
Under consideration for publication in Knowledge and Information
Systems

Mining Frequent Arrangements of
Temporal Intervals

Panagiotis Papapetrou1, George Kollios1, Stan Sclaroff1 and Dimitrios Gunopulos2

1Department of Computer Science, Boston University, Boston MA, USA; 2Department of

Informatics and Telecommunications, University of Athens, Athens, Greece

Abstract. The problem of discovering frequent arrangements of temporal intervals is
studied. It is assumed that the database consists of sequences of events, where an event
occurs during a time-interval. The goal is to mine temporal arrangements of event
intervals that appear frequently in the database. The motivation of this work is the
observation that in practice most events are not instantaneous but occur over a period
of time and different events may occur concurrently. Thus, there are many practical
applications that require mining such temporal correlations between intervals includ-
ing the linguistic analysis of annotated data from American Sign Language as well as
network and biological data. Three efficient methods to find frequent arrangements
of temporal intervals are described; the first two are tree-based and use breadth and
depth first search to mine the set of frequent arrangements, whereas the third one is
prefix-based. The above methods apply efficient pruning techniques that include a set
of constraints that add user-controlled focus into the mining process. Moreover, based
on the extracted patterns a standard method for mining association rules is employed
that applies different interestingness measures to evaluate the significance of the dis-
covered patterns and rules. The performance of the proposed algorithms is evaluated
and compared with other approaches on real (American Sign Language annotations
and network data) and large synthetic datasets.

Keywords: Sequential Pattern Mining; Data Mining; Temporal Mining; Arrangement
Mining; Constraint-based Mining; Arrangement Rule Mining; American Sign Language.

1. Introduction

Sequential pattern mining has received particular attention in the last decade
(Agrawal & Srikant, 1994; Agrawal & Srikant, 1995; Ayres, et al., 2002; Ba-

Received May 23 2008
Revised Oct 11 2008
Accepted Jan 17 2009

2 P. Papapetrou et al

yardo, 1998; Zaki, 2001; Pei, et al., 2001; Pei, et al., 2002; Han, et al., 2000; Seno
& Karypis, 2002; Yan, et al., 2003; Leleu, et al., 2003; Han, et al., 2000b; Wang
& Han, 2004). The objective is to extract patterns from a set of sequences of
instantaneous events which satisfy some user-specified constraints. These con-
straints can vary from just a support threshold, that defines frequency, to a set
of gap, window (Zaki, 2000; Srikant & Agrawal, 1996), or regular expression
constraints (Garofalakis, et al., 1999), that apply more user-controlled focus into
the mining process. Despite advances in this area, nearly all proposed algorithms
concentrate on the case where events occur at single time instants. However, in
many applications events are not instantaneous; they instead occur over a time
interval. Furthermore, since different temporal events may occur concurrently,
it would be useful to extract frequent temporal patterns of these events. In this
paper the goal is to develop methods that discover temporal arrangements of
correlated event intervals which occur frequently in a database.

There are many applications that require mining such temporal relations.
One potential application is for analysis of the multiple gestures that occur, in
parallel, on the hands and on the face and upper body, to express linguistic infor-
mation. In signed languages, lexical information is expressed primarily through
movements of the hands and arms, whereas critical grammatical information is
expressed non-manually, through such behaviors as raised or lowered eyebrows,
modifications in eye aperture or gaze, repeated head gestures (nods, shakes) or
head tilt, as well as expressions of the nose or mouth. For example, the canonical
marking of a wh-question (a question containing a word such as ’who’, ’what’,
’when’, ’where’, or ’why’) includes lowered brows slightly squinted eyes occurring
over a predictable domain (either the question sign or the whole clause constitut-
ing the question), and there is frequently a slight rapid head-shake co-occurring
with the wh-phrase (Neidle & Lee, 2006). An example of a wh-phrase is shown
in Figure 1. Although much is known about the linguistic significance of certain
non-manual markings carrying critical syntactic information, there are others
whose functions remain to be studied and more fully understood. Pattern de-
tection could ultimately contribute to discovery of the significance of some of
these non-manual behaviors. The annotated ASL corpus used for this research
was produced by linguists as part of the American Sign Language Linguistic
Research Project ((Neidle, et al., 2000; Neidle, 2003; Neidle & Lee, 2006)) using
SignStream(TM) ((Neidle, et al., 2001; Neidle, 2002a)). The annotations iden-
tify start and end times for: the manual ASL signs (represented by English-based
glosses), part of speech for those signs, plus grammatical interpretive labels indi-
cating clusters of non-manual expressions that serve to mark particular syntactic
functions (such as wh-questions, negation, etc.) as well as the gestures themselves
(e.g., raised eyebrows, wrinkled nose, rapid head shake). See (Neidle, 2002b) for
further information about the annotation conventions that were used.

