals and performs

well for large queries. The main characteristics of RBSAdescribed below:

e RBSA produces lower bounds of the edit distance and uppendsoof the Smith-
Waterman similarity between the query and database subsegsi using precomputed
alignment scores with reference sequences. In prior wod) bounds have only been

derived for full sequence matching [85].

e An exact method is presented for decomposing the varialgth query problem into
multiple fixed-length queries, so that we can achieve sicgnifti retrieval runtimes (one
to two orders of magnitude faster than the Edit Distance,[&Bjith-Waterman [79]

and BLAST [2]) for long queries, while still guaranteeingri@xt results.

¢ An approximate method is presented for decomposing thabarlength query prob-
lem into multiple fixed-length queries. At the same time, phebability of missing
the correct result in approximate RBSA drops exponentiaith the number of query
segments that we consider, and thus can easily be reduceddgligible quantity.
The experimental evaluation shows that, for query lengtt29)0, RBSA outperforms
current state-of-the-art sequence alignment methods: 8L22], BWT-SW[43] and
g-grams. Speedups of one to two orders of magnitude over thentistate of the art

are demonstrated for query size<2, 000.

1.4 Roadmap

The remainder of this thesis is organized as follows:

Chapter 2 This chapter describes the related work on subsequencéimgio time series and

biological sequence databases and places our contrikintitve current literature.
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Chapter 3 The first contribution of this thesis includes an analysighaf background on time
series subsequence matching, the description of the prdpoethod, EBSM, and an ex-

perimental evaluation against state-of-the-art timeesesuibsequence matching methods.

Chapter 4 The second contribution of this thesis includes the dedinitof bidirectional subse-
quence embeddings and the method that uses them to perflicrargfsubsequence match-
ing under cDTW. Experiments show the superiority of the psmazl method against state-

of-the-art constrained subsequence matching methods.

Chapter 5 The third contribution of this thesis is a reference basedhouk for subsequence

matching (RBSA) in string databases.

Chapter 6 This last chapter provides a discussion of the proposedadstainderlying their ma-
jor contributions and pointing out their limitations. Fllyadirections for future work are

discussed.

1.5 Listof related papers

Parts of this thesis are based on the material from the fatlpywublished papers:

Chapter 3 is mostly based on:
V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios and Dn@pulos. “Approximate
embedding-based subsequence matching of time seriesCM 8IGMOD, pages 365—
378, 2008.

Chapter 5 is mostly based on:
P. Papapetrou, V. Athitsos, G. Kollios and D. Gunopulos. féRmce-Based Alignment of

Large Sequence Databases,” in VLDB, 2009 (To Appear).
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Chapter 2

Related Work

2.1 Literature on Time Series Subsequence Matching

A large body of literature addresses the problem of efficgamgfuence matching. Several methods
assume that sequence similarity is measured using thedeadlidistance [19, 14, 55, 57] or
variants [3, 71, 91]. However, such methods cannot handie the smallest misalignment caused
by time warps, insertions, or deletions. Robustness toligisaents is achieved using distance
measures based on dynamic programming (DP), such as DTWIR#je remaining discussion
we restrict our attention to the DTW distance measure, wisitiie most popular measure for time
series.

Sequence matching methods can be divided into two categdriemethods for full sequence
matching, where the best matches for a query are constrambd entire database sequences,
and 2). methods for subsequence matching, where the beshesdor a query can be arbitrary
subsequences of database sequences. Several well-knalvads\@nly address full sequence
matching [34, 76, 86, 93], and cannot be easily used for efftaietrieval of subsequences.

Some methods reduce subsequence matching to full sequeatckimg, by cutting database
sequences into small pieces, and requiring each query tespmnd to an entire such piece. One
example is the query-by-humming system described by Zhli 5, where each database song
is cut into smaller, disjoint pieces. Another example isrtiethod for word search in handwritten
documents described by Rath et al. [73], where, as prepimggshe documents are segmented
automatically into words, and full sequence matching isquared between query words and
database words. Such approaches fail when the query conéspo a database subsequence that

is not stored as a single piece.
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An indexing structure for unconstrained DP-based subsemumatching is proposed by Park
et al. [66]. However, as database sequences get longerinteecomplexity for that method
becomes similar to that of unoptimized DP-based matchidge method by Park et al. [67] can
handle such long database sequences; the key idea is tolgp@&3dV by reducing the length of
both query and database sequences. The length is reducegregenting sequences as ordered
lists of monotonically increasing or decreasing segmeig.using monotonicity, that method
is only applicable to 1D time series. A related method that lba used for multidimensional
time series is proposed by Keogh et al. [36]. In that methiodle series are approximated by
shorter sequences, obtained by replacing each constagttilpart of the original sequence with
the average value over that part.

The SPRING method [75] has been developed for efficient sulesee matching under un-
constrained DTW. In that method, optimal subsequence raatatre identified by performing full
sequence matching between the query and each databaseseq8ebsequences are identified
by prepending to each query a “null” symbol that matches aayence prefix with zero cost. The
complexity of that method is linear to both database sizecualy size. Compared to SPRING,
the key source of computational savings in EBSM is that esperDTW-based matching is only
performed between the query and a small fraction of the @a@bwvhereas in SPRING the query
is matched to the entire database using DTW. The price feiitiproved efficiency is that EBSM
cannot guarantee correct results for all queries, wherB&dI$G is an exact method. Still, it is of-
ten desirable in database applications to trade accura®ffioiency, and our method, in contrast
to SPRING, provides the capability to achieve such tradie-of

The DTK method [56] is a method for subsequence matchingruwld&W. DTK breaks the
database into small non-overlapping sequences and fusthgloys the piece-wise approximation
method (PAA) [36] for efficient indexing. This approach hawg does not scale well as the query
size increases, as shown in the experiments of chapter 4nidasiapproach is used to index time
series for sequence and subsequence matching under saalindgynamic time warping [20].
Actually, when the scaling factor is 1 (no scaling at all)e tihdexing and query algorithm of

Moon et al. [56] are the same as the ones proposed by Fu eOdl. TTRerefore, since here we do
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not consider scaling, we just use the DTK as a competitor BSE.

The more powerful lower-bounding methddB_Keogh for efficient time series matching
under cDTW is described in [34]. The main idea is to use thepimgrconstraint to create an
envelope around the query sequence. Then, using a slidindowi of size equal to the query,
we can estimate a lower bound of the matching cost betweequitiy and each possible subse-
guence. Sincé B_Keogh gives a lower bound on the actual distance, this approacthearsed
to prune a large number of subsequences. For the subsegubateannot be pruned, the exact
dynamic programming algorithm is used to compute the digtarand ultimately find the best
match. However, as shown in our experiments, performandeRiK eogh is highly dependent
on the warping width parametar and the query size; performance deteriorates as warpinthwid
and query size increase. The second method proposed irh#sst BSE, achieves significant
speedups even for high warping widths and long query siz@30§. Furthermore, computing
the LB_Keogh for each possible subsequence can be time consuming fer datgbases. Note
that, although some improvements to th8_Keogh have been proposed (e.g. Shou et al. [78]),
these improvements achieve not more than a small constator fa terms of both the tightness
of the lower bound and the query time performance. Therefeescan usd. B_Keogh as a good
yardstick to evaluate the performance of BSE. Compared t8MBBSE is explicitly designed to
take advantage of the constraints of cDTW. This novel emipgdstores additional information
at the same amount of space, and thus leads to better perfogmas shown in the experiments.
Furthermore, EBSM embeddings are fixed regardless of thggheof the query, whereas BSE
embeddings are customized online to the length of each ge®as to contain information highly
relevant for that query length.

The two time series subsequence matching methods propoghd ithesis are embedding-
based. Several embedding methods exist in the literaturepieding up distance computations
and nearest neighbor retrieval. Examples of such methadsdea Lipschitz embeddings [26],
FastMap [18], MetricMap [87], SparseMap [27], and BoostNKpb]. Such embeddings can be
used for speeding up full sequence matching [4, 5, 27]. Hewée above-mentioned embedding

methods can only be used for full sequence matching, noeguiesice matching.
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2.2 Literature on String Subsequence Matching

A preeminent group of methods for string subsequence nrajcre based on dynamic program-
ming [45]. Needleman et al. [62], describes a global aligntmeethod, where both query and
database sequences are aligned along their entire lemgihgmatch mismatchandgap scores.

A similar, but generalized algorithm [28] for global aligemt, handles sequences of intermittent
similarities. Smith and Waterman [79] developed a dynami@mmmming approach for local
alignment, where a subsequence of the query is matched tasaguence of the database. Ukko-
nen et al. [83] exploits the fact that in approximate striegrshing we are looking for patterns
that match with substrings of the text with at mdserrors. Thus, it speeds up the dynamic
programming (DP) computation by pruning cells in the DP iratiith values larger thark.

Several g-gram-based methods [9, 10, 11, 37, 47, 48, 52 260a9¢e been developed to solve
the problem of exact and approximate string matching indasggquence databases. Their main
characteristic is that they build a dictionary of words ongeg database of sequences. At query
time the query is broken into a set of overlapping g-grams thedindex is searched for exact
matches of those g-grams. These matches provide canditatbdt are later refined to remove
false positives.

QUASAR [9] is a subsequence matching method that perforgeam: based filtering on a
sequence database. QUASAR is limited to relatively shoerigs (the maximum query length
on which the performance of QUASAR was evaluated @& characters) of high similarity to
the database. A generalization of QUASAR, which uses gappsdad of contiguous g-grams
is described in [10]. Similar g-gram based methods for axprate full string matching are
described in [47, 48, 92].

VGRAM [48] employs a g-gram dictionary where the words areafiable length and more
representative of the dataset. Again, the limitations talbueries persist (the experimental
evaluation reports queries of average size ranging f8cim 62 characters) and the performance
seriously deteriorates &s(the number of edit operations applied to the queries) asze £ 4).

An improved vgram-based method is described by Yang et &I, ffut is again limited to small
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query sizes (varying betweehand 249 characters). Several methods [37, 11] employ a two
level g-gram index to speed up the database search. A g-graadl@approximate string matching
method is described by Navarro et al. [60], where disjoirt $eibstrings of length q are collected
by the index at fixed intervals. Finally, Li et al. [47] introdes several strategies for improving
the join cost of the gram lists found during a query searcmimaerted g-gram index and shows
how to incorporate these strategies into existing filtenmgthods to improve string matching.

A key property of g-gram based methods, such as the onesanedtabove, is the following:
if the query size i3Q| and we are searching for matches with edit distance withincan be at
most[|Q|/(k+1)] to guarantee no false dismissals. It can be seen thaireseasesy decreases,
and thus, the index size becomes larger. Consequently,lsm@s shown in the experiments, g-
gram based approaches can only handle short queries afedldiigh similarity to the database.
However, the biologically interesting types of querieg(emutated genes) can be significantly
long (up to10,000 nucleotides or more [43]) and thus, g-gram based methodsdarable to
handle them efficiently.

Another group of methods has been proposedetact string matchingtargeting exact oc-
currences of the query sequence in a database [8, 15, 169322353, 70, 84]. However, exact
string matching is quite different from the main focus ofstipaper and thus, these methods are
not discussed any further.

Several methods have been developed for aligning biolbgeauences. FASTA [51, 68]
detects locally similar regions between two sequencegusily identities and no gaps, and then
based on some measure of similarity it re-scores them aicgdyd Additional heuristics are
proposed in BLAST [1]. Given a query (DNA or protein), BLASEfforms a linear scan on the
sequence database searching for a set of seeds belonghegrteighborhood of some substrings
of the query. Having identified a set of candidate hits, intk&tends them both ways, until the
accumulated similarity score begins to decrease. FirBIAST reports as matches those regions
with high statistical significance.

A new version of BLAST, known as BLASXY[2], improves accuracy by allowing a limited

number of insertions and deletions during the alignmentnfdion and improves search speed
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by imposing more stringent criteria when performing a loaidgjnment. Further improvements
of BLAST include MegaBLAST [94], MPBLAST [40] and miBLAST . MegaBLAST is a
greedy algorithm for detecting sequences that differ 8lygis a result of sequencing. MPBLAST
and miBLAST are different versions of BLAST used for parbtigeries.

BLAT [1] builds an index of the database and then given a quetynearly scans the query
searching for matches in the index. Apart from using an is@éndex, BLAT differs from BLAST
and BLAST in that it triggers extensions on any number of perfect hiteesgas in BLAST
extensions are triggered when one or two hits occur in prayito each other. Several hash-based
approaches [30, 63] have been developed for further speed kpy limitation of all the above-
mentioned variants of BLAST is that their accuracy and estil cost deteriorates as the query
size increases. As the volume of biological sequence dsg¢sliacreases, all the aforementioned
exhaustive systems become prohibitively expensive.

Another key limitation of BLAST-like approaches is that thés no guarantee that the optimal
local alignment will be reported. Several methods have lEseloped to handle this weakness.
OASIS [54] employs a best first search technique over a suffi tor string alignment. The
algorithm outperforms BLAST by an order of magnitude, butydor small query sizesito 60);
this is one of its major limitations. Another indexing methibiat uses suffix trees is discussed by
Navarro et al. [61], whereas Phoophakdee et al. [69] digsuan efficient method for suffix tree
construction in external memory. Finally, BWT-SW[43] eroyd a suffix array to speedup local
alignment search in biological sequences. It outperform8$T for queries of size up t@000;
for larger queries its performance deteriorates. Both CBA&hd BWT-SW always find the best
local alignment according to Smith-Waterman.

Two reference-based indexing methods for full sequencemmrag are proposed by Venkateswaran
et al. [85] that use reference sequences to represent thieada&t At query time, the edit distance
of the query against each reference sequence is computeatrland upper bounds are applied to
efficiently filter candidate matches. DSIM[12] uses a seetécted reference words formed from
high-frequency data sub- strings. SST [21] is used for syesece matching in biological se-

guences and maps the biological sequence databaskdimgnsional vector space; this mapping
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is used to filter a significant portion of the database froms@baration during the query process.
This method outperforms BLAST by an order of magnitude buy éor applications where there
exists an extremely high similaritp%% and over) between the query sequence and its match in
the database.

The RBSA method proposed in this thesis is also related toNER, which uses precom-
puted alignments between database sequences and refseguemnces for efficient subsequence
matching in time series databases. The key differencesdestiRBSA and EBSM stem from the
fact that RBSA addresses near-exact string matching uhdezdit distance or Smith-Waterman,
whereas EBSM addresses general time series matching uidét RBSA exploits the metric
properties of the edit distance, and the additional neactematching constraint, to provide ei-
ther guaranteed correct results (for exact RBSA) or guashhigh probability of correct results
(for approximate RBSA). No equivalent guarantees are pteiseEBSM. Furthermore, RBSA
can handle queries of arbitrary size (query lengths ranga #0 to 10,000 in our experiments) by
breaking up queries into fixed-size segments, whereas ER§Mres that query lengths be within
a relatively narrow range (query lengths range from 152 o i#Zhe experiments of EBSM), and

provides no mechanism for handling queries of arbitrarg.siz
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Chapter 3

Embedding-based Subsequence Matching in Time Series
Databases

In this chapter we describe Embedding-Based Subsequentzhibta (EBSM), an embedding-
based method for subsequence matching under Dynamic Tim@iygDTW). EBSM is an ap-
proximate method that uses an embedding index to filter dateliendpoint positions of a possible
match and then performs the expensive dynamic programnaingpatation only for those candi-
dates. In the remainder of this chapter, we first provide sbaskground on time series matching
under DTW, then we describe EBSM in detail, and finally we enésn extensive experimental

evaluation on real time series data.

3.1 Background

In this section we define dynamic time warping (DTW), both aléstance measure between time
series, and as an algorithm for evaluating similarity betwéme series. We follow to a large

extent the descriptions in [34] and [75]. We use the follgywotation:

e (), X, R, and S are sequences (i.e., time series). is typically a query sequencef
is typically a database sequende,is typically a reference sequence, aficcan be any

sequence whatsoever.
¢ |S| denotes the length of any sequerite
e S; denotes the t-th step of sequertteln other wordsS = (51, ..., 5|g))-

e S%J denotes the subsequenceSstarting at position and ending at positior. In other

words,S% = (S;,...,S;), ;7 is thet — th step ofS%/, andS;” = S;1 ;.
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e Dpi(Q, X) denotes the full sequence matching cost betwgemd X. In full matching,

@1 is constrained to match with';, and@)q, is constrained to match witK x.

e D(Q, X) denotes the subsequence matching cost between sequgroekX. This cost
is asymmetric: we find the subsequen&é’ of X (whereX is typically a large database

sequence) that minimizeBe,;(Q, X*7) (whereQ is typically a query).

e D, ;(Q,X) denotes the smallest possible cost of matchifdg, ..., Q;) to any suffix of
(X1,...,Xj;) (i.e.,Q1 does not have to matcki;, but@; has to match wittX ;). D; ;(Q, X)

is also defined foi = 0 andj = 0, as specified below.

e D;(Q,X) denotes the smallest possible cost of matclingp any suffix of (X1, ..., X;)
(i.e.,@1 does not have to matcki;, butQ)| has to match withX ;). Obviously,D;(Q, X) =

Dq)5(Q, X).
e ||.X; — Yj|| denotes the distance betwe&nandy;.

Given a query sequencg and a database sequen¥ethe subsequence matching problem is
the problem of finding the subsequenké’ of X that is the best match for the entig i.e., that
minimizes D1 (Q, X*7). In the next paragraphs we formally define what the best miatand

we specify how it can be computed.

3.1.1 Legal Warping Paths

A warping pathW = ((w1,1,w12),-- -, (ww,1, ww2)) defines an alignment between two se-
quencesy and X. The i-th element o#V is a pair(w; 1,w; 2) that specifies a correspondence

between elemer®,,, , of Q and elemenfX,,, , of X. The costC(Q, X, W) of warping pathiV’

for Q and X is the L, distance (for any choice qf) between vector$Q,, ,, - - - ,Qw‘wu) and
(Xuwros o Xuyyyy ):
W]
CQ, X, W) = \ Z ||Qwi,1 - Xwi,2||p : (3.1)
i=1

In the remainder of this section, to simplify the notatiore will assume that = 1. However, the

formulation we propose can be similarly applied to any caatp.
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For W to be a legal warping path, in the context of subsequencehingtainder DTW,IW/

must satisfy the following constraints:

e Boundary conditions: w1 ; = 1 andw)yy|; = |Q|. This requires the warping path to start
by matching the first element of the query with some element p&nd end by matching

the last element of the query with some elemenkof

e Monotonicity: w;111 —w; 1 > 0, w12 —w; 2 > 0. This forces the warping path indices

w; 1 andw; 5 to increase monotonically with

e Continuity: w;t1,1 —w;1 < 1,wi412 — w; 2 < 1. This restricts the warping path indices
w;, 1 andw; » to never increase by more thanso that the warping path does not skip any
elements of@, and also does not skip any elementsXofoetween positionsy,,, , and

X

Wiwl,2*

e (Optional) Diagonality: w2 — w12 = |Q =1, w2 — w12 € [wi1 —O(Q, w; 1), wi 1+
O(Q,w;1)], where©(Q,t) is some suitably chosen function (e.@(Q,t) = p|Q]|, for
some constant such thatp|Q| is relatively small compared t@|) . This is an optional
constraint, employed by some methods, e.g., [24, 34], ahémgployed by other methods,
e.g., [75]. The diagonality constraint imposes that theseghenceX*':2*Iwi.2 be of the
same length a§. Furthermore, the diagonality constraint severely rettrihe number of
possible positions; » of X that can match positiow; ; of ), given the initial match match
(w11, w1,2). In this thesis, we will not consider this constraint, andhia experiments this

constraint is not employed.

3.1.2 Optimal Warping Paths and Distances

The optimal warping patfiV*(Q, X) between and X is the warping path that minimizes the
costC(Q, X, W):
W*(Q,X) = argminy, C(Q, X, W). (3.2)

We define the optimal subsequence mat¢ty), X) of @ in X to be the subsequence &fspec-

ified by the optimal warping path’*(Q, X). In other words, ifiV*(Q, X) = ((wj 1, w} ), -,
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(W}, 1, Wk, 5)), thenM (Q, X) is the subsequencE“i="m.2. We define the partial dynamic time

warping (DTW) distanceD (@, X ) to be the cost of the optimal warping path betwégand X:
D(Q,X) =C(Q,X,W"(Q, X)). (3.3)

Clearly, partial DTW is an asymmetric distance measure.

To facilitate the description of our method, we will defineotwdditional types of optimal
warping paths and associated distance measures. Firsefime o/;,(Q, X) to be the optimal
full warping path i.e., the patt’ = ((w1,1,w1.2), - - -, (W1, wyw),2)) MiNiMizing C(Q, X, W)
under the additional boundary constraints that = 1 andwy|» = |X|. Then, we can define

the full DTW distance measu®s,;(Q, X) as:

D (@, X) = C(Q, X, Wi pn(Q, X)). (3.4)

DistanceDy,;(Q, X)) measures the cost of full sequence matching, i.e., the €osatching the
entire @ with the entireX. In contrast,D(Q, X) from Equation 3.3 corresponds to matching the
entire Q with asubsequencef X.

We definelW*(Q, X, j) to be the optimal warping path matchidyto a subsequence of
ending atXj, i.e., the pathV = ((w1,1,w12),- ., (Ww|1, ww2)) Minimizing C(Q, X, W)

under the additional boundary constraint thag, , = j. Then, we can defin®;(Q, X) as:

We defineM (R, X, j) to be the optimal subsequence match foin X under the constraint

that the last element of this matchXs:
M(Raij) = a“rgIninXi!J'Dfull(R7 XZ]) (36)

Essentially, to identifyM (R, X, 7) we simply need to identify the start pointhat minimizes the

full distance Dy, betweenR and X%,



22

3.1.3 The DTW Algorithm

Dynamic time warping (DTW) is a term that refers both to th&talice measures that we have just
defined, and to the standard algorithm for computing thestanite measure and the corresponding
optimal warping paths.

We define an operation that takes as inputs a warping path= ((w1,1,w12), - -, (W1,
w)yy,2)) and a paiw’, w") and returns a new warping path that is the result of apper{dinigs”)

to the end ofiV:
We (w/> w//) = ((wl,lv w172)7 SRR (w\W|,17 w\W|,2)7 (w/v w//))' (3.7

The DTW algorithm uses the following recursive definitions:

Do,0(Q, X) = 0,Di0(Q, X) = 00, Dy ;(Q, X) =0 (3.8)
Wo0(@, X) = (), Wo,;(Q, X) = () (3.9)
A(i ) ={@,j = 1), = 1,j),(i = L,j— 1)} (3.10)
(Pi(Q, X), pi(Q, X)) = argmin yeai ) Dst(Q, X) (3.11)
D; j(Q, X) = Qi — Xj|l + Dyi(,x),pj(@,x)(@; X) (3.12)
Wi i (Q, X) = Whiq,x)pi@.x) ® (i, ) (3.13)
D(Q,X) = jz?ffllx‘{D@Lj(Q,X)} (3.14)

The DTW algorithm proceeds by employing the above equatidmesch step, as follows:
e Inputs. A short sequencé), and a long sequencg.

e Initialization. ComputeDy ¢(Q, X), D; 0(Q, X), Do ;(Q, X).

e Mainloop. Fori=1,...,|Ql,j =1,...,|X]:

1. Compute(pi(@Q, X), pj(Q, X)).

2. ComputeD; ;(Q, X).
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3. ComputelV; ;(Q, X).
e Output. Compute and returv(Q, X).

The DTW algorithm takes timé(|Q||X|). By definingD,; = 0 we essentially allow ar-
bitrary prefixes ofX to be skipped (i.e., matched with zero cost) before matclngith the
optimal subsequence iX [75]. By defining D(Q, X) to be the minimumD o ;(Q, X), where
j=1,...,|X|, we allow the best matching subsequenceXofo end at any positiori. Overall,
this definition matches the entifg with an optimal subsequence 4f.

For each positiory of sequenceX, the optimal warping pathV*(Q, X, j) is computed as
value W|q ;(Q, X) by the DTW algorithm (step 3 of the main loop) . The globallytiol
warping pathiW*(Q, X) is simply W*(Q, X, jopt ), Wherejo,t is the endpoint of the optimal

match: jopt = argmin;_; | x{D)q,; (@, X)}.
3.2 EBSM: An Embedding for Subsequence Matching

Let X = (Xj,...,X|x|) be a database sequence that is relatively long, contaioingximple
millions of elements. Without loss of generality, we canuass that the database only contains
this one sequencé (if the database contains multiple sequences, we can @ratatthem to
generate a single sequence). Given a query sequgnee want to find the subsequenceof
that optimally matcheg) under DTW. We can do that using brute-force search, i.engutie
DTW algorithm described in the previous section. This thggsbposes a more efficient method.
Our method is based on defining a novel type of embeddingiftmét, which maps every query
@ into a d-dimensional vector and every elemekt of the database sequence also intd-a
dimensional vector. In this section we describe how to defungh an embedding, and then we
provide some examples and intuition as to why we expect sn@mndbedding to be useful.

Let R be a sequence, of relatively short length, that we shalbgallerence objeabr reference

sequenceWe will useR to create a 1D embedding’*, mapping each query sequence into a real
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numberF' (@), and also mapping each stgpf sequenceX into a real numbef (X, j):

FQ) = Digjq(R.Q). (3.15)

FRX,j) = Dig(RX). (3.16)

Naturally, instead of picking a single reference sequeR¢ceve can pick multiple reference
sequences to create a multidimensional embedding. For@garetR,,..., Ry bed reference

sequences. Then, we can definddimensional embedding as follows:

FQ) = (FF(Q),....Ff(Q)). (3.17)
F(X,j) = (FF(X,5),...,FR(X,j). (3.18)
Computing the set of all embedding¥ X, j), for j = 1,...,|X] is an off-line preprocessing

step that takes timé& (| X| Ele |R;|). In particular, computing thé-th dimensionF*: can be
done simultaneously for all positioi&, j), with a single application of the DTW algorithm with
inputs R; (as the short sequence) aid(as the long sequence). We note that the DTW algorithm
computes each®i (X, j),forj = 1,...,|X|, as valueD g, (R, X) (see Section 3.1.3 for more
details).

Given a quen, its embedding?(Q) is computed online, by applying the DTW algorithin
times, with inputsR; (in the role of the short sequence) a@din the role of the long sequence).
In total, these applications of DTW take timig|Q| Zle |R;|). This time is typically negligible
compared to running the DTW algorithm betwe@nand X, which takesO(|Q||X|) time. We
assume that the sum of lengths of the reference objects &<al magnitude smaller than the
length| X | of the database sequence.

Consequently, a very simple way to speed up brute force lséarthe best subsequence match

of Q is to:
e CompareF'(Q)to F(X,j)forj=1,...,|X]|.

e Choose somg’s such thatF’(Q) is very similar toF'(X, 7).
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Figure 3-1: (b) Example of a warping pat*(R, X, j), aligning a refer-
ence objectR to a subsequenc&?J of sequenceX. F(X,; ) is the cost of
W*(R, X, 7). The queryQ from (a) appears exactly i, as subsequenci®/,

andi < i. Under these conditionsi?(Q) = FF(X,j). (c) Similar to (b),
except that’ > i. In this case, typicallyf*(Q) # FE(X, j).

e For each such, and for some length parametér run dynamic time warping betweep

and(X7~L+17) to compute the best subsequence matclifar (X7 —L+1:7),

As long as we can choose a small number of such promising &r¢&s"+17), evaluating
only those areas will be much faster than running DTW betw@end X. Retrieving the most
similar vectorsF'(X, j) for F'(Q) can be done efficiently by applying a multidimensional vecto
indexing method to these embeddings [22, 89, 77, 13, 46,11, 88 41, 82].

We claim that, under certain circumstancesRifs similar to a subsequence &f ending at
X, and if R is some reference sequence, tHef(Q) is likely to be similar toF?(X, j). Here
we provide some intuitive arguments for supporting thisnala

Let’s consider a very simple case, illustrated in Figute 3n this case, the quey isidentical
to a subsequenc&’7. Consider a reference sequeniggand suppose that/ (R, X, j) (defined
as in Equation 3.6) is(%/, and thati > . In other words,M (R, X, j) is a suffix of X7/ and

thus a suffix ofQ (sinceX”~ = Q). Note that the following holds:

F*Q) = Dig (R, Q) = Dig (R, X) = FF(X, ). (3.19)
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In other words, ifQ appears exactly as a subsequedt&’ of X, it holds thatF©(Q) =
FE(X,4), under the conditiorthat the optimal warping path aligning with X'/ does not start
before position’, which is where the appearance@®@fstarts.

This simple example illustrates an ideal case, where theyg@énas an exact matck® 7/ in
the database. The next case to consider is W& is a slightly perturbed version @, obtained,
for example, by adding noise from the interVale, €] to eachQ;. In that case, assuming always
that M (R, X, j) = X% andi > i/, we can show thatF'*(Q) — FF (X, j)| < (2|Q| — 1)e. This
is obtained by taking into account that warping p8tH (R, X, j) cannot be longer tha?|Q| — 1
(as long as > 7).

There are two cases we have not covered:

e Perturbations along themporalaxis, such as repetitions, insertions, or deletions. Uafor
nately, for unconstrained DTW, due to the non-metric natidithe DTW distance measure,
no existing approximation method can make any strong madlieah guarantees in the

presence of such perturbations.

e The case wheré< ¢, i.e., the optimal path matching the reference sequencestdfia of

X7 starts before the beginning 8f (Q, X, j). We address this issue in Section 3.5.

Given the lack of mathematical guarantees, in order for topgsed embeddings to be useful
in practice, the followingstatistical property has to hold empirically: given positigi,: (Q),
such that the optimal subsequence matcl)ah X ends atj,p(Q), and given some random
positionj # jopt(Q), it should be statistically very likely tha'(Q) is closer toF (X, jopt (Q))
than to (X, j). If we have access to query samples during embedding catistiy we can
actually optimize embeddings so thafQ) is closer toF (X, jopt (Q)) than toF' (X, j) as often

as possible, over many random choiceg)aind;j. We do exactly that in Section 4.5.
3.3 Filter-and-Refine Retrieval

Our goal in this thesis is to design a method for efficientlirieging, given a query, its best

matching subsequence from the database. In the previotisrsewe have defined embeddings
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that map each query object and each database positioa-ttiraensional vector space. In this

section we describe how to use such embeddings in an acttehsy

3.3.1 General Framework

The retrieval framework that we use is filter-and-refineiestl, where, given a query, the retrieval
process consists of a filter step and a refine step [26]. Thee fitep typically provides a quick
way to identify a relatively small number of candidate mat&hThe refine step evaluates each of
those candidates using the original matching algorithm\WDit our case), in order to identify the
candidate that best matches the query.

The goal in filter-and-refine retrieval is to improve retagefficiency with small, or zero loss
in retrieval accuracy. Retrieval efficiency depends on th& of the filter step (which is typically
small) and the cost of evaluating candidates at the refipe Elaluating a small number of candi-
dates leads to significant savings compared to brute-f@aeck (where brute-force search, in our
setting, corresponds to running SPRING [75], i.e., rundiQV between and X). Retrieval
accuracy, given a query, depends on whether the best matohlisled among the candidates
evaluated during the refine step. If the best match is amoagdhdidates, the refine step will
identify it and return the correct result.

Within this framework, embeddings can be used at the filew,sind provide a way to quickly
select a relatively small number of candidates. Indeed; les the key contribution of this thesis,
in the fact that we provide a novel method for quick filteritizat can be applied in the context of
subsequence matching. Our method relies on computatjociadlap vector matching operations,
as opposed to requiring computationally expensive appica of DTW. To be concrete, given a
d-dimensional embedding’, defined as in the previous sectios,can be used in a filter-and-
refine framework as follows:

Offline preprocessing step: Compute and store vectdr(X, j) for every position; of the
database sequencéé

Online retrieval system: Given a previously unseen query objéxtwe perform the following

three steps:
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e Embedding step: computeF’(Q), by measuring the distances betwegrand the chosen

reference sequences.

e Filter step: Select database positio(¥, j) according to the distance between e&glX, ;)

andF(Q). These database positions are candidatipointsof the best subsequence match

for Q.
e Refine step:Evaluate selected candidate positigis j) by applying the DTW algorithm.

In the next subsections we specify the precise implementati the filter step and the refine

step.

3.3.2 Speeding Up the Filter Step

The simplest way to implement the filter step is by simply canmyg F'(Q) to every single
F(X, ) stored in our database. The problem with doing that is thratif take too much time, es-
pecially with relatively high-dimensional embeddingsr(éxample, 40-dimensional embeddings
are used in our experiments). In order to speed up the figestap, we can apply well-known
techniques, such as sampling, PCA, and vector indexingadsthWe should note that these three
techniques are all orthogonal to each other.

In our implementation we use sampling, so as to avoid comgdfi Q) to the embedding of
every single database position. The way the embeddingsoastracted, embeddings of nearby
positions, such a#'(X,j) and F(X,j + 1), tend to be very similar. A simple way to apply
sampling is to choose a parameterand sample uniformly one out of evefyectorsF(X, j).
That is, we only store vectorB(X, 1), F(X,1 + 0), F(X,1 + 2J),.... GivenF(Q), we only
compare it with the vectors that we have sampled. If, for akkmte positiofX, j), its vector
F(X,7) was not sampled, we simply assign to that position the distéetween?’ (@) and the
vector that was actually sampled amofig(X, 5 — |0/2]),..., F(X,j + [0/2])}.

PCA can also be used, in principle, to speed up the filter Sigpeducing the dimensionality
of the embedding. Moreover, vector indexing methods [22,/89 13, 46, 17, 31, 88, 41, 82] can

be applied to speed up retrieval of the nearest databaserse@&uch indexing methods may be
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particularly useful in cases where the embedding of thebdaa does not fit in main memory;
in such cases, external memory indexing methods can plagn#isant role in optimizing disk
usage and overall retrieval runtime. Finally, a recent metf80] for nearest neighbor search in
high dimensional spaces could be embedded in the filter stdpsgt vector search.

Our implementation at this point is a main-memory impleraéoh, where the entire database
embedding is stored in memory. In our experiments, usingpiamparameted = 9, and without
any further dimensionality reduction or indexing methoals,get a very fast filter step: the average
running time per query for the filter step is ab@ut% of the average running time of brute-force
search. For that reason, at this point we have not yet incarpd more sophisticated methods,

that might yield faster filtering.

3.3.3 The Refine Step for Unconstrained DTW

The filter step ranks all database positigii, ;) in increasing order of the distance (or estimated
distance, when we use approximations such as PCA, or saghjetweenF' (X, j) and F'(Q).
The task of the refine step is to evaluate thejgamndidates, whergis a system parameter that
provides a trade-off between retrieval accuracy and redtiefficiency.

Algorithm 4.1 describes how this evaluation is performeihc8 candidate positionsX, j)
actually represent candidagéedpointsof a subsequence match, we can evaluate each such candi-
date endpoint by starting the DTW algorithm from that endpaind going backwards. In other
words, the end of the query is aligned with the candidate eintipand DTW is used to find the
optimal start (and corresponding matching cost) for thapemt.

If we do not put any constraints, the DTW algorithm will go thlé way back to the beginning
of the database sequence. However, subsequencEstladit are much longer tha@ are very
unlikely to be optimal matches fap. In our experiments99.7% out of the1000 queries used
in performance evaluation have an optimal match no longan tivice the length of the query.
Consequently, we consider that twice the length of the giseaypretty reasonable cut-off point,
and we do not allow DTW to consider longer matches.