Another application is in network monitoring, where the goal is to analyze
packet and router logs. Consider Figure 2 for example, which shows two groups
of machines communicating with each other via two routers. In this case an
event label is the source or destination IP and the event interval corresponds to
the duration of the communication between the two machines. Multiple types of
events occurring over certain time periods can be stored in a log, and the goal
is to detect general temporal relations of these events that with high probability
would describe regular patterns in the network, that could be used for prediction
and intrusion detection.

Moreover, interval-based events can be identified in the human gene. More

Mining Frequent Arrangements of Temporal Intervals 3

> Who drove the car, who?

(Lowered eyebrows)

(
Wh
-
Question)

(
Wh
-
Word)

time

(Rapid head shake)
 (Rapid head shake)

(
Wh
-
Word)

(Lowered eyebrows)

Fig. 1. An ASL example.

Router

1

Router

2
IPs
 IPs

A

B

(D, C)

(D, B)

(A, B)

D

C

time

Fig. 2. A network example.

specifically, DNA is a sequence of items (nucleotides) defined over a four-letter
alphabet, i.e. Σ = {A, C, G, T}. Regions of high occurrence of a nucleotide
or combination of nucleotides, known as poly-regions, can be defined over DNA.
The detection of frequently overlapping poly-regions could lead the biologists to
a variety of useful observations concerning the evolution of different genes and
their contribution to protein construction. To the best of our knowledge, the first
approach to mine frequent arrangements of poly-regions in DNA is discussed in
(Papapetrou, et al., 2006).

Most existing sequential pattern mining methods are hampered by the fact
that they can only handle instantaneous events, not event intervals. Nonetheless,
such algorithms could be retrofitted for the purpose, via converting a database of
event intervals to a transactional database, by considering only the start and end
points of every event interval. An existing sequential pattern mining algorithm
could be applied to the converted database, and the extracted patterns could be
post-processed to produce the desired set of frequent arrangements. However, an
arrangement of k intervals corresponds to a sequence of length 2k. Hence, this
approach will produce up to 22k different sequential patterns. Moreover, post-
processing will also be costly, since the extracted patterns consist of event start
and end points, and for each event interval all the relations with the other event
intervals must be determined. Therefore, it is essential to develop interval-based
algorithms that can efficiently mine frequent patterns and rules from interval-
based data.

The main contributions in this paper include:

4 P. Papapetrou et al

– a robust definition of temporal relations between two event intervals that is
noise tolerant and through the use of constraints eliminates the ambiguity of
Allen’s definitions (Allen & Ferguson, 1994),

– a formal definition for the problem of mining frequent temporal arrangements
and arrangement rules of event intervals in an event interval database using
temporal constraints,

– a prefix-based approach and an efficient algorithm for mining frequent arrange-
ments of temporally correlated events using breadth and depth first search in
an enumeration tree of temporal arrangements,

– a further improvement of the mining process with the incorporation of tem-
poral constraints

– an efficient algorithm for mining arrangement rules from the extracted patterns
based on user-specified interestingness measures,

– an extensive experimental evaluation of these techniques and a comparison
with a standard sequential pattern mining method, SPAM (Ayres et al., 2002),
using both real and synthetic data sets.

2. Background

Some basic definitions on temporal logic are presented, followed by a sufficient
background on interestingness measures for association rules and finally the prob-
lem formulation.

2.1. Ambiguity Issues

Most existing interval-based mining algorithms use Allen’s scheme (Allen & Fer-
guson, 1994) to describe relations between event intervals. Figure 3 shows the
twelve main types of relations between two event intervals A and B studied in
(Allen & Ferguson, 1994): before/after, meets/met by, overlaps/overlapped by,
starts/started by, during/contains, finishes/finished by. Because of the limit in
the accuracy of demarcating the temporary boundaries of events, there can be
variability in these boundaries caused by noisy data. Unfortunately, Allen’s re-
lations are hampered by the fact that they cannot capture this variability and
thus the representation of a relation might have more than one meaning. This
issue has also been addressed in (Moerchen, 2006) and is illustrated in Figure 4.
Consider, for instance, the case where the actual relation between two event in-
tervals is Meets, but due to noise it appears as Overlaps (Figure 4(a)) or After
(Figure 4(b)). Similarly, the relation between two concurrent events could ap-
pear as Overlaps (Figure 4(c)) or Contains (Figure 4(d)), and also, a Starts or
Finishes could show up as Contains (Figures 4(e), 4(f)). Such errors can occur
due to noisy data and may have a negative influence on the extracted patterns.

In this paper we extend Allen’s relations to a more robust scheme that intro-
duces a threshold to achieve relaxation on the boundaries of the relations and
eliminates the aforementioned ambiguities.

Mining Frequent Arrangements of Temporal Intervals 5

A
 B

B

B

B

B

B

Before (A,B)
 After (B,A)

Meets (A,B)
 Met by (A,B)

Overlaps (A,B)
 Overlapped by (A,B)

Starts (A,B)
 Started by (A,B)

During (A,B)
 Contains (A,B)

Finishes (A,B)
 Finished by (A,B)

Fig. 3. Allen’s Relations.

A
 B

(a)
 Meets or Overlaps?

A

B

(d)
Concurrent or Contains?

A

B

(e)
 Starts or Contains?

A

B

(f)
 Finishes or Contains?

A

B

(c)
Concurrent or Overlaps?

A
 B

(b)
 Meets or After?

Fig. 4. Lack of Robustness in Allen’s Relations.

2.2. Event Interval Temporal Relations

Seven types of temporal relations between two event intervals are considered.
Using these relations, general arrangements can be defined. However, the meth-
ods presented in this paper are not limited to these relations and can be easily
extended to include more types of temporal relations.

Consider two event-intervals A and B, and assume that the user specifies a
threshold ε to define more flexible matchings between two time intervals. The
following relations can be defined (see also Figure 5):

– Meet(A, B): B follows A, with B starting at the time A terminates, i.e.
te(A) = ts(B)± ε. This case is denoted as A ∼ B and we say that A meets B.

– Match(A,B): A and B are parallel, beginning and ending at the same time,
i.e. ts(A) = ts(B)± ε and te(A) = te(B)± ε. This case is denoted as A||B and
we say that A matches B.

– Overlap(A,B): the start time of B occurs after the start time of A, and A
terminates after the start time of B and before B ends, i.e. ts(A) < ts(B),
te(A) < te(B), ts(B) < te(A). In addition we need to eliminate any ambiguities
that can be caused by the ε threshold applied to the other definitions: te(B)−
te(A) > ε and ts(B)− ts(A) > ε. This case is denoted as A|B and we say that
A overlaps B.

– Left-Contain(A,B): A and B start at the same time and A terminates after
B, i.e. ts(A) = ts(B) ± ε, te(A) > te(B) and te(A) − te(B) > ε. This case is
denoted as A | > B and we say that A left-contains B.

– Right-Contain(A,B): A and B end at the same time and the start time
of A precedes that of B, i.e. ts(A) < ts(B), te(A) = te(B) ± ε and and

6 P. Papapetrou et al

A[t
start
, t
end
]
 B[t
start
, t
end
]

(a)
 Meet of A and B

A[t

start

, t

end

]

B[t

start

, t

end

]

(d)

A[t

start

, t

end

]
 B[t

start

, t

end

]

(g)

Contain of A and B

Follow of A and B

+/- e

A[t
start
, t
end
]

B[t

start

, t

end

]

(e)
 Left Contain of A and B

A[t

start

, t

end

]

B[t

start

, t

end

]

(f)
 Right Contain of A and B

+/- e
 +/- e

A[t
start
, t
end
]

B[t

start

, t

end

]

(c)
 Overlap of A and B

A[t

start

, t

end

]

B[t
start
, t
end
]

(b)
 Match of A and B

+/- e
+/- e

+/- e

+/- e
 +/- e

+/- e

Fig. 5. Basic relations between two event-intervals: (a) Meet, (b) Match, (c) Overlap, (d)
Contain, (e) Left-Contain, (f) Right-Contain, (g) Follow.

ts(B)− ts(A) > ε. This case is denoted as A > | B and we say that A right-
contains B.

– Contain(A,B): the start time of B follows the start time of A and the ter-
mination of A occurs after the termination of B, i.e. ts(A) < ts(B) , te(A) >
te(B) and the ε threshold is satisfied accordingly: ts(B) − ts(A) > ε and
te(A) − te(B) > ε. Notice that the ε threshold has been applied accordingly
to eliminate ambiguities between contains, left-contains, right-contains and
macthes. This case is denoted as A > B and we say that A contains B.

– Follow(A,B): B occurs after A terminates, i.e. te(A) < ts(B) and ts(B) −
te(A) > ε. This case is denoted as A → B and we say that B follows A.