One complication is a case where, as the DTW algorithm moaekvbards along the database
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sequence, the algorithm gets to another candidate endpeainihas not been evaluated yet. That
endpoint will need to be evaluated at some point anyway, scamesave time by evaluating it
now. In other words, while evaluating one endpoint, DTW ciamutaneously evaluate all other

endpoints that it finds along the way. The two adjustmentsviieganake to allow for that are that:

e The “sink state’Qg .+, matches candidate endpoints (that have not already beekett)e

with cost 0 and all other database positions with cost

e Ifin the process of evaluating a candidate endpgiwe find another candidate endpojht

we allow the DTW algorithm to look back further, up to positig — 2|Q| + 1.

The endpoint array in Algorithm 4.1 keeps track, for every pdir, j), of the endpoint that
corresponds to the cost storeddost[i|[j]. This is useful in the case where multiple candidate
endpoints are encountered, so that when the optimal matduaore is found (stored in variable
distance), we know what endpoint that matching score corresponds to.

Thecolumns variable, which is an output of Algorithm 4.1, measures thmhber of database
positions on which DTW is applied. These database posiiiacisde both each candidate end-
point and all other positiong for which cost[i|[j] is computed. Theolumns output is a very
good measure of how much time the refine step takes, compartt ttime it would take for
brute-force search, i.e., for applying the original DTWaithm as described in Section 5.1. In
the experiments, one of the main measures of EBSM efficiethey DPTW cell cost) is simply
defined as the ratio betweenlumns and the length.X | of the database.

We note that each application of DTW in Algorithm 4.1 stopsewlthe minimurncost|i][/]
overalli = 1,...,|Q| is higher than the minimum distance found so far. We do theabse any
cost[i][7 — 1] will be at least as high as the minimum (overd) of cost[i][;], except ifj — 1 is
also a candidate endpoint (in which case, it will also bewatad during the refine step).

The refine step concludes with a final alignment/verificatigeration, that evaluates, using
the original DTW algorithm, the area around the estimatdihtad subsequence match. In partic-
ular, if jenq is the estimated endpoint of the optimal match, we run the DaI§@rithm between

Q and X Uena—31QD:Uena+1@QD | The purpose of this final alignment operation is to corsebdndle
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cases whergy..+ andj.,q are off by a small amount (a fraction of the size(@f from the cor-
rect positions. This may arise when the optimal endpoint m@sncluded in the original set of

candidates obtained from the filter step, or when the lenfjtheooptimal match was longer than

2Ql.
3.4 Embedding Optimization

In this section, we present an approach for selecting neferebjects in order to improve the
quality of the embedding. The goal is to create an embeddingrevthe rankings of different
subsequences with respect to a query in the embedding spsemble the rankings of these
subseguences in the original space. Our approach is laagedglaptation of the method proposed
in [85].

The first step is based on the max variance heuristic, i.e.id#a that we should select sub-
sequences that cover the domain space (as much as possibleage distances to other subse-
guences with high variance. In particular, we select unilgrat randoml subsequences with
sizes betweerfminimum query size)/and maximum query siz&#om different locations in the
database sequence. Then, we compute the DTW distancescfopai of them Q(i?) values)
and we select thé subsequences with the highest variance in their distamcteetotherl — 1
subsequences. Thus we select an initial sétrefference objects.

The next step is to use a learning approach to select the &haf seference objects assuming
that we have a set of samples that is representative of they glistribution. The input to this
algorithm is a set ok reference objectRSK selected from the previous step, the number of final
reference objectd (whered < k) and a set of sample queri€l,. The main idea is to select
d out of thek reference objects so as to minimize the embedding error @sdample query set.
The embedding erroEE(Q) of a query(@ is defined as the number of vectaf§ X, j) in the
embedding space that the embedding of the qéi&1y) is closer to than it is to the embedding of
F(X,jg), wherejg is the endpoint of the optimal subsequence mataf of the database.

Initially, we selectd initial reference objects?,,..., R; and we create the embedding of

the database and the query €&t using the selected®;’s. Then, for each query, we compute
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the embedding error and we compute the sum of these errorsatlvqueries, i.e.,.SEE =
>_0cq. EE(Q). The nest step, is to consider a replacement ofitte reference object with
an object inRSK — {Ry,..., Ry}, and re-estimate theEE. If SEE is reduced, we make the
replacement and we continue with the néx#- 1)-th reference object. This process starts from
i = luntil ¢ = d. After we replace thel-th reference object we continue again with the first
reference object. The loop continues until the improvenoétihe SEE over all reference objects
falls below a threshold. The pseudo-code of the algorithsh@mwvn in Algorithm 4.2. To reduce
the computation overhead of the technique we use a samphe @iossible replacements in each
step. Thus, instead of considering all objectRi8K — { R, ..., R;} for replacement, we con-
sider only a sample of them. Furthermore, we use a sampleafdtabase entries to estimate the
SEE.

Note that the embedding optimization method described laggely follows the method de-
scribed in [85]. However, the approach in [85] was based erttiit distance, which is a metric,
and therefore a different optimization criterion was uskedparticular, in [85], reference objects
are selected based on the pruning power of each refereneetoBjnce DTW is not a metric, ref-
erence objects in our setting do not have pruning power,sgniee allow some incorrect results.

That is why we use the sum of errors as our optimization coiter
3.5 Handling Large Ranges of Query Lengths

In Section 3.2 and in Figure-B we have illustrated that, intuitively, when the quépyhas a
very close match’J in the database, we expe€f?(Q) and F?(X, j) to be similar, as long as
M (R, X, ) is a suffix of M(Q, X, 7). If we fix the length|Q| of the query, as the lengtltR| of
the reference object increases, it becomes more and meteg that M/ (R, X, j) will start before
the beginning of\/ (Q, X, j). In those cased; *(Q) and F%(X, j) can be very different, even in
the ideal case wher@ is identical toX .

In our experiments, the minimum query length is 152 and theimam query length is 426.
Figure 32 shows a histogram of the lengths of the 40 reference objeatsvere chosen by the

embedding optimization algorithm in our experiments. Weertbat smaller lengths have higher
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Figure 3-2: Distribution of lengths of the 40 reference objects chosgrthe
embedding optimization algorithm in our experiments.

frequencies in that histogram. We interpret that as engdiggidence for the argument that long
reference objects tend to be harmful when applied to shartigg, and it is better to have short
reference objects applied to long queries. Overall, as \a# ske in the experiments section, this
40-dimensional embedding provides very good performance.

Atthe same time, in any situation where there is a large wiffee in scale between the shortest
query length and the longest query length, we are presentadwilemma. While long reference
objects may hurt performance for short queries, using ohbrtsreference objects gives us very
little information about the really long queries. To be exagiven a reference obje® and a
database positiofiX, j), F®(X, j) only gives us information about subsequeddér, X, j). If
Q is a really long query and is a really short reference object, proximity betwe() and
F(X,7) cannot be interpreted as strong evidence of a good subsegjuegich for the entir€)
ending at positiory; it is simply strong evidence of a good subsequence matcimgad position
j for some smalbuffixof @ defined byM (R, Q, |Q)).

The simple solution in such cases is to use, for each quely,emnbedding dimensions cor-
responding to a subset of the chosen reference objects. sihget of reference objects should

have lengths that are not larger than the query length, amdatr too much smaller than the
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guery length either (e.g., no smaller than half the quergtlen To ensure that for any query
length there is a sufficient number of reference objectgregice object lengths can be split into
d ranges[r,rs), [rs,rs?),[rs?,rs®),... [rs?!,rs?), wherer is the minimum desired reference
object lengthys? is the highest desired reference object length, sisctletermined givem, d and
rs?. Then, we can constrain thiedimensional embedding so that for each rapgé rs*+1) there
is only one reference object with length in that range.

We do not use this approach in our experiments, becausentpesscheme of using all ref-
erence objects for all queries works well enough. Howevds important to have in mind the
limitations of this simple scheme, and we believe that tineedy we have outlined here is a good

starting point for addressing these limitations.
3.6 Experiments

We evaluate the proposed method on time series data obtlioradhe UCR Time Series Data
Mining Archive [35]. We compare our method to the two statdbe-art methods for subsequence

matching under unconstrained DTW.

¢ SPRING: the exact method proposed by Sakurai et al. [75], which epie DTW algo-

rithm as described in Section 3.1.3.

e Modified PDTW: a modification of the approximate method based on piecewjgeegate

approximation that was proposed by Keogh et al. [36].

Actually, as formulated in [36], PDTW (given a sampling dag&elds a specific accuracy and
efficiency, by applying DTW to smaller, subsampled versiohguery @ and database sequence
X. Even with the smallest possible sampling rate of 2, for Wwhie original PDTW cost i85%
of the cost of brute-force search, the original PDTW methad an accuracy rate of less than
50%. We modify the original PDTW so as to significantly improvese results, as follows: in
our modified PDTW, the original PDTW of [36] is used as a filtgristep, that quickly identifies
candidate endpoint positions, exactly as the proposed edirigs do for EBSM. We then apply

the refine step on top of the original PDTW rankings, usingekect same algorithm (Algorithm
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Name 50Words | Wafer | Yoga
Length of each time series 270 152 | 426
Size of “training set” (used 450 1000 | 300
by us as set of queries)

Number of time series used for 192 428 | 130

validation (subset of set of queries
Number of time series used for

~—

measuring performance (subset 258 572 | 170
of set of queries)
Size of “test set” (used 455 6164 | 3000

by us to generate the database)

Table 3.1: For each original UCR dataset we show the sizes of the otigiaia-
ing and test sets. We note that, in our experiments, we useriti@al training
sets to obtain queries for embedding optimization and fofopmance evalua-
tion, and we use the original test sets to generate the lotadpase sequence (of
length 2,337,778).

4.1) for the refine step that we use in EBSM. We will see in ttseilis that the modified PDTW
works very well, but still not as well as EBSM.

We do not make comparisons to the subsequence matchingaratf2al], because the method
in [24] is designed for indexing constrained DTW (whereaghi@ experiments we use uncon-
strained DTW), and thus would fail to identify any matchesoadn length is not equal to the query
length. As we will see in Section 3.6.3, the method in [24] lddail to identify optimal matches

for the majority of the queries.

3.6.1 Datasets

To create a large and diverse enough dataset, we combirezldhthe datasets from UCR Time
Series Data Mining Archive [35]. The three UCR datasetsWeatised are shown on Table 4.1.
Each of the three UCR datasets contains a test set and awgraet. As can be seen on
Table 4.1, the original split into training and test setsated test sets that were significantly larger
than the corresponding training sets, for two of the threasi#ds. In order to evaluate indexing
performance, we wanted to create a sufficiently large dagtand thus we generated our database

using the large test sets, and we used as queries the tiree gethe training sets.
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accuracy vs. DTW cell cost for PDTW and EBSM accuracy vs. retrieval runtime cost for PDTW and EBSM
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Figure 3-3: The top figure measures efficiency using the DTW cell cost, and
the bottom figure measures efficiency using the retrievaimencost. The costs
shown are average costs over our test set of 1000 querie® that SPRING,
being an exact method, corresponds to a single point (netrsba these figures),
with perfect accuracy 1 and maximal DTW cell cost 1 and re#tieuntime cost

1.

More specifically, our database is a single time sekigshat was generated by concatenating
all time series in the original test sets: 455 time serieenfjth 270 from the 50Words dataset,
6164 time series of length 152 from the Wafer dataset, an@ 8@fe series of length 426 from
the Yoga dataset. The length | of the database is obviously the sum of lengths of all these ti
series, which adds up to 2,337,778.

Our set of queries was the set of time series in the origirahitng sets of the three UCR
datasets. In total, this set includes 1750 time series. Wioraly chose 750 of those time series
as a validation set of queries, that was used for embedditigpizption using Algorithm 4.2. The
remaining 1000 queries were used to evaluate indexing iedoce. Naturally, the set of 1000

queries used for performance evaluation was completefpidisfrom the set of queries used

during embedding optimization.

3.6.2 Performance Measures

Our method is approximate, meaning that it does not guagdiniding the optimal subsequence

match for each query. The two key measures of performanchkisncbntext are accuracy and
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Figure 3-4: We note that a significant fraction of the optimal matchesehav
lengths that are not identical to the query length.
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Figure 3-5: The top figure measures efficiency using the DTW cell cost, and
the bottom figure measures efficiency using the retrievaimencost. The costs
shown are average costs over our test set of 1000 queries.

efficiency. Accuracy is simply the percentage of queriesuinavaluation set for which the optimal

subsequence match was successfully retrieved. Efficiemntype evaluated using two measures:

e DTW cell cost: For each query), the DTW cell cost is the ratio of number of celi$[;]
visited by Algorithm 4.1 over number of cellg|[j] using the SPRING method (for the

SPRING method, this number is the product of query length detdbase length). For
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accuracy vs. DTW cell cost for for different embedding construction methods accuracy vs. retrieval runtime cost for different embedding construction methods
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Figure 3-6: The top figure measures efficiency using the DTW cell cost, and
the bottom figure measures efficiency using the retrievaimencost. The costs
shown are average costs over our test set of 1000 queries.

PDTW with sampling rate, we addsl2 to this ratio, to reflect the cost of running the DTW
algorithm between the subsampled query and the subsamaladase. For the entire test

set of 1000 queries, we report the average DTW cell cost divquaries.

e Retrieval runtime cost: For each query), given an indexing method, the retrieval runtime
cost is the ratio of total retrieval time for that query usithgit indexing method over the
total retrieval time attained for that query using the SPRIethod. For the entire test set,
we report the average retrieval runtime cost over all 100€rigs. While runtime is harder
to analyze, as it depends on diverse things such as cachengim®ory bus bandwidth, etc.,
runtime is also a more fair measure for comparing EBSM to PDas\it includes the costs
of both the filter step and the refine step. The DTW cell cosbiiga the cost of the filter

step for EBSM.

We remind the reader that the SPRING method simply uses éimelastd DTW algorithm of
Section 3.1.3. Consequently, by definition, the DTW cellt@dsSPRING is always 1, and the
retrieval runtime cost of SPRING is always 1. The actual agerrunning time of the SPRING
method over all queries we used for performance evaluatias: w.43 sec/query for queries of

length 152, 7.23 sec/query for queries of length 270, and8Qldec/query for queries of length 426.
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The system was implemented in C++, and run on an AMD Opter@0 &E processor running at
2.8GHz.

Trade-offs between accuracy and efficiency can be obtaieedeasily, for both EBSM and
the modified PDTW, by changing parameteof the refine step (see Algorithm 4.1). Increasing
the value ofp increases accuracy, but decreases efficiency, by incgeasitih the DTW cell cost
and the running time.

We should emphasize the runtime retrieval cost dependseorettieval method, the data set,
the implementation, and the system platform. On the othed hitae DTW cell cost only depends
on the retrieval method and the data set; different implagaigms of the same method should
produce the same results (or very similar, when random elsaice involved) on the same data set

regardless of the system platform or any implementationildet

3.6.3 Results

We compare EBSM to modified PDTW and SPRING. We note that tHeIIS8 method guar-
antees finding the optimal subsequence match, whereas etb&BHTW (like EBSM) is an ap-
proximate method. For EBSM, unless otherwise indicatedysesl a 40-dimensional embedding,
with a sampling rate of 9. For the embedding optimizationcpture of Section 4.5, we used
parameterg = 1755 (I was the number of candidate reference objects before melaciing the
maximum variance criterion) ankl = 1000 (k was the number of candidate reference objects
selected based on the maximum variance criterion). Theitigitime for the above settings was
approximately3.5 hours.

Figure 33 shows the trade-offs of accuracy versus efficiency acHieVée note that EBSM
provides very good trade-offs between accuracy and retriegst. Also, EBSM significantly
outperforms the modified PDTW, in terms of both DTW cell casd aetrieval runtime cost. For
many accuracy settings, EBSM attains costs smaller by arfa€®2 or more compared to PDTW.
As highlights, for99.5% retrieval accuracy our method is about 21 times faster tHARING
(retrieval runtime cost = 0.046), and f60% retrieval accuracy our method is about 47 times

faster than SPRING (retrieval runtime cost = 0.021).
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Figure 34 shows a histogram of the length of the optimal subsequeratehnfior each query,
as a fraction of the length of that query. The statistics fits histogram were collected from all
1000 queries used for performance evaluation. We see ttaiugh for the majority of cases the
match length is fairly close to the query length, it is only fominority of queries that the match
length is exactly equal to the query length. We should natettie subsequence matching method
of [24] would fail to identify any matches whose length is mofual to the query length. As a
result, it would not be meaningful to compare the perforneaotour method versus the method
in [24] for this dataset.

Figure 35 shows how the performance of EBSM varies with different giamy rates. For
all results in that figure, 40-dimensional embeddings wesedyuoptimized using Algorithm 4.2.
Sampling rates between 1 and 15 all produced pretty simil&Wxell costs for EBSM, but a
sampling rate of 23 produced noticeably worse DTW cell cosigerms of retrieval runtime, a
sampling rate of 1 performed much worse compared to sampdites of 9 and 15, because the
cost of the filter step is much higher for sampling rate 1. thenber of vector comparisons is
equal to the length of the database divided by the samplieg ra

Figure 36 compares different methods for embedding constructioar af results in that
figure, 40-dimensional embeddings and a sampling rate ofré wsed. We notice that selecting
reference objects using the max variance heuristic (istnguonly the first two lines of Algorithm
4.2) improves performance significantly compared to randetaction. Using the full Algorithm
4.2 for embedding construction improves performance everem

Figure 37 shows how the performance of EBSM varies with different edaing dimen-
sionality, for optimized (using Algorithm 4.2) and unoptmad embeddings. For all results in
that figure, a sampling rate of 9 was used. For optimized edibgd, in terms of DTW cell
cost, performance clearly improves with increased din@mradity up to about 40 dimensions, and
does not change much between 40 and 160. Actually, 160 diorengive a somewhat worse
DTW cell cost compared to 40 dimensions, providing evidetheg our embedding optimization
method suffers from a mild effect of overfitting as the numb&dimensions increases. When

reference objects are selected randomly, overfitting isamoissue. As we see in Figure73 a
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160-dimensional unoptimized embedding yields a signiflgdower DTW cell cost than lower-
dimensional unoptimized embeddings.