2.3. Robustness

By adding ε to our interval relations definition all the aforementioned relations
are mutually exclusive and at the same time noisy intervals can be handled
efficiently. In some applications, however, the user may not want to consider some
of the above relations as mutually exclusive. Table 1 shows how these relations
cannot be mutually exclusive. For example, a match could also be counted as a
left-contain, right-contain, contain and/or overlap. Also, a left-contain or right-
contain could be counted as a contain or an overlap as well. Finally, a meet could
also be counted as a follow or overlap. Thus, depending on the application, a
user might desire to: (1) collapse some relations, e.g. count left-contain and right-
contain as contain, or count each meet as follow, etc., (2) count them multiple
times, e.g. each overlap is also counted as left-contain and right-contain, or each
match is also counted as contain, or each meet is also counted as follow, etc.

Thus, the user has flexibility with respect to which of these options get chosen
and clearly it would be application specific.

Mining Frequent Arrangements of Temporal Intervals 7

Table 1. Subsets of Event Interval Relations.

Relation Could also be counted as

meet follow
overlap

match left-contain
right-contain

contain
overlap

left/right-contain contain
overlap

A

B

C
C

3
1
 4
 7
 15
 19
 23
 30
 42

D

time

Fig. 6. An Example of an e-sequence.

2.4. Arrangements and Arrangement Rules

Let E = {E1, E2, ..., Em} be an ordered set of event intervals, called event interval
sequence or e-sequence. Each Ei is a triple (ei, tistart, t

i
end), where ei is an event

label, tistart is the event start time and tiend is the end time. The event intervals
are ordered by the start time. If an occurrence of ei is instantaneous, then tistart =
tiend. An e-sequence of size k is called a k-e-sequence. For example, let us consider
the 5-e-sequence shown in Figure 6. In this case the e-sequence can be represented
as follows: E = {(A, 1, 7), (B, 3, 19), (D, 4, 30), (C, 7, 15), (C, 23, 42)}. Finally, an
e-sequence database D = {E1, E2, ..., En} is a set of e-sequences.

In an e-sequence database there may be patterns of temporally correlated
events; such patterns are called arrangements. The definitions given in Section
2.2 can describe temporal relations between two event intervals but they are
insufficient for relations between more than two. Consider for example the two
cases in Figure 7. Case (a) can be easily expressed using the current notation as:
A|B → C. This is sufficient to determine that A overlaps with B, C follows B
and C follows A. On the other hand, the expression for case (b), i.e. A|B > C,
is insufficient, since it gives no information about the relation between A and
C. Thus, we need to add one more operand to express this relation concisely.
In order to define an arrangement of more than two events we need to clearly
specify the temporal relations between every pair of its events. This can be done
by using the “AND” operand denoted by ?. Therefore, the above example can
be expressed as follows: A|B ? A|C ? B > C. Based on the previous analysis, the
relations between interval-based events handled in this paper can be expressed
using the set of operands: R = {|, ||, >, | >,> |,∼,→} and ?.

Consequently, an arrangement A of n events is defined as A = {E , R}, where
E is the set of event intervals that occur in A, with |E| = n, and R = {R (E1, E2),
R (E1, E3), ..., R (E1, En), R (E2, E3), ..., R (E2, En), ..., R (En−1, En)}. R is
the set of temporal relations between each pair (Ei, Ej), for i = 1, ..., n and
j = i+1, ... , n−1, and R (Ei, Ej) ∈ R defines the temporal relation between Ei

and Ej . The size of an arrangement A = {E , R} is |E|. An arrangement of size t
is called a t-arrangement. For example, consider arrangement S′ of size 3 shown in

8 P. Papapetrou et al

C

A

B

C

(a)
 (b)

A

B

Fig. 7. (a) S′ can be expressed with four operands and (b) S′′ cannot.

Figure 7 (a). In this case E = {A,B, C} and R = {R (A,B) = |, R (A,C) = →
, R (B, C) = →}. Given an arrangement A = {E , R}, a sub-arrangement Aj is
an arrangement defined from A as Aj = {Ej , Rj}, where Ej ⊆ E and Rj ⊆ R.
Notice that Rj includes all the relations between the event labels in Ej that
also exist in R. The absolute support of an arrangement in an e-sequence data-
base is the number of e-sequences in the database that contain the arrangement.
The relative support of an arrangement is the percentage of e-sequences in the
database that contain the arrangement. Given an e-sequence s, s contains an
arrangement A = {E , R}, if all the events in A also appear in s with the same
relations between them, as defined in R. Consider again arrangement S′ in Figure
7(a) and e-sequence s in Figure 6. We can see that all the event intervals in S′
appear in s and further, they are similarly correlated, i.e. Overlap (A,B), Follow
(B,C), Follow (A,C). Thus, S′ is contained in or supported by s. Given a min-
imum support threshold min sup, an arrangement is frequent in an e-sequence
database, if it occurs in at least min sup e-sequences in the database.