In terms of offline preprocessing costs, selecting 40 ref@esequences using Algorithm 4.2
took about 3 hours, and computing the 40-dimensional embegdd the database took about 240
seconds.

Code and datasets for duplicating the experiments deschieee are publicly available on our

project website, at two mirror sites:
¢ http://cs-people.bu.edu/panagpap/ebsm/

e http://crystal.uta.edu/ athitsos/ebsm/

3.6.4 Replication of EBSM on other datasets

In order to run EBSM on a time series dataset, a few paramege to be set. These parameters

are: k (number of time series sequences used in the initial staffgedfaining phase) (number

of database candidates to be evaluated),dafenbedding dimensionality). For the datasets used
in our experiments, we have tested different values of tipesameters and determined the ones
with the best retrieval runtime. These parameters howeavrerdataset-dependent, meaning that
EBSM might require a different setting of these parametersefch given dataset, to guarantee

best retrieval runtime.

Suppose that an individual wants to use EBSM for a given tienies dataset. EBSM should
be tuned so as to achieve best performance in terms of rtrierntime. For the training phase,
one approach is to ask the user to provide a sample of queniarsto those expected when
EBSM will be running online. Half of those queries will be dder training and the other half for
validation purposes. After settifgto be a large number, e.g@, 000 reference sequences, Algo-
rithm 3.2 will be applied to determine the optimal reference sequefaedifferent dimensionality
valuesd. Thed andp values with the best retrieval runtime on the validationcdetueries will be
chosen for the online phase of EBSM.

Another approach is to sét d, andp to an initial value empirically chosen based on datasets
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Figure 3-7: The plots on the left measure efficiency using the DTW celk,cos
and the plots on the right measure efficiency using the ketrieintime cost. The
costs shown are average costs over our test set of 1000 gudife top plots
show results for embeddings optimized using Algorithm 4The bottom plots
show results for embeddings with randomly selected refararjects.

seen so far. Then, these parameters can be updated in a@ waimer. For the set of queries seen
so far we can keep track of the distribution of their pairndistances. When their distances start
increasing in variance, this means that possibly a new typeeries has entered our system and
thus it needs to be trained accordingly. Algoritl3r@ can be invoked to determine new values for

the parameters that yield the best retrieval runtime fomie query sample.
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3.7 Summary

EBSM was shown to significantly outperform the current stdtéhe-art methods for subsequence
matching under unconstrained DTW. At the same time, the ddeging embeddings to speed up
subsequence matching opens up several directions foi@uaitnvestigation, both for improving
performance under unconstrained DTW, and for extendingctimeent formulation to additional
settings.

The discussion in this thesis has focused on finding the aptiobsequence match for each
query. It is pretty straightforward to also apply our method retrieving top-k subsequence
matches: we simply modify the refine step to return the k-bstpoint-endpoint pairs. It will be

interesting to evaluate how accuracy and efficiency vari wit
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input

output

1 Q: query.
X database sequence.
sorted: an array of candidate endpointssorted in decreasing order pf
p: number of candidates to evaluate.

D (X, Jstart)s (X, jend): Start and end point of estimated best subsequence match.
distance: distance between query and estimated best subsequenze mat
columns: number of database positions evaluated by DTW.

for i = 1to | X|do
‘ unchecked[i] = 0;

end
fori=1topdo

‘ unchecked[sorted[i]] = 1;
end

distance = oo; columns = 0;
for k=1topdo

end

end
while (true) do

end

candidate = sorted[k];

if (unchecked[candidate] == 0) then continue
jJ = candidate + 1;

fori=|Q|+1to1do

cost[i][j] = oo;

J=J-L
if (candidate — j > 2 % |Q|) then break;
if (unchecked[j] == 1) then
‘ unchecked[j] = 0; candidate = j; cost[|Q| + 1][j] = 0; endpoint[|Q| + 1][j] = j;
else
‘ cost[|@Q| + 1][§] = oo; I j is not a candidate endpoint.
end
for i = |Q|to 1do
previous = {(Z+ 1? j)v (Z?j+ 1)7 (Z+ 1?.]+ 1)}!(plapj) = aJrgnlin(a,b)EpreviousCOSt[a] [b]!
cost[i][j] = |Qi — X;| + cost[p;][p;]; endpoint[i][j] = endpoint[p;][p;];
end
if (cost[1][j] < distance) then
‘ distance = cost[1][]; jstart = J:jena = endpoint[1][;];

end
columns = columns + 1;
if (min{costli][j]li =1,...,]|Q|} > distance) then break;

start = jona — 3|Q|; end = jena + |Q);
Adjust jstart @aNdjseart by running the DTW algorithm betweep and X start:end;

Algorithm 3.1. The refine step for unconstrained DTW.
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input : X: database sequence.
Qs: training query set.
d: embedding dimensionality.
RSK: initial set of k reference subsequences.

output : R: set ofd reference subsequences.

I select d reference sequences with highest variance fisk R
R={Rs,.,Rq|R; € RSK with mazimum variance}
CreateEmbedding(R, X);
oldSEE = 0;
fori=1t0|Qg| do

‘ oldSEE+ = FE(Qsli]);
end
i=1
while (true) do
Il consider replacing?; with another reference object
CandR = RSK — R;
for i = 0to [CandR)| do
CreateEmbedding(R — {R;} + {CandR][i]}, X);
newSEE = 0;
for i =1to |Qg| do

‘ newSEE+ = EE(Qs[i]);
end
if (newSEE < oldSEE) then

R; = CandR]Jil;
oldSEE = newSEE;

end
end
j=(j modd)+1;

end

Algorithm 3.2. The training algorithm for selection of reference objects.
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Chapter 4

Bidirectional Embedding-based Subsequence Matching in
Time Series Databases

The main focus of this chapter is time series similarity seamder the constrained dynamic time
warping (cDTW) similarity measure. A new embedding (BSEY&ined that differs from the

one used in EBSM in that it is constructed using both starteampoint matches of the reference
sequences. Exploiting the additional constraints of cDit\¥, powerful enough to achieve very
high efficiency even without training, as opposed to EBSMe Témainder of this chapter is
organized as follows: first, some background is providediom tseries similarity search under
cDTW, then BSE is described in more detail, and finally an erpental analysis on the proposed

methods is presented.
4.1 Background: The cDTW Algorithm

Constrained DTW (cDTW) is obtained from DTW simply by plagian additional constraint,
which narrows down the set of positions in one sequence #ratbe matched with a specific
position in the other sequence.

Consider the definition of DTW given in section 3.1.3. Givewarping widthw, this con-

straint is defined as follows:
D;j(Q,X)=o0if i —j| >w. 4.2)

The term “Sakoe-Chiba band” is often used to characterieese of(i, j) positions for which
D; ; is not infinite. Notice that ifw = 0, cDTW becomes thd., distance. While a simple

modification of DTW, cDTW has been shown to be significantlyrenefficient than DTW for full
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sequence matching [34], and to also produce more meaningftdhing scores [72].

Given the above definitions, the subsequence matchiofa databas& is the subsequence
Xopt = (Xj, .-, Xjtig-1) that minimizesD(Q, Xt ). Similarly to other approaches for sub-
sequence matching under cDTW, namely_KBogh [34] and DTK [56], we require that the sub-
sequence match have the same length as the query. A simptaapgdor finding the subsequence
match ofQ) is the sliding-window approach: we simply compute the miaitgicost betweer) and
every subsequence &f that has lengthQ|.

The LB_Keogh [34] method speeds up the sliding window approacknddy orders of magni-
tude, by computing an efficient lower bound of the matchingt,cat can be used to reject many
subsequences without computing the exact cDTW cost bet@emmd those subsequences. With
respect to LBKeogh, which is an exact method, the method proposed inlibisid can be seen
as an approximate alternative for quickly rejecting manydidate subsequences; in our method,
accuracy can be easily traded for efficiency, so as to actigyreficantly larger speedups than

LB_Keogh.
4.2 Bidirectional Subsequence Embeddings

In this section we introduce Bidirectional Subsequence &idmgs (BSE), a new embedding-
based method for subsequence matching under cDTW. Folip[8if| and [56], we require that
the length of the subsequence match has to be equal to thelgaogth.

Our starting point is similar to that of EBSM: we use referesequences to define 1D em-
beddings. Given a reference sequeit;eand given the definition in Section 4.1 of the matching

costD for cDTW, we define a 1D embeddirig” as follows:

Q) { D(R, (Qig—jae1:--Quap) i IR < 1@ w2
0 otherwise

P S w3
0 otherwise

If we compare the above two equations with the corresponelingtions?? and?? for EBSM,
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we notice two important differences: first, if the refereseguence is longer than the query, then
the query is mapped to zero. Second, the embedH@gX,j) depends not only oX andj, but
also on the length of the queryig(X,j) = 0 when the reference sequenBds longer tharng).
These changes have a simple interpretation: they effégtivece us to ignore, given a query,

any reference sequence longer tlian

If Ry,..., Ry ared reference sequences, therl-@imensional embedding/ is defined as
follows:
HQ) = (H™(Q),...,H™(Q)). (4.4)
Ho(X,j) = (HEHX,5),..., H3 (X, 5)) - (4.5)

Again, we note that the embedding of the database podifior) also depends on the length of
the query.

If @ is exactly identical to a database subsequence ending iibpasX, j*), then H(Q) =
Hg(X, 5). If we perturb that subsequence matcty. _g.1,. .., X;+) so that it is not identical
to @ anymore, we expect that small perturbations will lead tolsofenges inHg (X, j*), so
that H(Q) will still be fairly similar to Ho(X, j*). Therefore, embedding& are useful for
identifying candidate endpoints of subsequence matchesauge of that, we refer to embeddings
H asendpoint embeddings

We can easily adapt the definition of endpoint embedditige also define startpoint embed-
dingsG, that can be used to identify candidate start points of syesece matches. We define 1D
startpoint embedding§® and multidimensional startpoint embeddin@ss follows:

atQ) = (4.6)

0 otherwise

{ D(R.(Q1,.... Q) iR < Q|

6x ) = { D(R. (X, Xjym-1) i IR < [Q) “

0 otherwise
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G@Q = (G™Q).....G"(Q)). (4.8)

Go(X,j) = (GoHX,j),....GLY(X, 7). (4.9)

Suppose that we have chosen reference sequences and wsi@gdiguences we have defined
startpoint embedding& and endpoint embedding3g. Given a query, every possible subse-
quence matchiX;_g41),- -, X;) corresponds to a startpoint embeddifig (X,j — |Q| + 1)
and an endpoint embeddindq (X, j). If Q is similar to (X;_q(41---,X;) we expect both
G(Q) to be similar toGg (X, j — |Q] + 1), and H(Q) to be similar toHg (X, j). To capture the
correspondence, giveR), between startpoint embeddidg, (X, j — |@| + 1) and endpoint em-
beddingHg (X, j), we define a unified embeddirfg, which we call abidirectional subsequence
embeddingdBSE), that combines startpoint and endpoint embeddinge. BSE embedding’ is

simply a concatenation of the startpoint and endpoint emiibgd:

F(Q) = (GQ),HQ))- (4.10)
Fo(X,74) (Go(X,j —1Ql+1), He(X, 1)) - (4.11)

Figure 41 illustrates the construction of a BSE embedding given ayg@eand a reference
objectR.

A key difference between the EBSM method of [6] and the BSEhoeive have described
(in addition to the fact that EBSM is formulated for uncoasted DTW, and BSE is formulated
for cDTW) is that EBSM uses only the equivalent of endpoinbeddings. The question of how
to combine startpoint embeddings and endpoint embeddimgsdonstrained DTW is nontrivial.
On the other hand, using the constraints available in cDTV¢aveeasily combine startpoint and
endpoint embeddings, online, based on the length of theygAsmwe shall see in the experiments,

this combination leads to improved performance over usimyg endpoint embeddings.
4.3 Computing Database Embeddings

Suppose that we have choséreference sequencéy, . .., Ry. We note that applying Equations

4.7 and 4.3 to compute embeddingg (X, j) and Hy(X, j) requires knowing the query, or, at
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V
F'(Q) = (H7(Q), G"(Q)
4
» |GQ

Figure 4-1: An example that illustrates the construction of the bidie@l em-
bedding given a query Q and a reference object R.

least, the length of the query. At the same time, computig X, j) and Hy(X,j) online,

given a query, is too expensive (actually, even more expertbian using brute force to find the

subsequence match of the query), unless we can make use efpgecomputed information.
This precomputed information is in the form of query-indegent embedding& (X, j) and

H(X,j), that are simply defined by dropping the dependency on they deregth. Given reference

sequence®,, ..., R%, we define:
GH(X,j) = D(R,(Xj,...,Xj4r-1)) (4.12)
G(X,j) = (G"(X,j),....GM(X,])) (4.13)
H¥X,j) = D(R,(Xj_ g1 X;)) (4.14)
H(X,j) = (H™(X,)),...,HM(X,j)) (4.15)

Embeddings(X, j) and H(X, j) do not depend on the query, and so they can be precom-
puted off-line and stored. Given a queRy Go(X,j) andHg(X, j) can be obtained by putting
a 0 to all embedding dimensions corresponding to refereegaeences longer thap. Even more

simply, those embedding dimensions can be ignored when atimgpEuclidean distances.
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It is also important to note th&i® and H” are related as follows:
GR(X,j) = HY(X,j +|R| - 1) . (4.16)

This means that, in practice, only startpoint embeddiGg(, j) need to be precomputed and
stored. Embedding#/ (X, j), and the query-sensitive embeddingis(X,j), can be easily ob-
tained, online, from the precomputed embeddi6g, j). As we will see in the experiments, the
total retrieval time, that includes these online compota) is still much faster than the retrieval
time obtained using brute force or alternative exact methsth as LBKeogh [34] and DTK

[56].
4.4 Filter-and-Refined Retrieval

The BSE embeddings we have defined map each query object ehdlatabase position to a
d-dimensional vector space. Our goal is to design a methoeffaiently retrieving, given a
query, its best matching subsequence from the databaséisisdction we describe how such
embeddings are used in an online system.

The retrieval framework that we use is filter-and-refineiestl. Given a query, the retrieval
process consists of a filter step and a refine step [26]. A seawndidate matches is identified
during the filter step and it is forwarded to the refine stepoltdvaluates each of those candidates
using the original matching algorithm (cDTW in our case).eTdandidate that best matches the
query is identified and reported during the refine step.

The goal in filter-and-refine retrieval is to improve retag\efficiency with small, or zero
loss in retrieval accuracy. Retrieval efficiency dependshancost of the filter step and the cost of
evaluating candidates at the refine step. Retrieval acgugaen a query, depends on whether that
best match is included among the candidates evaluatedgdilminrefine step. If the best match
is among the candidates, the refine step will identify it agtdnn the correct result. Apparently,
reducing the number of candidates can significantly spedugipnethod, assuming that the best
match is included in the set of candidates.

Given this framework, embeddings can be used at the filter sted provide a computation-
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ally efficient way to quickly select a relatively small nuntaf candidates, as vector matching
operations are computationally cheaper than cDTW. In @ar, given embedding&, H, and
F = (G, H), defined as in the previous sectioiécan be used in a filter-and-refine framework
as follows:

Offline preprocessing step: Compute and store vectd¥(X, j) for every position; of the

database sequendé Computing embeddings (X, j), forj=1,...,|X

, is an off-line prepro-
cessing step that takes tirtg| X | 2% |R;|?).
Online retrieval system: Given a previously unseen query objéxtwe perform the following

three steps:

e Embedding step: computeG(Q) and H(Q), by measuring the cDTW matching cost be-
tween() and the reference sequences. Concate@éfg) and H(Q) to form vectorF'(Q).
Also, given( and the precompute@ (X, j), form vectorsGg(X, j), Ho(X, j), and
Fo (X, j)-

e Filter step: For some user-defined parameteselecty database positior(s, j) according
to the Euclidean distance between ed¢h( X, j) and F'(Q)). These database positions

define candidate subsequence mat¢¥es g1, - .., X;) for Q.

e Refine step: Evaluate the selected candidate subsequence matchesiativralproceeds
by first applying LBKeogh [34] to establish a lower bound of the matching cosd, taen
evaluating the exact cDTW matching cost for enough candigdéd assure that the best

matching candidate has been found, as described in [34].

We note that the refine step, instead of simply measuring B8\ matching cost between
the query and all candidate subsequence matches, usdé&ebfh to speed up computations.
LB_Keogh is an exact method, so it guarantees that, if the dostdisequence match has been
included in the candidates, the refine step will identifyt tmatch. At the same time, the correct
subseguence match will not be retrieved unless it has beetifiéd as a candidate during the filter
step. Our method is approximate, and it is possible thagdaore queries, the correct subsequence

match will be rejected during the filter step. At the same tithe user can easily trade accuracy
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for efficiency by adjusting parametgr which specifies how many candidates to select during the

filter step. Larger values gf lead to higher accuracy and lower efficiency.

4.4.1 Faster Filtering Using Sampling

The cost of the filter step can be a significant part of the dvestieval cost, as filtering involves
comparisons between high-dimensional vectors. In ourémpitation we use sampling, so as
to avoid comparing?(Q) to the embedding of every single database position. The hagin-
beddings are constructed, embeddings of nearby positsoe, asF (X, j) and Fo (X, j + 1),
tend to be very similar. A simple way to apply sampling is tmabe a parametey, and sam-
ple uniformly one out of every vectorsFy (X, j). GivenF(Q), we only compare it with vectors
Fo(X,1), Fo(X,149), Fo(X,1+426),. ... If, for a database positiofiX, j), its vectorFg (X, j)
was not sampled, we simply assign to that position the distéetweerf'(Q)) and the vector that

was actually sampled amoddg(X,j — [6/2]),..., Fo(X,j+ [6/2])}.
4.5 Embedding Optimization

In this section, we present two approaches for selectireyeate objects in order to improve the
quality of the embedding. These approaches have alreadydeseribed in [85] and [6]; in this
section we provide a short summary for easy reference.

The first approach is based on the max variance heuristicthe idea that we should select
reference sequences that cover the domain space (as muots#sg) and have distances to other
reference sequences with high variance. To define our refersequences, we select randoinly
subsequences with sizes betwéernimum query size)/@ndmaximum query sizeom different
locations in the database sequence. Then, we compute the diStsvices for each pair of them
(O(1?) values). Then, if we want reference sequences, we can simply choosd ubsequences
with the highest variance in their distances to the otherl subsequences.

The second approach is a learning approach that minimizeerttbedding error, defined as
follows: the embedding errdE(Q) of a query(Q is defined as the number of vectdrg (X, j) in

the embedding space that the embedding of the qié€y) is closer to than it is to the embedding
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of Fp(X, jg), wherejg is the endpoint of the optimal subsequence matcf) @i the database.
The embedding error on a sBt of sample queries is simply the sum of the individual embegldi
errors:SEE = > o, EE(Q).

Given a sample se), of queries, the embedding error is minimized via a greedipitrg
algorithm. First, we seleck candidate reference sequences using the max variancestieuri
Second, we select reference sequences randomly out of theandidates. Then, in the main
loop, we evaluate a large number of substitutions: eachtitutisn involves replacing one of the
selected! reference sequences with one of the remairkingd candidate reference sequences. If
that substitution reduces the embedding error it is kepgmtise it is reverted. This process stops
when the embedding error stops decreasing.

The advantage of using just the max variance heuristic tgih&raining set of queries needs to
be available during embedding construction. Obtainingreasentative training set of queries may
not always be feasible. Furthermore, the distribution afregs can vary widely over time, and a
training set that used to be representative during embgdutinstruction may not be representative
after a while. The max variance heuristic, by not requiringaing set of queries, does not suffer
from these drawbacks.

On the other hand, if the distribution of queries is statierdime, and if a representative set of
queries is available for training, then the learning metbatined above can be used to optimize
embedding performance. For the datasets used in our ex@@smthe max variance heuristic
is sufficient for constructing embeddings that give stdtdie-art results. The learning method

improves performance even further.
4.6 Experiments

The proposed method is evaluated on time series data obithimma the UCR Time Series Data
Mining Archive [35] and also on an additional random walk thetic dataset. Our method is

compared to two state-of-the-art methods for subsequemdéehmg under constrained DTW:

e LB _Keogh with sliding window: Given a query of length®|, a sliding window of sizéQ)|

scans the time series database, performing thd<eBgh lower bounding technique at each
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Name 50Words| Wafer | Yoga
Length of each time series 270 152 | 426
Size of “training set” (used 450 1000 | 300

by us as set of queries)

Number of time series used
for embedding optimization 192 428 | 130
(subset of set of queries)
Number of time series used far

measuring performance (subsget 258 572 | 170
of set of queries)
Size of “test set” (used 450 1000 | 300

by us to generate the databasg)

Table 4.1: For each original UCR dataset we show the sizes of the otiginia-
ing and test sets. We note that, in our experiments, we userifji@al training
sets to obtain queries for embedding optimization and fofopmance evalua-
tion, and we use the original test sets to generate the lotadpase sequence (of
length 2337778).

step.

e DTK: the exact subsequence matching method proposed in [56].oWehmat this method
has been designed to work for external memory, but here weateait on main memory
datasets. Therefore, first we buffer the complete index immmeemory and then we run the

queries. Thus, all the operations are executed in main memor

Both BSE and LBKeogh were implemented in C++. The code for DTK has been oédai
from the authors [56]. All experiments were run on an AMD Qpte8220 SE processor running
at 2.8GHz.

The main focus of the experimental evaluation is to demaresthe main contributions of our
work and the robustness of the proposed method with respegtary size and warping width. In

particular, our experiments demonstrate:

¢ significant speedups, at the cost of modest loss in retram@lracy, compared to the exact

methods LBKeogh [34] and DTK [56].

¢ the performance gains of bidirectional embeddings, coeth&r using only endpoint em-
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beddings, as done in [6].

¢ the effect of training in the new embedding scheme, and titdtiat competitive results are

obtained even when not using training.
e the robustness of our method with respect to query size angingawidth.

4.6.1 Datasets

To create a large and diverse enough dataset, we combirezldhthe datasets from UCR Time
Series Data Mining Archive [35]. The three UCR datasets weatised are shown on Table 4.1.

Each of the three UCR datasets contains a test set and awgraet. As can be seen on
Table 4.1, the original split into training and test setsated test sets that were significantly larger
than the corresponding training sets, for two of the thretasigs. In order to evaluate indexing
performance, we wanted to create a sufficiently large dawkand thus we generated our database
using the large test sets, and we used as queries the tires gethe training sets.

More specifically, our database is a single time sekigshat was generated by concatenating
all time series in the original test sets: 455 time serieenfth 450 from the 50Words dataset,
6164 time series of length 152 from the Wafer dataset, an@ 86@ series from the Yoga dataset.
The length| X | of the database is obviously the sum of length of all these Beries, which adds
up to 2337778.

Our set of queries was the set of time series in the origirahitng set of the three UCR
datasets. Intotal, this set includes 1750 time series. 7&{bse queries were set aside and used as
a sample set of queries for the learning method discusseeatids 4.5, that performs embedding
optimization. We should emphasize that embedding cortgiruasing the max variance heuristic
did not use that sample set at all; only the learning methed tise sample set. The remaining
1000 queries were used for performance evaluation of alhots.

To further evaluate the robustness of BSE we created a randalkn synthetic dataset. In
this dataset the database time sefesvas generated as follows: for each valligwe produce

a random real number and if r is positive, X; = X;_1 + 0.005, elseX; = X;_1 — 0.005. X
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Figure 4-2: Warping width is 5% of the query size. The cell cost is alsonghtor
LB _Keogh (corresponding to 100% accuracy). The cell cost foK¥I18.73%.
The retrieval runtime is 8.21 sec for LReogh, and 17.93 sec for DTK.
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Figure 4-3: Dimensionality =40 and sampling rate 9. Warping width is 5%
of the query size. Results are also shown forKBogh, as horizontal bars cor-
responding to the costs for 100% retrieval accuracy. Theoosit for DTK is
18.73%, and the retrieval runtime for DTK is 17.93 sec.

is set tol.5. Queries were generated in the same way. The query sizavasi® 100 to 1000 in

increments ofl00. We usedl 00 queries per query size.

4.6.2 Performance Measures

Our method is approximate, meaning that it does not guaediriding the optimal subsequence

match for each query. The two key measures of performanchkisncbntext are accuracy and
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Accuracy | BSE40-9| EE40-9| DTK | LB_Keogh
100% 18.73%| 0.72%
99% 1.58% | 6.77%
98% 1.24% | 5.79%
95% 1.02% | 3.66%
90% 0.61% | 2.44%
85% 0.45% | 2.08%
80% 0.38% | 1.59%

Table 4.2: Note that DTK and LBKeogh are exact and thus have 100% retrieval

accuracy.

Accuracy | BSE40-9| EE40-9| DTK | LB_Keogh
100% 17.93 8.21
99% 0.52 2.40

98% 0.46 2.02

95% 0.37 1.31

90% 0.29 0.82

85% 0.26 0.71

80% 0.21 0.60

Table 4.3: Note that DTK and LBKeogh are exact and thus have 100% retrieval
accuracy.

efficiency. Accuracy is simply the percentage of queriesuinevaluation set for which the optimal
subsequence match was successfully retrieved. Efficiesntype measured based on thatime
costin seconds for each query. We report the average runtimef@ostich group of queries. To
compute the runtime cost for a query, we measure the totdhmerof the entire retrieval algorithm
for that query, including both the filter and the refine stdgfficiency can also be measured based
on thecell costfor each query, which is the percentage of the number of dapositions visited

during the refine step divided by the database size.

Query Size| BSE40-9 (sec) LB_Keogh (sec)
152 0.04 4.36

270 0.04 7.87

426 0.04 13.51

Table 4.4: Runtime (in seconds) for the filter step of BSE with sampliate®
and dimensionalityt0 and for the filter step of LBKeogh for the UCR dataset.
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Trade-offs between accuracy and efficiency can be obtaiegdeasily, for BSE, by changing
parametep of the refine step (see Section 4.4). Increasing the valpardreases accuracy, but

decreases efficiency, by increasing both cell cost ancevetrruntime.

4.6.3 Parameter Settings

One parameter that we need to set is the dimensionality oB&ie embedding. Unless noted
otherwise, we use a 40-dimensional embedding. In Sectb We discuss the effect of changing
the dimensionality of the embedding.

The other parameter that we need to set for our methad tlse sampling rate discussed in
Section 4.4.1. Unless noted otherwise, we éise 9. In Section 4.6.5 we discuss the effect of

different sampling rates.

4.6.4 Comparison to Other Methods

In this section, BSE is compared with the two aforementicstatk-of-the-art methods, LReogh

and DTK.

Accuracy vs. Efficiency

Applying LB_Keogh with a sliding window on the UCR dataset yielded a cadt ©f0.72% with
an average retrieval runtime 8f21 seconds per query. On the other hand, the performance of
DTK is poor in terms of both cell costi§.73%) and retrieval runtime1(7.93 sec). In Figures
4.2 and 43 we see results with respect to cell cost and retrieval metithe results are also
summarized in Table®?, ??, 4.2, and 4.3. For an accuracy®f% BSE embeddings (constructed
via learning) are faster than LBeogh by a factor o£2.2 in terms of retrieval runtime. For an
accuracy of80%, BSE embeddings (constructed via learning) yield a speedfiuwo orders of
magitude compared to LBKeogh and DTK. As seen in Table 4.3, BSE embeddings constiuct
via max variance (and thus not requiring a training set ofigsg also perform well, being faster
by a factor of 15.8 and 39.1 over LReogh, for retrieval accurac§9% and80% respectively.

In terms of cell cost LBKeogh appears to have a better performance for accuraaes 84/%.

However, the cell cost does not consider the cost of the fitegs. The filter step of LB<eogh is
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much more expensive than that of BSE. This can be seen in Fabfer the UCR dataset.

Robustness

Here we present experimental results that demonstratéhbgterformance of BSE embeddings
is more robust than that of LIKeogh and DTK, with respect to changes in the warping width
and changes in the length of queries.

Table 4.5 shows the effect of the warping widttfor both LB_Keogh and BSE, as measured
on the random walk dataset. For BSE, we selected an accufa@y”g a dimensionality of
40 and a sampling rate ¢f. It can be seen that as increases, the pruning power of LiBeogh
deteriorates fast. A similar observation is also made if.[T8e runtime of BSE also deteriorates,
but at a much smaller pace: increasindgrom 0.5% of the query length t@0% of the query length
makes LBKeogh 32 times slower, and BSE about 13 times slower.

The effect of query size is studied next, by setting the waypvidth to5% and varying the
guery size from100 to 1000. Tables 4.6 and 4.7 summarize our findings regarding cell cos
and retrieval runtime respectively, for the two competitoethods and BSE, as measured on the
random walk dataset. For BSE, we selected an accura®p%f a dimensionality off0 and
a sampling rate of). For query sizes up t800 the performance of DTK is improved as the
guery sizes increases; after that point, DTK deterioraipilly as the query size keeps increasing.
Overall, increasing the query length from 100 to 1000 makBsKleogh more than 250 times
slower, DTK about 38 times slower, and BSE about 8.6 timeselpBSE clearly demonstrates

the slowest deterioration with increasing query length.

4.6.5 Further Analysis of our Method

This section provides a further analysis of BSE. We comp&@E Bmbeddings with endpoint em-
beddings (EE), we compare performance of BSE embeddingsiapt using the max variance
heuristic vs. BSE embeddings optimized using learning,vemdnalyze the effects of dimension-

ality and sampling rate on the performance of BSE.
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LB_Keogh BSE
Warping width | Cell Cost| Runtime | Cell Cost| Runtime
0.5% 0.52% 1.91 0.81% 0.23
1.0% 0.93% 2.87 0.82% 0.34
2.5% 1.61% 4.65 0.89% 0.55
5.0% 2.68% 7.89 0.97% 0.81
10.0% 4.68% 12.62 1.02% 1.36
15.0% 10.19% | 25.33 1.16% 2.09
20.0% 25.22% | 61.73 1.27% 2.86

Table 4.5: Query size is set td00.

Query size| BSE40-9 (95%) LB_Keogh| DTK
100 0.375% 0.0672% | 12.14%
200 0.552% 0.1972% | 10.53%
300 0.765% 0.9082% | 9.55%
400 0.974% 2.6834% | 13.63%
500 1.183% 3.8764% | 17.34%
600 1.212% 6.8772% | 28.35%
700 1.491% 7.8972% | 36.86%
800 1.527% 13.7644% | 52.88%
900 1.753% 32.0987% | 77.71%
1000 1.849% 46.5289% | 89.35%

Table 4.6: Warping width is set to 5% of the query size. For BSE we show the
cell costs for 95% accuracy.

Query size| BSE40-9 (95%)| LB_Keogh| DTK
100 0.66 1.19 15.89
200 0.72 3.42 11.23
300 0.75 5.32 9.52
400 0.81 8.57 13.56
500 0.97 14.35 19.66
600 1.35 25.92 42.33
700 1.84 49.22 84.47
800 2.58 98.80 156.22
900 3.22 173.33 | 311.18
1000 5.65 302.57 | 609.56

Table 4.7: Warping width is set to 5% of the query size. For BSE we show the
cell costs for 95% accuracy.
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Bidirectional vs. Endpoint Embeddings

The performance of BSE is compared with that of using onlypeintt embeddings (denoted as
EE embeddings). In FiguresZand 43 we can see the performance of BSE vs. EE with respect to
cell cost and retrieval runtime; the results are also sunradrin Tables 4.2, and 4.3. In terms of
retrieval runtime, BSE embeddings outperform EE embeddangoss the board. The difference
is even more pronounced for embeddings optimized via maamves; as Table 4.3 shows, BSE
embeddings lead to runtimes between 2.5 and 4.5 times sroaligared to the runtimes attained

using EE embeddings.

Effect of Training

In Figures 42 and 43, and Tables 4.2, and 4.3 we see the results obtained usiBg®BBeddings
constructed using each of the two methods described indpetth: the max variance heuristic and
the greedy learning algorithm that uses a training set ofigseWe see that the greedy learning
algorithm invariably produces better results.

It is also interesting to compare how using learning aff®8E embeddings and EE em-
beddings. Comparing Figures24and 43 it can be seen that the learning method affects the
performance of BSE embeddings much less than it affects éhfermance of EE embeddings.
For example, fop9% accuracy the retrieval runtime is decreased by a factdrbfor BSE em-
beddings, and by a factor df44 for EE embeddings. In these experiments, BSE embeddings are
shown to be less reliant on learning than EE embeddings. i lais additional advantage of BSE

embeddings, as the learning method is not always a reatigtion, as discussed in Section 4.5.

Effect of Dimensionality

For this set of experiments, the sampling rate was sétand the dimensionality of the embed-
ding varied from10 to 160. In Figure 44 we can see the performance of BSE (optimized using
learning) with respect to accuracy vs. cell cost and regitieintime respectively. We note that an
embedding of dimensionality0 produces the best accuracy with respect to both cell costeand

trieval runtime. The fact that the cell cost (which exclutlescost of comparing high-dimensional
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Figure 4-4: Sampling rate was set tband the dimensionality of the embedding
varies from10 to 160. Warping width is 5% of the query size.

vectors) increases as the dimensionality goes from 40 tan80L&0 is evidence that the learning
algorithm suffers from overfitting, i.e., it tries to fit thatning data too much. Using more training

data is the standard way to avoid overfitting.

Effect of Sampling

Finally, the effect of sampling on both cell cost and reaiesuntime is studied. For this set of
experiments, the dimensionality of the embedding was sdbtand the sampling rate varied
from 1 to 15. In Figure 45 we can see a comparison of accuracy vs. cell cost and mtriev
runtime respectively for BSE. Based on the experimentalueti@an on the UCR dataset, for the
best dimensionality determined in the previous paragrdphbest sampling rate s At the same
time, we note that sampling rates of 5, 7, 9, and 11 give redaitly similar to each other, and
thus the performance of BSE embeddings is not particulahsisive to the choice of sampling

rate.

4.6.6 Replication of BSE on other datasets

For the same reasons discussed in section 3.6.4 of chapker &e now going to describe how
to set the parameters for BSE, given a new time series datdséte that as opposed to EBSM,

BSE does not require any training.
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Figure 4-5: The dimensionality of the embedding is setdtband the sampling
rate varies froml to 15. Warping width is 5% of the query size. Training has
been performed on BSE.

BSE should be set up so that best performance can be achietemis of retrieval runtime.
For the reference sequence selection phase, in a similanenas EBSM, one approach is to ask
the user to provide a sample of queries similar to those égdechen BSE will be running online.
Applying the maximum variance heuristic, out/of= 2, 000 reference sequences taken randomly
from the database, thogesequences with the maximum variance will be selected. Ttieselp
values with the best retrieval runtime on the query samplibsiassigned for the online phase of
BSE.

Another approach is to s&t d, andp to an initial value empirically chosen based on datasets
seen so far. Then, during the online phase, for the set ofapiseen so far, we can keep track of
the distribution of their pairwise distances. When thestalices start increasing in variance (i.e.
possibly a new type of queries has entered the system), thermia variance heuristic can be
applied and determine new values for the parameters, iethalsies can achieve a better retrieval

runtime on the new query sample.