Based on previous work on itemset and sequence association rules ((Srikant
& Agrawal, 1996; Agrawal & Srikant, 1994; Harms, et al., 2002), association
rules for arrangements can be defined. Given two arrangements Ai and Aj

that have been mined from an e-sequence database D, r : Ai ⇒Rij

λ, D Aj

defines an arrangement rule between Ai and Aj , based on an interestingness
measure λ. Consider an arrangement A = {E , R} that is frequent in D, with
E = {e1, ..., e|E|}. Let el be an event interval in E . A can be broken into two
arrangements Ai = {Ei, Ri}, Aj = {Ej , Rj}, with Ei = {e1, ..., el} and
Ej = {el+1, ..., e|E|}; and define a rule between them. Note that E is split into
two sets Ei and Ej , whereas Ri and Rj are defined based on R, and describe the
temporal relations between the event intervals in Ei and Ej respectively. Also,
Rij defines the set of relations of the event labels Ei with those in Ej .

2.5. Interestingness Measures

The use of interestingness measures, also known as quantitative measures, plays
a very important role in the interpretation of the discovered arrangement rules.
Many interestingness measures have been proposed and studied (Kamber &
Shinghal, 1996; Hilderman & Hamilton, 2001; Tan, et al., 2002), each of them
capturing different characteristics. In this section we give a brief overview of the
most common quantitative measures and show how they can be used for mining
arrangement rules.

Given a rule A ⇒RAB

λ, D B, two significant properties of interestingness mea-
sures are: monotonicity and anti-monotonicity (Agrawal & Srikant, 1994):

1. Monotonicity of an interestingness measure λ: An interestingness mea-

Mining Frequent Arrangements of Temporal Intervals 9

sure λ is monotone, if for any two arrangements A and B (with A ⊆ B),
λ(A) ≤ λ(B).

2. Anti-monotonicity of an interestingness measure λ: An interestingness
measure λ is anti-monotone, if for any two arrangements A and B (with A ⊆
B), λ(B) ≤ λ(A).

Given an arrangement rule: r : A ⇒RAB

λ, D B, we define cover(A) to be
the number of e-sequences in D that contain arrangement A over the size of
the e-sequence database D, and coverage(r) to be the cover of the antecedent
arrangement A. In this paper, we focus on two anti-monotone interestingness
measures: (1) support (both for an arrangement and an arrangement rule), (2)
all-confidence, and four non anti-monotone: (1) confidence, (2) leverage, (3) lift,
and (4) conviction.

2.5.1. Anti-monotone Interestingness Measures

Next, the definitions of two anti-monotone measures are given with respect to an
arrangement A and an event interval database D. Due to the anti-monotonicity
property, these measures can be applied on each node and can be used for effi-
cient pruning. Thus given two arrangements A and B, and an arrangement rule
r : A ⇒RAB

λ, D B:

– supp(A) = cover(A)
This is the most common quantitative measure among the frequent pattern
mining algorithms (Agrawal, et al., 1993). An arrangement with high support
guarantees high co-occurrence of its event intervals in D and can produce in-
teresting rules whose antecedent and consequent arrangements are frequent in
D. Notice that in our methods we use the standard support counting frame-
work that has been used in the literature for the case where the database
consists of a set of sequences.

– supp(r) = cover(A ∪ B)
Similar to the definition of support for association rules (Agrawal et al., 1993),
the support of an arrangement rule is the number of e-sequences in the data-
base that contain both the antecedent arrangement A and the consequent
arrangement B of the rule.

– all-confidence(A) = supp(A)
max1≤i≤t{supp(Ai)}

Based on the traditional definition of all-confidence (Omiecinski, 2003), the
denominator is the maximum number of e-sequences in D that contain any
sub-arrangement of A and t is the size of arrangement A. This states that
all-confidence is in fact the smallest confidence of any rule inferred from A.

2.5.2. Non Anti-monotone Interestingness Measures

There has been a great number of interestingness measures proposed and studied,
that are not anti monotone. In this paper we consider four of them. Next, we give
their definitions with respect to an arrangement rule r implied from an arrange-
ment A that has been mined from an event interval database D. Note, that
since these measures are not anti-monotone, they cannot be used for early prun-

10 P. Papapetrou et al

ing during the mining process. Thus, given an arrangement rule r : A ⇒RAB

λ, D B,
we have:

– confidence(r) = supp(r)
coverage(r)

The confidence of a rule (Agrawal et al., 1993) typically expresses the condi-
tional probability of the occurrence of the consequent B in an e-sequence in
D, given that the antecedent A also occurs in the e-sequence.

– leverage(r) = supp(r) − supp(A)× supp(B)
Leverage (Piatetsky-Shapiro, 1991) measures the difference between the ob-
served joint frequency of A and B (i.e. support of r), and their expected fre-
quency if they were independent. Some useful bounds on leverage have been
introduced in (Webb & Zhang, 2005) and are used by the mining algorithms
to efficiently prune the search space.