4.7 Summary

We have described Bidirectional Subsequence Embeddin§E)Ba novel method for efficient

subseguence matching of time series under constrained BE®&.embeddings take advantage of
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the constraints of cDTW to associate, given a query, a véoteach possible subsequence match
in the database. By comparing the embedding of the querye@®thbeddings of the possible
subseguence matches, a relatively short number of cardidaiiches can be efficiently identified.
Experiments with real and synthetic datasets demonstratedmputational savings obtained
using BSE, and a speedup of one to two orders of magnitude a@thjpo the state-of-the-art exact
methods for this problem, at the cost of some modest losgnieval accuracy. A speedup of over
one order of magnitude is obtained while still maintainir@@®retrieval accuracy. A speedup
of two orders of magnitude is achieved at the cost of gettmgect results for only 80% of the
queries. Furthermore, BSE embeddings are shown to be samilly more robust than competing

methods in their ability to tolerate large warping widthsldarge query lengths.
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Chapter 5

Reference-based Alignment of Sequence Databases

Two reference-based methods (one exact and one approXifoat@milarity search in large se-
guence databases are described in this chapter. Both nsatisech set of reference sequences to
map each database point to a real value. The similarity nneased for this case is the edit dis-
tance (ED) and thus, due to its metric property, lower bouraatsbe defined and used to efficiently
filter candidate matches. A letter collapsing techniqudss ased to improve performance.

In the remainder of this chapter, we provide some backgraamdimilarity search in string
databases (mainly DNA sequence databases), then we desgiliwo methods in more detail
and finally present the experimental evaluation of our mgghagainst state-of-the-art biological

sequence similarity search methods.
5.1 Background

In this section we define the edit distance and Smith-Watermeasures used to evaluate sim-
ilarity between strings (e.g. DNA). We use the terms “stfiagd “sequence” interchangeably.

Throughout this section, the following notation will be dse

e (), X are sequences of lengf?| and| X | respectively.) denotes a query sequence axid
denotes a database sequence. Typiddlly>> |Q|. Without loss of generality we assume
that the database contains a single very long sequence,sican always concatenate all

the strings stored in the database into a single string.
e Subscripts denote elements of sequences. For exa@pie(Q1, - .., Q|g))-

e Forany sequenc& = (X1,...,X|x|), given start and end positionsandt respectively,

we can definesubsequence& ** to be the sequenceXs, . .., X;), i.e., the part ofX that
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starts at positios and ends at positioh Then, X is thei-th element ofX*?, and is equal

0 Xspi1.

5.1.1 The Edit Distance

The edit distance\ (A, B) is a function measuring hodissimilar two stringsA and B are. For
a more general definition of the edit distance we need to padost for each editing operation,

i.e., for each insertion, deletion, and substitution. s thesis we denote these costs as follows:
e (i, denotes the cost of the edit operation that inserts a lettetring A.
e Cya denotes the cost of the edit operation that deletes a |etter $tring A.

e Cou(Aj, By) denotes the cost of the edit operation that replaces ldttavith some letter

B, # A;.

In the general case) (A, B) is the smallest possible cost of convertidgto B using inser-
tions, deletions, and substitutions. In the most commosierrof ED,Ci,s = Cyeal = Csup, = 1,
and in that case\(A, B) is the smallest total number of insertions, deletions, amosttu-
tions that can converdd to B. For simplicity, in the remainder of this thesis we assurnt th
Cins = Cgel = Csup = 1.

Given a query sequencg and a database sequenkethe best (optimalyubsequence match
of Q in X is the subsequencE*! that minimizesA(Q, X **). We define the subsequence match-

ing costD(Q, X) as:
D(Q, X) = min{A(Q, X*")|s € {1,...,t},t € {1,...,|X|}}. (5.1)

In describing how to comput®(Q, X) and the corresponding subsequence matéh, it is
useful to define an auxiliary distand®’-!, as the smallest possible distance betw&ér and a

suffix X5 of X 1:

D@, X) = min{A(Q*, X*[s € {1,...,t}}. (5.2)
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We also define an auxiliary functiofi(@;, X;) that denotes the cost of matching letégy
with letter X;:
Csub if Q 7é Xt
C(Qj, Xy) = ! (5.3)
0 ifQ; =X,
ComputingD(Q, X) and the corresponding best subsequence matchiof X can be per-

formed using dynamic programming, by computiny!(Q, X) for j = 1,...,|Q| andt =

1,...,]Q|, as follows:
initialization:
D% =0, D70 = 00, D% =0. (5.4)
loop:
Dj7t_1(Qa X) + C(ins
D’HQ,X) =min{ Di=14(Q, X) + Cyel (5.5)
Dj_Lt_l(Qv X) + C(Qy> Xt)
(G=1,...,|Q:t=1,...,|X]).
termination:
t" = argmint:LmJX‘{D‘Q"t(Q,X)} . (5.6)
D(Q,X) = D" (Q, X) . (5.7)

It should be clear that evaluatidg(Q, X ) takes timeD(|Q||X|). We should also note that the
optimal matching sequence can be found by keeping tracladh application of Equation 5.5, of
the predecessor selected for edght), and by backtracking, at termination, starting at position

(el ).
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5.1.2 The Smith-Waterman Measure

A similarity measure\ (A, B), in contrast to a distance measure, measuresdimnilar two strings

A andB are. IfA(A, B) = 0 thenA and B are maximally different from each other. The Smith-
Waterman measure [79] is a frequently used similarity meagur strings. In order to specify
the Smith-Waterman measure, we need to choose valygsy, Psu, and Py,p, that stand for the

following terms:

e P.icn IS @ positive number that denotes the reward for a letteA dfeing equal to the

corresponding letter i3

e P, is a negative number that denotes the penalty for a lettet bking substituted by

another letter.

e P,y is a negative number that denotes the penalty for deletiegter lof A, or inserting a

letter to A.

In the remainder of the thesis, and in our experiments, weRysg., = 2, Psup, = —1, and
P,., = —1, which are commonly used choices for these parameters.

Given a query string) and a database string, finding the best (optimaljocal alignment
between) and X is the task of finding subsequena@$’ and X ** that maximizeA (Q%/, X 5),
We define the Smith-Waterman similarity scdr&?, X) as:

L(Q,X) = max{A(QY, X*Ni e {1,...,7},7 € {1,...,]Q|},

sefl,... . thtef{l,. . |X|}}. (5.8)

In describing how to computé& (@, X) and the corresponding optimally matching subse-
quences)’ and X*?, it is useful to define an auxiliary sco+, as the highest matching score

between a suffix)?/ of Q' and asuffix X ** of X%

LYQ, X) = max{A(Q", X¥Y|i e {1,...,5},s € {1,...,t}}. (5.9)
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We also define an auxiliary functiaf(Q;, X;) that denotes the reward or penalty of matching
letter Q; with letter X;:
P(Qy. X0) = { fow T 7 R (5.10)
Praten  1f Q5 = Xi
Given @ and X, the Smith-Waterman algorithm identifies optimal subseqasQ*’ and
X*J and the corresponding similarity scofdQ, X) = A(Q%*/, X**). The Smith-Waterman

algorithm is very similar to the algorithm computing the tedistance, and also proceeds using

dynamic programming, by computing/’ for j = 1,...,|Q| andt = 1,...,|Q)|, as follows:
initialization:
L0=0,L% =0. (5.11)
LY@, X) + Pyap
. LI7Q, X) + Pya
LY(Q, X) = max , (@ %)+ Feap (5.12)
LI=HHQ, X) + P(Qy, Xy)
0
G=1,...,|Q;t=1,...,|X]) .
termination:
L@ X)=  max  {IJYQ,X)}. (5.13)

-7:17“‘7‘Q‘7t:17"'7‘X|

Similar to the edit distance, Smith-Waterman takes tioéQ|| X

), and finding the subse-

guences of) and X that give the maximum similarity score can be easily donagibacktrack-

ing.
5.2 RBSA for Fixed Query Length

In this section, we describe the proposed RBSA (Refererase® String Alignment) method for
gueries of fixed length. We denote that fixed lengtly.ds Section 5.3, we will generalize RBSA

to queries of arbitrary length.
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RBSA follows a filter-and-refine approach. A set of randonerefice sequences is generated.
For each database position, an alignment score with eaelerefe sequence is computed, and
an embedding-based index is constructed using those scoies embedding is used for fast
filtering of database positions that can lead to a potenta&tim Those positions are then passed
to the refine step where the computationally expensive mtistaneasure (edit distance or Smith-

Waterman) is applied.

5.2.1 Embedding Queries and Database Positions

Let @ be a query sequence of fixed len¢ffl = ¢, andX be the database sequence. At the core of
our method is an embedding definition, that we use to prodneedimensiona(1) mappings,
that map every query sequen@eto a number, and that map every database positirt) also to
a number. We will use thesd) mappings to obtain bounds for the optimal subsequence imgtch
or local alignment scorendingat each database positioR, t), and then we will use those bounds
to efficiently prune significant portions of the database.

Let R be a sequence of the same fixed lengtis the queries. Using we can define a 1D
embeddingF*, mapping each query sequence into a real nuntb&Q), and also mapping each

database positiofiX, t) into a real numbefF (X, ¢):

FR(Q) _ D\RI,IQI(RQ). (5.14)

FE(X,t) = DIFYR X). (5.15)

The above equations can be interpreted intuitively asvialothe embedding™?(Q) of the
query is the smallest edit distance matchiRgo a suffix of Q. The embedding"?(X,t) of
database positiofX, ¢) is the smallest edit distance matchiRgo a suffix of X 1. If a very close
match toQ appears as(* in X, then we expecF?(Q) to be very similar toF (X, t). Any

sequenceR used to define an embeddiiitf® is called areference sequence
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5.2.2 Reference-based Bounds for the Edit Distance and SimtVaterman

Let @ be a query stringX be the database sequence, ame a position onX. As a reminder,
A(A, B) is the edit distance between stringsand B, andD!?*(Q, X) is the smallest edit dis-
tance betweer®) and any subsequence a&f ending at position X,¢). To establish an exact
reference-based filtering method for the subsequence mgtphoblem, our first step is to estab-
lish a lower bound foD!?14(Q, X) based orF? (Q) and Ff (X, t), whereR; is any reference
sequence.

Proposition 1 For any query(, database positior{X,t), and reference sequende;, define

1 ,(Q) as follows.
Ibgn(Q) = FF(X,t) — FR(Q). (5.16)

Then, it holds that:
IEp(Q) < DIC(Q, X), (5.17)

and thuslb’gD(Q) is a lower bound for the smallest possible edit distance betw) and a
subsequence of ending at(X, ¢).

Proof: First, we need to make the following auxiliary definitions:

M(A,B,t) = argminges_; {A(A, B*")}, (5.18)
Q = M(R;,Q,[Q). (5.19)
In words, M (A, B, t) is the subsequence &f ending at positior{ B, t) that has the smallest edit

distance fromA, and@’ is the suffix ofQ that has the smallest edit distance frétn Then, we

can prove Proposition 1 as follows:

(@) = FR(X,t) - FR(Q) (5.20)
— AR, M(Ri, X, 1)) — A(R;, Q) (5.21)
< AR, M(Q, X)) — AR, Q")) (5.22)
< AM(Q,X,1),Q") (5.23)
< AMQ X,1),Q) (5.24)
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To justify the above derivation, we note the following:

e A(R;, M(R;, X,t)) < A(R;, M(Q', X,t)) since both
M(R;, X,t) and M (Q’, X, t) are subsequences &f ending at( X, t), and M (R;, X, t) is

defined as the subsequenceXgnding at X, t) that has the smallest distance wih.

e The edit distance is metric, so the triangle inequality bpldndA(R;, M (Q’, X,t)) —
A(Rlv Ql) < A(M(Q/7 Xv t)v Ql)

e We can proveA (M (Q', X,t),Q") < A(M(Q, X,t),Q) by considering that when we per-
form the minimal set of edit operations that conv@rto M (@, X, t), those same operations
suffice to convert)’ (which is a suffix ofQ)) to a suffix of M (Q, X, t). Therefore, the small-
est possible edit distance betwe@hand a subsequence &f ending at( X, ¢) cannot be

greater tham\ (M (Q, X, t), Q).

O

If we are actually interested in retrieving optimal matchesler the Smith-Waterman simi-
larity measure, as opposed to the edit distance, we cary easilert the lower bound of the edit
distance to an upper bound for Smith-Waterman. We can pravétlowing:

Proposition 2 For any query and database positiofX, ), defineubiS’tW(Q) as follows:

ubgiy (Q) = 21Q| — Wb (Q)- (5.25)

Suppose that we define a Smith-Waterman similarity measing B,ich = 2, Pyap = —1, and
P, = —1. Then, it holds that:

ubiy (@) > LI9H(Q, X), (5.26)

where LI?l(Q, X) is the highest Smith-Waterman score betwéeand a subsequence of
ending at( X, ). ThUSubiS’tW(Q) is an upper bound for the Smith-Waterman score betwgand
any subsequence &f ending at( X, ¢).

Proof: First, we need to make the following auxiliary definition:

MSW(Qa X7 t) = argmaXXS:qs:l,...,t{A(Q7 XS:t)}' (527)
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In words, Mgsw (Q, X, t) is the subsequence &f ending at position( X, ¢) that has the highest

Smith-Waterman score witf). Then, we can prove Proposition 2 as follows:

ubgy (Q) = 2Q| — IbyH(Q) (5.28)
> 2|Q| - A(Q, M(Q, X, 1) (5.29)
> 2/Q| - AQ, Msw (Q, X, 1)) (5.30)
> LI9(Q, X) (5.31)

In justifying the above derivation, the most important sgeephowing tha2|Q| —
A(Q, Msw (Q, X, t)) > LIQM(Q, X). The argument for that is as follows: Consider the op-
timal alignment (according to Smith-Waterman) betwé&gmand Mgy (Q, X, t). If Q perfectly
matchesM sy (@, X, t), then the alignment score HQ)/|, since we get a reward dfyatc, = 2
for every letter of@Q). Any mismatch and gap in the optimal alignment causes tigamient score
to decrement by at least 1. Therefore, we know that the numiberismatches and gaps in the
optimal alignment cannot be greater tr2l)| — LI9l*(Q, X). At the same time, the optimal
alignment betweer® and Mgy (Q, X, t) defines a sequence of edit operations (substitutions for
mismatches and insertions or deletions for gaps) that etesgeto Mgy (Q, X, t). Consequently,
the edit distance betweep and Mgy (Q, X, t)) cannot exceed|Q| — LI®M(Q, X).

g

Notice that since Smith-Waterman is a similarity score (antla distance measure) upper
bounds established efficiently during a filtering step candss to prune away candidate database
matches, while guaranteeing that the correct answer wilbegruned. This is quite analogous to
the use of lower bounds for efficient filtering when looking fbe best matches under a distance

measure.

5.2.3 Offline Selection of Reference Sequences

We have shown how to use reference-based alignment scargrited for database positions and

for the query in order to obtain lower bounds of the edit dis&or upper bounds for the Smith-
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Waterman similarity score between the query and subsegsestaling at each database position.
We say that, for a querg), database positioqX, j) is pruned usingR;, if lblgD(Q) > dq, where
10%,(Q) is as defined in Eq. 5.16, aridis the maximum amount (expressed as fraction of the
guery length) of difference between the query and its sulbbscp match that we are willing to
tolerate. We note that, if the best match has an edit distahoeore thanjg from (), we are not
interested in retrieving that match.

The filter step of RBSA, which is described in Section 5.2rdinps database positions using
information from reference sequences. However, given ayg@e it would take too much time
to check for each database position if it can be pruned usiegyesingle reference sequence.
Therefore, we perform an off-line preprocessing step, atlwkve identify, for every database
position, the best reference sequences (out of thousanagadfble sequences) to use for that
position. Intuitively, reference sequencBsfor which F%(X, j) is high (meaning thar is far
from any subsequence &f ending at positiory) tend to provide tighter lower bounds according
to Egq. 5.16. Our reference selection method is inspired by @ [85], although that approach
was proposed in the context of full sequence matching.

For the reference selection process, we use two sets: 1)&sgfic = {Q1, - - - ,Q|Qsample‘}
of randomly generated queries wil);| = ¢, and 2) a set of randomly generated reference objects
R ={Ry,..., R} with |R;| = q. For each database positioX, j), the set of reference objects
to use for that position are selected using a greedy apprddobe specifically, for each position
(X,7), we first choose reference objeR§ to be the reference sequengethat prunes position
(X, j) for the largest number of queries @.mpie. Then, the queries for whichX, j) is pruned
by le- are removed fronQg,mple. Similarly, we choose reference objaﬁﬁ. to be the reference
sequence that prunes positio(lX, ;) for the largest number of queries @yample, WhereQgample
has been modified to exclude queries for whichy, j) is pruned using the previously chosen
reference object®;, ..., R .

The final outcome is the s&" = {R{", ..., R[§,}, whereR " contains the topit reference
objects for positioflX, j). For each positioni X, j) we also store all values' ™ (X,9), fori =

1,..., K. The pseudocode for selecting reference objects for eattase position is given in
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Algorithm 1. We should note that the selection of referenbfats is an offline process and is

executed only once.

5.2.4 Filter Step

Next we describe the online behavior of RBSA at query timegigeries of fixed sizg. The re-
trieval process, givef), consists of a filter step and a refine step. Given a q@elits embeddings
FRi(Q) under all reference objects iR are computed. Then, for each database positiory),
eachR} € RI is considered, until either aR’ is found that prune$X, j), or all ki € RX
have been considered. In the latter case, pos(thnj) is a candidate endpoint of a subsequence

match, that will be considered by the refine step. The filtep & described in Algorithm 2.

5.2.5 Refine Step

The filter step produces seindidates that contains endpoints of possible database matches for
the query. At the refine step, each of those candidates isiateal. Naturally, depending on
whether we want to retrieve the best matches according tedhalistance or Smith-Waterman,
we use respectively the edit distance or Smith-Watermanatluate each candidate endpoint.

For the case of the edit distance, the refine step is showngari#hm 3. It is fairly straight-

forward to adapt that algorithm to work for the Smith-Watamsimilarity measure.

5.2.6 Alphabet Collapsing

The filtering power of RBSA is improved by employing an alpbibollapsing technique. In
particular, for the case of DNA sequences the alphabgtis {A,C,G,T}. We can reduce the
alphabet size to 2 by applying four possible collapsing s

Schemed): No collapsing (letters remain unchanged).

Schemel: A andC map toX, G andT map toY'.

Scheme2: A andG map toX, C andT map toY'.