– lift(r) = supp(r)
supp(A)×supp(B)

Lift is a traditional association rule measure (Brin, et al., 1997), and it is the
ratio of the observed joint frequency of A and B, and the expected frequency if
they were independent. The problem with this measure is the following: a rule
with high lift, may be of little interest since it may have low coverage, meaning
that it applies to very few e-sequences of D. At the same time, a rule with
low lift might be interesting. In particular, since coverage(r) = supp(A), we
have supp(r)

supp(A)×supp(B) = supp(r)
coverage(r)×supp(B) , and as coverage(r) ↓, lift(r) ↑.

– conviction(r) = 1−supp(B)
1−confidence(r)

Conviction (Brin, et al., 2004) basically compares the probability of A ap-
pearing without B, assuming independence, with the actual frequency of the
appearance of A without B. A very useful property of conviction is that it is
monotone in confidence and lift, i.e.:

conviction(r) =
supp(A)× supp(B)

supp(B,A)
=

supp(A)× (1− supp(B))
supp(A)× supp(B|A)

=
1− supp(B)

1− supp(B|A)
=

1− supp(B)
1− confidence(r)

=
1

supp(B) − supp(B)
supp(B)

1
supp(B) − confidence(r)

supp(B)

=
1

supp(B) − 1
1

supp(B) − lift(r)

Clearly, as lift(r) ↑, conviction(r) ↑.

2.6. Temporal Constraints

Frequency does not always imply interestingness. A pattern can occur frequently
in the database but may not hold interesting information to every user. In ad-
dition to the support threshold, the user can also specify a set of temporal
constraints CT including:

– A gap constraint Cg: two event intervals that take part in a follow relation
should be separated by at most Cg time units.

– A pair of overlap constraints Co = {Cl
o, Cu

o }: the overlap of two event

Mining Frequent Arrangements of Temporal Intervals 11

intervals that take part in an overlap relation, is limited by Co. In fact, Cl
o, Cu

o
can be seen as the lower and upper bound of an overlap relation. This means
that if their overlap is less than Cl

o% then their relation is considered a meet ;
if their overlap exceeds Cu

o % then their relation is considered a left-contain.
Given two event intervals E1 = (e1, t1start, t1end) and E2 = (e2, t2start, t2end),
their overlap is equal to t1end − t2start, if t1start < t2start < t1end, otherwise it
is zero; and the overlap percentage is:

overlap percentage =
overlap

min{t1end − t1start, t2end − t2start}
. (1)

– A pair of contain constraints Cct = {Cl
ct, Cu

ct}: two event intervals that
take part in a contain, left-contain or right-contain relation, should have an
overlap of at most Cu

ct%. If their overlap exceeds this bound, their relation is
considered a match, whereas if it is less than Cl

ct it is discarded.
– A duration constraint Cd: each event interval should have a duration of at

most Cd units. If not, it is discarded.

The set of constraints CT is applied during the frequent arrangement extrac-
tion.

2.7. Problem Formulation

Based on the above definitions we can now formulate the problem of constraint-
based mining of frequent arrangements of temporal intervals as follows:

Problem I: Given an e-sequence database D, a set of temporal constraints CT ,
and a support threshold min sup, our task is to find set F = {A1,A2, ...,An},
where Ai is a frequent arrangement in D and satisfies the constraints in CT .

We can further extend the previous formulation to extract arrangement rules
given an interestingness measure λ. Incorporating interestingness measures and
the aforementioned constraints we can formulate the problem of constraint-based
mining of the top-K interesting association rules as follows:

Problem II: Given a set {D, CT , λ, K, min sup}, where D is an e-sequence
database, CT is a set of constraints, λ is an interestingness measure, K is an
integer and min sup is the minimum support threshold that implies frequency,
we want to mine the top K frequent arrangement rules that satisfy CT and max-
imize λ.

3. Related Work

In this Section, we present the existing work on sequential and temporal pattern
mining along with a brief overview of the existing interestingness measures that
can be applied during the mining process.

12 P. Papapetrou et al

3.1. Sequential Pattern Mining

The first family of sequential pattern mining algorithms are the Apriori-based
algorithms and their main characteristic is that they apply the Apriori principle
(Agrawal & Srikant, 1994). The problem of sequential pattern mining was intro-
duced in (Agrawal & Srikant, 1995), along with three Apriori-based algorithms
(AprioriAll, AprioriSome and DynamicSome). At each step k, a set of candi-
date frequent sequences Ck of size k is generated by performing a self-join on
Fk−1. Notice that Fk contains all those sequences in Ck of size k that satisfy a
user-specified support threshold. The efficiency of support counting is improved
by employing a hash-tree structure. A more efficient approach, GSP (General-
ized Sequential Patterns), was developed in (Srikant & Agrawal, 1996), where
time and window constraints are pushed into the mining process. At the same
time, (Mannila, et al., 1995) introduced the idea of mining frequent episodes,
i.e. frequent sequential patterns in a single long input sequence, using a sliding
window to cut the input sequence into smaller segments, and employing a mining
algorithm similar to that of Apriori. Notice, however, that in our formulation we
focus on finding frequent patterns across a set of input sequences (that constitute
a sequence database) and not across a single sequence.

Discovering all frequent sequential patterns in large databases is a very chal-
lenging task since the search space is large. Consider for instance the case of
a database with m attributes. If we are interested in finding all the frequent
sequences of length k, there are O(mk) potentially frequent ones. Increasing the
number of objects might definitely lead to a paramount computational cost.
Apriori-based algorithms employ a bottom-up search, enumerating every single
frequent sequence. This implies that in order to produce a frequent sequence of
length l, all 2l subsequences have to be generated. It can be easily deduced that
this exponential complexity is limiting all the Apriori-based algorithms to dis-
cover only short patterns. A faster and more efficient candidate generation can
be achieved using a tree-like structure (set-enumeration tree) (Bayardo, 1998)
and traversing it in a depth-first search manner to enumerate all the candidate
patterns applying efficient pruning techniques. The idea was initially introduced
for mining frequent itemsets, but was extended for sequential patterns. SPAM
(Ayres et al., 2002), employs a sequence enumeration tree to generate all the
candidate frequent sequences given the set of event labels. The root node of the
tree is empty, and each level l contains the complete set of sequences of size
l (with each node representing one sequence) that can occur in the database.
The nodes of each level are generated from the nodes of the previous level and
all candidate sequences are enumerated by traversing the tree using depth-first
search. For efficient support counting, a bitmap representation of the database
is used.

Another family of sequential pattern mining algorithms employ a lattice
structure (OXFORD), 2002) for efficient sequence enumeration. The main char-
acteristics of SPADE (Zaki, 2001) include: (1) a vertical representation of the
database using id-lists, where each pattern is associated with a list of data-
base sequences in which it occurs; all frequent sequences can be enumerated via
temporal joins on the id-lists, (2) a lattice-based approach to decompose the
original search space into smaller subspaces, which can be processed indepen-
dently in main memory, (3) within each sub-lattice, two different search strate-
gies (breadth-first and depth-first search) are used for enumerating the frequent
sequences. An extension of SPADE, cSPADE (Zaki, 2000), allowed a set of con-

Mining Frequent Arrangements of Temporal Intervals 13

straints to be placed on the mined sequences. GO-SPADE (Leleu et al., 2003)
introduced the idea of generalized occurrences. The intuition behind GO-SPADE
is that in a sequence database certain items can occur in a consecutive way, i.e.
they may appear in consecutive itemsets in the same sequence. To reduce the cost
of the mining process, GO-SPADE mainly tries to compact all these consecutive
occurrences. Another class of sequential pattern mining algorithms includes the
prefix-based ones (Pei et al., 2001; Wang & Han, 2004; Yan et al., 2003). In this
case, the database is projected with respect to a frequent prefix sequence and
based on the outcome of the projection, new frequent prefixes are identified and
used for further projections until the support threshold constraint is violated. A
novel tree structure is presented in (Leung, et al., 2007) for incremental pattern
mining. The tree captures the content of the original database and can efficiently
update itself when there is a change in the database content (insertions, deletions,
updates).

Ignoring slight differences in the problem definition, the vast majority of the
former algorithms aim at the discovery of frequent sequential patterns based
on only a support threshold, which imposes a lack of user-controlled focus on
the shape of the pattern during the mining process that may sometimes lead to
an overwhelming volume of potentially useless patterns. The family of SPIRIT
algorithms (Garofalakis et al., 1999) solves this problem by pushing a set of
syntactic constraints into the mining process along with a support threshold.