Scheme3: A andT map toX, C'andG map toY'.
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A combination of the four schemes is used to improve the ffiltepower of RBSA. Lefl; be
a transformation function that converts an input stringrdeiin alphabek to its corresponding
string defined in scheme In the offline selection of reference sequences for eactbdat posi-
tion (Section 5.2.3), each reference sequelice R eventually generates four different reference
sequencesTy(R), T1(R), To(R) andT3(R). The same transformations are also applied to the
database thus producifig(X), 71 (X), T»(X) andT5(X).

Reference object;(R) can be used to obtain bounds and prune database pogifion$ by
comparingF”: (%) (T;(Q)) with
FT(R)(Ty(X),)). Bounds obtained using any of the transformatidisare still true for the
untransformed sequences, since we can easily show thaanfoof the fourT;'s, the edit dis-
tanceA(A, B) > A(T;(A),T;(B)). The offline process for reference selection considers each
theT;(R)'s as a separate candidate reference sequence and tymbathges, for each database
position, reference sequences obtained from all lettdajgsing schemes.

At query time, the queryy is also converted into each of the four representatidin$()),
T1(Q), T>(Q) and T3(Q). Filtering is modified to include these transformations. r Each
database positiofiX, j), lower bounds are computed for edth

We have found empirically that we get more pruning power bylkiming bounds from the
untransformed sequences and bounds from the transfornogersees obtained using letter col-
lapsing. Reference objects obtained via letter collaphinge a larger variance in their distances
to database subsequences, thus leading to better pruniagsh®ld underline that in [85] it is
also noted (in the context of full sequence matching) thahimg power improves when using
reference objects whose distances to database sequewnedsiditzer variance, but that approach

did not use letter collapsing.
5.3 RBSA for Variable Query Length

The discussion in Section 5.2 addressed the problem ofexffiogtrieval of subsequence matches
for query sequences of fixed lengihIn this section we describe how to build upon the solutions

proposed for the fixed query length problem to obtain sohgifor the variable query length
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problem. We assume that we have already prepared an indelesasbed in Section 5.2.3, for
processing queries of fixed sigeln our experimentsy = 40.

Let @ be a query. In principleg) can have arbitrary size, but for simplicity we assume that
|Q| = agq, for somea € N. No constraints are placed en and« can be different for each
query. At query time, the query is broken into non-overlagpsegments)’®, ..., Q* of sizeq.

We now proceed to describe two different methods, one esact,one approximate, for using
results obtained for the different segmefisin order to identify the subsequence match for the

entire query.

5.3.1 Exact RBSA

The exact version of RBSA is based on a simple observation) fifas a subsequence match
with edit distance< §|Q|, then at least one of the query segme@tshas a subsequence match
with edit distance< dq. This can be seen by observing that each of the edit opesattoat
transforms() into its subsequence match is applied to one of the indiviguery segments. After
all edit operations have been applied, each query seg@ienas been transformed to a database
subsequence. If each query segm@hheeded more thasy edit operations to be converted to its
optimal database match, then the entire query would need thanadq = §|Q)| operations to be
converted to its optimal database match.

Let X** be a subsequence match for the entire qugrywith distance< §|Q|. Then, we
can show that there exists at least @pethat has, withinX*, a subsequence matéh®'*" with
distance< dq, and such that’ € {t — g(a — i) — §|Q|,...,t — qg(a — i) + §|Q|}. Conversely,
if for some segmen®)’ we have found a match *'" with distance< dq, this generates a set of
candidate endpoints for a subsequence match of the engrg.dlhis set of candidate endpoints
is equal to{t’ + q(a — 1) — 6|Q], ..., t + q(a — i) + 5|Q|}.

Let sorted be the union of the sets of candidate endpoints generateddhomatches of all
segments)?, and let's assume thabrted is sorted in descending order. Then, evaluating those
candidate endpoints can be done by invoking Algorithm 3, ite exact same algorithm that was

used for the refine step of the fixed-query-length versiorshtiuld be clear from the preceding
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paragraphs that this algorithm is guaranteed to identifydarrect subsequence match, as long
as that match is within edit distané&?| from Q. As in the fixed-length case, Algorithm 3 can
easily be adapted to use Smith-Waterman instead of theistlinde, so as to identify the optimal

Smith-Waterman match for the query (but still assuming ahdistance< §|Q| from Q).

5.3.2 Approximate RBSA

In the exact version of RBSA we try to find subsequence matehtbm dq edit distance of each
of the a query segment§)®. An important question, whose answer forms the foundatiothe
approximate version of RBSA, is the following: what if, inatl of using all segmen€g’, we used
a single randond)’? What would be the probability of the endpoint of the subsega match for
the entire query being included in the set of candidate eintfbgenerated by that sing@’? It
turns out, as we prove next, that under some fairly reasenasdumptions, this probability is at
least50%.

In order to prove the above claim, we need to make some assura@bout the distribution
of edit operations needed to convéltinto its optimal subsequence match. We denote the best

subsequence match ¢fin X asM(Q, X). Since we assume that(Q, M (Q, X)) < §|Q

, at
mostd|@)| edit operations are needed to conv@rto M (Q, X). Each of these edit operations
is applied to one and only one of thesegments)’ that the query has been partitioned to. We
denote by~ the query segment where theth edit operation is applied, and B(c,,, = i) the

probability that then-th edit operation is applied to segmepit.

Proposition 3 Let( be a query, and//(Q, X) be the optimal subsequence matcti)ah X. We
assume thaf\ (Q, M (Q, X))

=n < 6|Q|, « > 4, P(c,,, = 1) is uniform over alli, and the distributionsP(c¢,,, = i) corre-
sponding to allm are mutually independent. In other words, we assume thadligtabution of

¢, does not depend on amy, for n = m. Consider the optimal sequence of edit operations that
convertQ to M (Q, X). Given anyQ?, there is a probability of at least0% that, out of those edit
operations, at mosiq edit operations are applied tQ".

Proof: The probability that exactly: out of then edit operations are applied t§’ follows

a binomial distribution, where we havetrials, “success” is the case where an edit operation is
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applied toQ?, and the probability of success for an individual trial (i.& specific edit operation)
is é The expected number of successes aveials is Z (as a remindewy is defined a$Q)|/q). If

a > 4, as we assume, the probability of success %25, and for that case it has been shown [23]
that there is at least &% probability that the number of successes will not exceeceitpected

valuen/a. Sincen < 6|Q)|, it follows thatZ < 5% = dq, and the probability that at mo&y edit

operations are applied @’ is at least0%.

0

Based on Proposition 3, by choosing a sin@fe and generating candidate endpoints for the
subsequence match of the entire query based on subsequatdeesretrieved fof)?, we have
a probability of at least0% to include the correct endpoint (i.e., the endpoint of thénoal
subsequence match for the entire query) in those candidHtdse correct point is not included
in those candidates, it follows that more thénedit operations were applied &'. In that case,
for anyj # 4, the probability that at mosiy edit operations are applied &’ is still at least0%,
and it is actually higher now that we know that more tlaredit operations were applied .

By extending that reasoning, if we generate candidate entdpfor the match of the entire
Q usingp segment)’, ..., Q", the probability of not including the correct endpoint irose
candidates is at mo%, and thus drops exponentially with respeciptolf the correct endpoint
is indeed included in those candidates, then the optimaesuuence match is guaranteed to be
identified using the same refine step as in exact RBSA, andAgamnithm 3. In our experiments,

we usep = 10, so that the probability of retrieving the correct resulaideas99.9%.
5.4 Experiments

The performance of RBSA is evaluated on biological datainbthfrom the NCBI repository.
RBSA is compared with state-of-the-art methods for strirefahing under the edit distance and
the Smith-Waterman similarity measure. With respect taettiedistance, we have compared with

Q-grams. With respect to Smith-Waterman, we have compaitd w

e BLASTZ2[2]: the expect valuéZ has been adjusted to achieve retrieval accuraciés %t
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98%, and100%. In the tables and figures that follow, this adjustment isotied as
BLASTX, which means that th& values have been adjusted to guaramt€g retrieval

accuracy compared to Smith-Waterman.
e BWT-SWI[43]: a local alignment method that guarant&e&’; retrieval accuracy.

For the purposes of the experimental evaluation, we dehetexact version of RBSA as E-
RBSA, and the approximate version as A-RBSA. For notatiorp@ses, the distance/similarity
measure (edit distance (ED) or Smith-Waterman (SW)) useldamefine step of RBSA is added
as a suffix at the end of each notation. For example, E-RBSAsHEDBe exact version of RBSA
using the edit distance at the refine step, whereas A-RBSAd8idtes the approximate version
of RBSA using Smith-Waterman at the refine step. In the falhgnsections, we use the term
RBS A to refer to our method in general. The other notation is ordgduto distinguish within

different versions of RBSA when needed.

5.4.1 Datasets

RBSA has been tested on Human Chromos@teThe size of this chromosome 3§,059,634
bases. For the experiments described in section 5.4.2, dtabake sequence consisted of the
first 184,309 bases of the chromosome. For the rest of the experimentsiatiadase sequence
consisted of the whole chromosome, and thus had a lengdh,0$9,634 letters. Queries have
been extracted from random chromosomes of the mouse gen®hei: size varied fromi0 to
10K nucleotides (i.e.40 to 10K letters) and their similarity to the database varied withia,
10%, and15% edit operations, which, as also discussed earlier, is @nede range of values
needed for the applications targeted by this thesis. Sksetsof queries have been created, one

for each combination of the above parameters. Each setinet# queries.

Performance Measures

The two key measures of performance in this context are acguand efficiency. E-RBSA is
exactmeaning that it is always guaranteed to find the optimal méickeach query. Hence its

accuracy is alway$00%. On the other hand, A-RBSA &pproximate, therefore we use the term
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Retrieval Accuracy (RA) to express the percentage of the correct nearest neightnansl over
the total number of queries. Efficiency is measured baseti®Retrieval Runtime Percentage

(RRP) for each query. RRP is defined as follows:

BSAi
rrp — _BBSAinsec ., (5.32)
brute force in sec

For our experiments the brute-force case is the full dyngmndgramming algorithm. Effi-
ciency is also measured based ondbk# costfor each query, which is the percentage of database
positions visited during the refine step.

Specifically, two sets of experiments have been performedthie first set, the edit distance
has been used at the refine step, whereas for the second whasenohith-Waterman similarity
measure. The system was implemented in C++, and run on an AptBr@nh 8220 SE processor
running at 2.8 GHz. For all the experiments, paraméteof Algorithm 1 was set td50. The
runtime of Algorithm1 to determine the bes$i reference sequences for a single database point
was approximatelg1 seconds, and for the whole Human Chromos@2é& was approximately

5 days.

5.4.2 Experimental Results

First we show the experimental performance of RBSA when tliedistance is used at the refine
step. In this case, the main competitors are the g-gram bastldods. Then, we compare the
performance of RBSA on Smith-Waterman against BLAST and BSVY. To provide a thorough
experimental analysis we show the performance of RBSA denisig the following factors: 1)
the effect of letter collapsing, 2) the effect of query sinel 4, and 3) the effect of the number of

reference objects used for the filter step.

Edit Distance: Comparison with Q-grams

The major competitors in the case of edit distance are theagrdpased approaches. Their in-
efficiency for long queries with a relatively large deviatitrom the database has already been

discussed earlier in this thesis. In Table 5.1 we show theit fhruning power deteriorates for
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gueries of size larger thar00 and for values ob that exceed%. For this experiment only, we
used a small dataset that included the fifgt,309 bases of Human Chromosord®2. The queries
had a match withih = 5%, 10%, and15%. The experiment was organized as follows: for each
query sizgQ|, we used a set of sliding window$' with size varying in|Q[(1 — 0), |Q](1 + J)].
The database was scanned usiigand all possible sequences were enumerated. For each query
size and$ value, we show the cell cost for the optimalalue. Clearly, for query sizes larger
than 100 or § values greater thah0%, the pruning power of g-grams deteriorates significantly,
rendering them inappropriate for such string searchesrgrelatring databases. Due to this obser-
vation, we did not perform any further experiments with grgrbased state-of-the-art methods for
subseguence matching. Also, an application of a full secgiematching g-gram based algorithm
like [47, 48] would not work either as these algorithms arsigieed for full sequence matching
(as pointed out by one of the authors of [47, 48]).

For the experiments described in the remainder of this aedtie database sequence is the
whole Human Chromosom22. Next, we show the performance of E-RBSA-ED in terms of
retrieval runtime percentage and cell cost for various geé&res and varioug values on Human
Chromosome&2. E-RBSA-ED is not significantly affected by the query sizeamrds its retrieval
runtime percentage. We also note that larger query sizestteamaller cell cost. This behavior
is expected since the longer the query size the more segwéhbe used for pruning; thus the
pruning power increases. With respectdtat is clear that, as the similarity of the query to the
database increases, E-RBSA-ED improves both in terms évat runtime percentage and cell

cost. Table 5.2 summarizes the results.

Effect of Alphabet Collapsing

Table 5.3 shows how alphabet collapsing affects the pedooma of E-RBSA-ED and E-RBSA-
SW. From the experiments we can see that applying alphaliapsimg can improve the perfor-
mance of E-RBSA in most cases by factorslgf and1.55 or more, in terms of retrieval runtime

percentage and cell cost respectively.
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Cell cost of E-RBSA-ED vs. Q-grams

Method | |Q)| 0=5% 0=10% 0=15%
Q-grams| 20 2.1% (q=9) | 8.2% (q=6) | 28.4% (g=4)
RBSA 40 0.55% 1.02% 1.47%

Q-grams| 40 | 3.2% (g=10) | 9.3% (g=7) | 31.9% (g=5)
Q-grams| 100 | 15.3% (g=15)| 27.4% (q=8)| 58.8% (q=6)
RBSA 200 0.32% 0.89% 1.22%

Q-grams| 200 | 32.9% (g=17)| 45.5% (q=9)| 73.7% (q=6)

Table 5.1: For E-RBSA-ED, alphabet collapsing has not been applied. gFo
grams, the besi value for each case is shown. Notice that the database used in
this experiment contains the firk84,309 nucleotides of Human Chromosor2

i.e. | X| = 184,309.

RRP of E-RBSA-ED

5 |Q[=40 | |Q]=200 | |Q|=2,000[ |Q|=10,000
15% | 3.49% | 3.50% | 3.52% 3.56%
10% | 0.89% | 0.91% | 0.91% 0.94%
5% | 0.27% | 0.28% | 0.28% 0.29%

Cell cost of E-RBSA-ED
0 |Q|=40 | |Q|=200 | |Q]=2,000| |Q|=10,000
15% | 1.12% | 1.01% 0.87% 0.76%
10% | 0.11% | 0.10% 0.088% 0.077%
5% 0.01% | 0.011% | 0.009% 0.008%

Table 5.2: The number of reference objects used at the filter stép.is

RBSA-SW: Comparison with BLAST and BWT-SW

For the remaining part of our experimental analysis, we $oon the performance of RBSA on
local alignment, i.e., when the Smith-Waterman similaritgasure is used at the refine step.
The performance of RBSA-SW is compared against two stateestrt local alignment meth-
ods, BLAST and BWT-SW, for various query sizes ahdalues. We also show the significant
improvement on both retrieval runtime percentage and aedt or the approximate version of
RBSA (i.e. A-RBSA-SW). For the following experiments, afjfiiet collapsing has been applied.
Notice that A-RBSA-SW has not been studied for query sifesnd200 since the number of pos-
sible chunks in both cases is extremely small to guarantégharétrieval accuracy. Our findings
are summarized in Tables 5.4 and 5.5. For clarity purpo$essame results are also shown in

Figure 51. It can be seen that A-RBSA outperforms BLAST by more thaoraer of magnitude
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RRP of E-RBSA-ED with Alphabet Collapsing
RBSA | |Q|=40 | |Q|=200 | |@Q|=2,000| |Q|=10,000
Coll. 2.342%)| 2.386% | 2.400% 2.473%
Uncoll. | 3.49% | 3.50% 3.52% 3.56%

Cell cost of E-RBSA-ED with Alphabet Collapsing
RBSA | |Q|=40 | |Q|=200 | |@Q|=2,000| |Q|=10,000
Caoll. 0.735%| 0.663% | 0.571% 0.499%
Uncoll. | 1.12% | 1.01% 0.87% 0.76%

RRP of E-RBSA-SW with Alphabet Collapsing
RBSA | |Q|=40 | |Q|=200 | |Q|=2,000| |Q|=10,000
Caoll. 2.630%| 2.679% | 2.695% 2.777%
Uncoll. | 3.579%| 3.638% | 3.660% 3.754%

Cell cost of E-RBSA-SW with Alphabet Collapsing
RBSA | |Q|=40 | |Q|=200 | |Q|=2,000| |Q|=10,000
Caoll. 0.826%| 0.745% | 0.641% 0.560%
Uncoll. | 1.358% | 1.224% | 1.055% 0.921%

Table 5.3: The first column describes whether alphabet collapsing bas bsed

(Coll.) or not Uncoll.). The number of reference objects used at the filter step

is 50.
for large queriesq, 000 and 10, 000). The retrieval accuracy of A-RBSA is 99.5% for all the
experiments described in this section. Bor 15% and10%, A-RBSA has a retrieval accuracy of
99.5% when|Q| = 2,000, and100% when|Q| = 10,000. Ford = 5%, A-RBSA achieved00%
accuracy for both query sizes. As regards BWT-SW, in termeetfeval runtime percentage it
outperforms BLAST and E-RBSA by over an order of magnitudgdy = 40 and is up to almost

3 times faster than BLAST fojQ| = 200. Its performance deteriorates, however|@sbecomes

larger.

RBSA-SW: Effect of the Number of Reference Obijects used for ikering

In the experiments we have seen so far, it is assumethaference objects are assigned to each
database position. In this section, we show the effect ohtlreber of reference objects assigned
per database point on the performance of RBSA-SW. We expetion two query size200 and
2,000 with § = 10%. Also for these experiments alphabet collapsing has begledp Table 5.6

summarizes our findings with respect to retrieval runtimec@stage and cell cost. Clearly as the
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RRP of RBSA-SW vs. BWT-SW and BLAST for= 15%
Method [Q]=40 | |Q[=200 | |Q[=2,000] |Q]=10,000
A-RBSA 0.476% | 0.086%
E-RBSA | 2.630%)| 2.679% | 2.695% | 2.777%
BWT-SW | 0.34% | 3.30% | 8.63% | 12.72%

BLASTO5 | 11.17%| 7.57% | 7.46% 7.84%
BLAST98 | 16.34%| 7.88% | 7.60% 8.11%
BLAST100 | 19.35%| 9.29% | 8.20% 9.66%
RRP of RBSA-SW vs. BWT-SW and BLAST for= 10%
Method |Q=40 | |Q]=200 | [Q|=2,000] |Q[=10,000
A-RBSA 0.087% | 0.018%

E-RBSA 0.481%| 0.490% | 0.493% 0.508%
BWT-SW | 0.204%| 2.600% | 6.889% 8.900%
BLAST95 | 4.623%| 3.133% | 3.086% 3.243%
BLAST98 | 6.783%| 3.271% | 3.155% 3.362%
BLAST100 | 8.251%| 3.965% | 3.498% 4.118%

RRP of RBSA-SW vs. BWT-SW and BLAST far= 5%
Method [Q]=40 | |Q[=200 | |Q[=2,000[ |Q]=10,000
A-RBSA 0.019% | 0.0053%
E-RBSA | 0.106%] 0.108% | 0.109% | 0.112%
BWT-SW | 0.083%| 0.688% | 2.170% | 5.460%
BLASTO5 | 4.293%| 2.910% | 2.866% | 3.011%
BLASTO8 | 6.231%)| 3.005% | 2.898% | 3.089%
BLAST100 | 7.437%)| 3.573% | 3.153% | 3.711%

Table 5.4: The number of reference objects used at the filter stép.iRResults
are shown fov = 15%, 10%, and5%.

number of reference objects decreases, both retrievdhrargercentage and cell cost deteriorate.
In particular, if less thaB0 reference objects are used, RBSA-SW outperforms the lfoute-
Smith-Waterman by a factor smaller thars, and for10 reference objects this factor is less than

2.

RBSA-SW: Experiment on Queries with Various§ Values

Finally we created a set of queries wherearies from1% to 15% in increments o2%. Two
query sizes have been studi@d() and2, 000. We have created one query set per query size using
different ¢ values. The total number of queries in each sdbis Also, 50 reference objects have

been used at the filter step. Results on retrieval runtimegogage and cell cost are summarized
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Cell cost of RBSA-SW vs. BWT-SW and BLAST for= 15%
Method |Q|=40 | |Q|=200 | |Q]=2,000| |Q|=10,000
A-RBSA 0.126% 0.024%
E-RBSA 0.826%| 0.745% | 0.641% 0.560%
BWT-SW 0.017%| 1.298% | 6.107% 7.347%
BLAST95 | 6.032% | 3.972% | 3.751% 4.641%

BLAST98 8.98% | 4.73% 4.55% 5.56%
BLAST100 | 9.35% | 5.87% 5.44% 6.6%
Cell cost of RBSA-SW vs. BWT-SW and BLAST for= 10%
Method |Q|=40 | |Q|=200 | |Q]=2,000| |Q|=10,000
A-RBSA 0.016 0.003%

E-RBSA 0.103%| 0.093% | 0.080% 0.070%
BWT-SW | 0.015% | 1.166% | 5.483% 6.596%
BLASTO95 | 4.974% | 3.175% | 2.793% 3.127%
BLAST98 | 7.917% | 4.170% | 4.011% 4.902%
BLAST100 | 9.862% | 4.936% | 4.574% 5.550%

Cell cost of RBSA-SW vs. BWT-SW and BLAST for= 5%
Method |Q|=40 | |Q|=200 | |Q]=2,000| |Q|=10,000
A-RBSA 0.001% 0.0002%
E-RBSA 0.010%| 0.009% | 0.008% 0.007%
BWT-SW 0.012%| 0.911% | 4.285% 5.155%
BLAST95 | 4.428%| 2.397% | 1.800% 2.512%
BLAST98 | 5.998%| 3.216% | 2.242% 3.123%
BLAST100 | 6.150% | 4.583% | 3.278% 3.479%

Table 5.5: The number of reference objects used at the filter stép.iRResults
are shown fov = 15%, 10%, and5%.

in Table 5.7. For the set of queries with size#00 we show the approximate version of RBSA.
At the refine step we have used the Smith-Waterman similanidasure. For both query sizes,
RBSA is at least one order of magnitude faster than BLAST aWwtressW. The retrieval accuracy
of A-RBSA i599.75%.

To summarize our findings, A-RBSA can support relativelygéaiqueries without signifi-
cant loss in retrieval accuracy and outperforms curreriestithe-art local alignment methods
(BLAST and BWT-SW) by over an order of magnitude in terms dfiexal runtime percentage.
For completeness we should mention that the average r&trientime for the brute-force local
alignment computation for queries of siz@, 200, 2,000 and10, 000 is 28.5, 132.4, 1317.8 and

6620.1 seconds respectively.
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RRP of RBSA vs. BWT-SW and BLAST with delta 15% Cell Cost of RBSA vs. BWT-SW and BLAST vith delta 15%
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Figure 5-1: The number of reference objects used at the filter sté.isAlso,
5 = 15% on top row,6 = 10% on middle row, andd = 5% on bottom row.
Notice that A-RBSA has only been applied for query size2,000 and 10, 000
and for the latter it can be barely seen due to its low cost.

5.4.3 Replication of RBSA on other datasets

Suppose that an individual wants to use RBSA for a given DNtaskt. RBSA should be tuned
accordingly so as to provide best performance in terms dek&ll runtime and accuracy.

For the offline phase, as opposed to EBSM and BSE, there isewfoethe user to provide
any sample queries. This is due to the small DNA alphabet (fee bases). In fact, in the
experiments described in this section, all reference sempgeand queries used for the reference
sequence selection process have been randomly generated.

Thus, given a new DNA database, we can generate a set of raqdenes and follow the

reference sequence selection described in Algorishinfor a fixed reference sequence size (this
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RRP and cell cost of RBSA-SW varying # of references

RRP Cell Cost
# of referenced |Q]=200 | |Q]=2,000 | |Q]=200 | |Q|=2,000
50 0.490% | 0.493% | 0.093% | 0.080%
40 1.143% | 1.149% | 0.217% | 0.187%
30 7.873% | 7.920% | 1.498% | 1.290%
20 28.440%| 28.609% | 5.411% | 4.661%
10 64.743%| 65.126% | 9.012% | 8.931%

Table 5.6: RRP and cell cost of E-RBSA-SW (exact RBSA using Smith-
Waterman at the refine step) varying the number of referemjects assigned
to each database point.

RRP and cell cost of RBSA-SW vs. BWT-SW and BLAST
RRP Cell Cost
Method |Q|=200| |Q]=2,000| |Q|=200| |Q|=2,000
RBSA 0.530% | 0.098% | 0.088% 0.018%
BWT-SW 1.370% | 2.958% | 0.873% 4.233%
BLAST95 2.727% | 2.406% | 2.651% 2.640%
BLAST98 2.575% | 2.483% | 3.823% 3.815%
BLAST100 | 3.927% | 3.304% | 4.431% 4.454%

Table 5.7: For query size&, 000 we have used A-RBSA (the approximate version
of RBSA using Smith-Waterman at the refine step). The numbeeference
objects used at the filter stepfs.

can be initially set t&0) and fixedK' = 50 (number of reference sequences for each database
position). Notice that this reference selection procegaires a significant amount of time (for the
experimental settings described in this section, the tisexad to assign reference sequences to
one database position is approximatelyseconds. Parametértarget dissimilarity percentage)
should be given by the user. The above process should beeddeadifferent reference sequence

sizes and differenk’s and determine those values with the best pruning powex fiven dataset.

5.5 Summary

The proposed RBSA method uses precomputed alignment sbetegen reference sequences
and database positions in order to efficiently identifyegiva quen(, a relatively small number
of candidate subsequence matches in the database. RBSA @aach version, that is guaranteed

to find the correct subsequence match, as long as that sdrssxjmatch has edit distance of at
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mostd|Q)| to the query. In our experiments, for query size200, the exact version of RBSA
outperforms state-of-the-art competitors such as BLASWV,IlBand g-grams.

Furthermore, an approximate version of RBSA has been deedlthat, for large queries, can
efficiently identify candidate matches by considering cahglatively small number of fixed-size
segments of the query. We show that, under some pretty tieassumptions, the probability of
failing to retrieve the correct match for approximate RB3ajb exponentially with the number of
guery segment that we consider. It is important to note tenhumber of query segments needed
to guarantee a certain probability of success is indepdrafehe actual length of the query, which
makes the approximate version scale very well with largeyglemgths. The approximate version
achieves significant speedups over the exact version of RB8& produces speedups of one to

two orders of magnitude compared to the best results frostiagi competitors fofQ| > 2, 000.
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input . Qsample: a set of randomly generated queries.
R: a set of reference objects.
{FRi(X, j)}: the embeddings of all positiors(, j) under allR; € R;.
X database sequence.
o0: target dissimilarity percentage.
K: number of reference objects to be returned for each dagghasition.

output : {Rf}: for each database positid#, j), the setRf of K reference objects to use for that
position.

for j =1to|X|do
/l'initialize R to the empty set.
RE ={};
/I insert all queries into a lisD.
Q = liSt(Qsample);
forr=1to K do
/I initialize pruned to zero.
pruned = uchar||R|] = 0;
for eachR; € R do
for k=1to|Q|do
/I compute lower bound for thie;, query.
if (1b%5(Q) > ¢d) then pruned[i]++;

end
end
BestRef = null; BestPrune = —1;
fori=1to|R|do

if pruned[i] > BestPrune then

BestPrune = pruned[i];
‘ BestRef = R;;

end
end
RIE = RE U {BestRef};
/l remove pruned queries frof usingQPrune
Q = EliminatePruned(Q, j, BestRef);

end
end

Algorithm 1. Selecting reference sequences per databasegiton.
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input : Q: query.
X database sequence.
o0: target dissimilarity percentage.
FR(Q) = {FF(Q): embeddings of querg.
{Rf}: the set of reference sequences selected for pogifion).
{FT(X,j)}: embedding of each database posit{dfi j) under each reference object
R e RE.

output : candidates: database positions to be passed to the refine step.

I/l insert all database positions into listndidates.
candidates = {1,...,|X|};
I/ define lower bound cut-off threshold.
threshold = ¢d;
fori=1to K do
for j =1to|X|do

x = FR(X,j) - F5(Q);

if x > threshold then

‘ candidates = candidates — {j};

end
end

end

Algorithm 2. Filtering with maximum pruning.
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input : Q: query.

X database sequence.
o0: target dissimilarity percentage.
sorted: an array of candidate endpointssorted in decreasing order pf

output  : (X, jstart)s (X, jend): Start and end point of estimated best alignment.

distance: distance betwee and estimated best alignment.
columns: number of database positions evaluated by the edit distBiRc

for i = 1to | X|do

unchecked[i] = 0;

end
for i = 1 to |sorted| do

‘ unchecked[sorted[i]] = 1;
end

distance = § x |Q] + 1; columns = 0; n = |sorted]|;

for k=1tondo

end

candidate = sorted[k];

if (unchecked[candidate] == 0) then continue

jJ = candidate + 1;

fori=|Q|+1to1do

‘ costli][j] = oo;

end

while (true) do

J=J—1L

if (candidate — j > |Q|6 + 1) then break;

if (unchecked[j] == 1) then
unchecked[j] = 0; candidate = j;
cost[|Q| + 1][j] = 0; endpoint[j + 1] = j;

else
‘ cost[|@Q| + 1][§] = oo; I j is not a candidate endpoint.
end
for i = |Q|to 1do
previous = {(i + 1,7), (4, i+ 1), + 1,5+ 1)};
(piapj) = a“rglnin(a,b)GprcviousCOSt[a] [b]!
cost[i][j] = D(Qs, X;) + cost[ps][p;]; endpoint[i][j] = endpoint[p:][p;];
end
columns = columns + 1;

end

Alg

orithm 3. The refine step for the edit distance.
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Chapter 6

Conclusions and Future Work

In this final chapter of the thesis we summarize the main leskEarned from the described work,

and point out open questions and interesting directionfutare research.
6.1 Discussion of Contributions and Limitations

The proposed methods in this thesis are the first subsequestobing methods for unconstrained
DTW, cDTW and edit distance that convert, at least partidhg subsequence matching problem
into a much easier vector matching problem. As a result, aively small number of database
areas of interest can be identified very fast, over two ordémnagnitude faster compared to
brute-force search in our experiments. The computatignatpensive dynamic programming
algorithm is still employed within EBSM, BSE and RBSA, butyto refine results by evaluating
the identified database areas of interest. The resultingiaedd retrieval system is one to two
orders of magnitude faster than brute-force search, wittively small losses in accuracy, and
provides state-of-the-art performance in the datasets imsgur experiments.

A major limitation of both EBSM and BSE is the fact that bothcanstrained DTW and
cDTW are non-metric. This is one of the barriers that makdk beethods approximate. Providing
theoretical guarantees for both systems is a great challand we are planning to investigate it
in the future. Another limitation of EBSM is that its perfoamce depends on the training phase
where the embedding index is constructed. This means thatlprowledge of the types of the
expected queries is needed in order to achieve better peafure. As opposed to EBSM and BSE,
RBSA uses a metric distance measure (edit distance) to dénembedding index and thus it
can providel00% guarantees of finding the correct match. An important littotaof RBSA is

the costly training phase, which has a much larger time requent than that of the training phase
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of EBSM. Another limitation is that it is designed for neataet homology search, for which it
manages to outperform standard methods by orders of magniccording to the experiments,

asd increases the performance of RBSA deteriorates.

6.2 Future Work and Other Interesting Directions

The topic of using embeddings for efficient subsequence hiragas relatively new and there are

many open problems in both time series and biological sempidatabases.

6.2.1 Time Series Matching

One open problem is to adopt the idea of BSE to EBSM and corgiamgpoint and endpoint
embeddings under the unconstrained DTW, where the subsegueatch can have a different
length than the query. Another related problem is to rembgebnstraint that the match must have
the same length as the query for cDTW. This constraint isecitly used not only by our method,
but also by the other existing methods for subsequence mgtcimder cDTW, i.e.LB_Keogh
[34] and DTK [56].

Another interesting direction for future work for both EBSMd BSE is to compress the size
of the embedding. One way of doing this, is to view each emingddimension as a time series
and apply standard time series segmentation techniqués Egth segment will be represented
by an upper and a lower value. This type of compression mayceathe filter step, as it will not
be required to perform Euclidean distance computationhiemtole embedding.

Another open problem is using vector indexing methods tthaurspeed up the embedding-
based filter step for both EBSM and BSE. An additional chaliehere is that BSE embeddings
are query-sensitive: the reference sequences used depéme guery length, and the final combi-
nation of startpoint and endpoint embeddings also depemtiseaquery length. Applying standard
vector indexing methods [7, 25] in this setting is not a gindiorward task, and developing ap-
propriate indexing methods is an interesting topic for featwork. An interesting work that can
be used to improve similarity search over arbitrary subspamder ari,, norm distance appeared

recently [50] and is related to this problem.
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Furthermore, it should be clear by the discussion in chaptérat L B_Keogh and similar
bounds for cDTW cannot be applied directly for unconstrdilsebsequence matching as they
require the match length to be equal to the query length (wlicot the case in unconstrained
subsequence matching). It would be challenging to definartie measures for unconstrained
subsequence matching that are metric and/or allow the defirof tight bounds that can be used
to efficiently speedup the filter step.

Finally, as mentioned earlier, a very challenging direttior future work would be to deeper
investigate the non-metric property of both DTW and cDTW{ &y to provide theoretical guar-
antees for both EBSM and BSE.

6.2.2 Sequence Alignment

An interesting direction for future work on RBSA is to comgsethe size of the embedding. As
opposed to EBSM and BSE, the challenge here is the fact theded@base point is represented by
a set of reference sequences. One approach is to break #imdatsequence into small segments
using a standard DNA segmentation technique [49] and theresent each segment with the
references with the best pruning power in that segment.

Another interesting topic for future work is the fact that BNs not random, as it consists
of coding regiongdmainly genes) andon-coding regiongregions that do not contain any useful
information). RBSA should be able to handle those regiofexbely by not allowing reference
sequences to be selected from non-coding regions. We shtzaldhote that there exist long-range
dependencies in DNA sequences and it would be very intagesiisee if such dependencies could
be used to improve the performance of RBSA.

Another open question regarding RBSA, is whether it coulcekiended so that it does not
require matches to be within edit distangé)| from the query. Also, the reference sequence
selection of RBSA is a costly step. An interesting futureadiion is to investigate other alterna-
tive ways of reference sequence selection with a lower dostill also be interesting to study
more extensively the effects of letter collapsing, and tahare theoretically the reasons that letter

collapsing improves performance. Also, we believe thaetetollapsing may turn out to lead to
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more significant improvements in domains with larger algiaizes, such as proteins. We aim to
explore these issues in future work.

Finally, the experimental evaluation of RBSA showed vemgmising results in terms of re-
trieval runtime and accuracy. However, we have only focusederformance in terms of database
dissimilarity and database size, and did not further sth@yimpact that RBSA might have in Bi-
ology. Indeed it would be challenging to see if this significperformance is also meaningful in
the biological domain and can lead to the development of alwidsed tool for homology search
in DNA and protein sequences. Thus, one of our future plats ssudy the potential impact of
RBSA in Biology.

A very difficult and challenging problem is to provide algbrins for subsequence matching
with provable sublinear retrieval running time. Develgpimdex structures for non-Euclidean
and non-metric spaces that allow approximate nearest In@igletrieval in time sublinear to the
database size will enable many important applications, fillst recognition and similarity-based

matching in large databases of DNA and protein sequences)dim data, fingerprints, speech

and audio data.
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