Further studies and works have presented convincing arguments that only
closed frequent sequences should be mined targeting more compact results and
higher efficiency (Zaki & Hsiao, 2002; Pei, et al., 2000; Wang & Han, 2004; Yan
et al., 2003; Pasquier, et al., 1999). Two of the most efficient algorithms for
mining frequent closed sequences BIDE (Wang & Han, 2004) and CloSpan (Yan
et al., 2003) are based on the notion of the projected database and use special
techniques to limit the number of frequent sequences and finally only keep the
closed ones. CloSpan follows the candidate maintenance-and-test approach, i.e.
it first generates a set of closed sequence candidates which is stored in a hash-
indexed tree structure and then prunes the search space using Common Prefix
and Backward Sub-Pattern pruning (Yan et al., 2003). The main drawback of
CloSpan is the fact that it consumes much memory when there are many closed
frequent sequences, since pattern closure checking leads to a huge search space;
thus, it does not scale very well with respect to the number of closed sequences.
In order to face this weakness, BIDE employs a BI-Directional Extension para-
digm for mining closed sequences, where a forward directional extension is used
to grow the prefix patterns and check their closure and a backward directional ex-
tension is used to both check the closure of a prefix pattern and prune the search
space. In overall, it has been shown that BIDE has surprisingly high efficiency,
regarding speed (an order of magnitude faster than CloSpan) and scalability with
respect to database size. Recently, an efficient algorithm for mining maximal se-
quences has been developed (Luo & Chung, 2008). This algorithm applies both
downward and upward closure properties as well as sampling to achieve faster
and more efficient pruning. Last but not least, in ConSGapMiner (Ji, et al., 2007)
a prefix-based framework is employed and a set of gap and length constraints are
applied during the mining process for efficient pruning. The algorithm targets
patterns that occur frequently in one class of sequences and are infrequent in
sequences of other classes.

14 P. Papapetrou et al

3.2. Temporal Mining and Association Rules

Up to this point, the events have been considered to be instantaneous. There
have been several approaches on discovering intervals that occur frequently in
a transactional database (Lin, 2003; Lin, 2002). In most cases, however, the in-
tervals are unlabelled and no relations between them are considered. (Villafane,
et al., 2000) extends the sequential approach by also including the contain re-
lation introduced previously. To efficiently mine the arrangements, it employs a
containment graph representation that imposes a partial order on the event in-
tervals. In (Giannotti, et al., 2006) temporally annotated sequential patterns are
considered: these are mainly sequential patterns where each transition from one
event to another has a time duration. A graph-based approach is presented in
(Hwang, et al., 2004), where each temporal pattern is represented by a graph. In
this case however, only two types of relations are considered (follow and overlap).

Extending earlier work on mining frequent episodes in a single sequence of
events (Mannila et al., 1995; Mannila & Toivonen, 1996), there have been vari-
ous approaches that consider interval-based events. In (Laxman, et al., 2007), a
generalized interval-based framework is proposed along with improved support
counting techniques for mining interval-based episodes. Correlations between the
interval-based events or any possible association rules however, are not being con-
sidered. (Hoeppner, 2001; Mooney & Roddick, 2004; Hoeppner & Klawonn, 2001)
employ apriori-based techniques to find temporal patterns that occur frequently
in the input event sequence. Along with the frequent patterns, they extract
association rules and the latest applies some interestingness measures to evalu-
ate their significance. These measures, however, are not pushed into the mining
process; they are applied to the set of frequent patterns after the mining process
has been completed. Another approach that considers sequences of interval-based
events in a database is discussed in (Kam & Fu, 2000). However, the framework
used to represent arrangements is limited to certain forms; thus the method is
limited to discover certain patterns. A recent BFS-based approach (Winarko &
Roddick, 2007) introduces a maximum gap time constraint that can be used to
eliminate insignificant patterns. It also employs a straightforward strategy for
discovering arrangement rules based on a minimum confidence threshold. The
rules are extracted after the completion of the mining process and the only in-
terestingness measure applied is the minimum confidence threshold. No further
constraints are employed and there is no generalization of the arrangement rule
extraction.

Notice that the aforementioned approaches are Apriori-based and do not
consider any temporal or structural constraints for the extracted arrangements.
Furthermore, the event interval relations used are not robust and cannot effi-
ciently handle noisy data, i.e. noise at the start and end-points of the intervals.
To the best of our knowledge, the first tree-based approach was proposed in
(Papapetrou, et al., 2005), where a tree-like structure was used to enumerate the
set of arrangements and efficiently mine the frequent ones. In (Wu & Chen, 2007),
a non-ambiguous event-interval representation is defined that considers the start
and end points of each e-sequence and converts the interval-based representation
to a sequential representation. Based on this conversion, a prefix-based algorithm
is developed that is similar to (Pei et al., 2001). The problem of this approach is
that it cannot scale well as the database size increases, since the proposed rep-
resentation doubles the size of the database; as a result the number of extracted
patterns will be increased in a similar manner as described in Section 1.

Mining Frequent Arrangements of Temporal Intervals 15

In the interim, there has been significant work on discovering association
rules on sequential and temporal data. Association rules among items that be-
long to a frequent itemset are defined in (Srikant & Agrawal, 1996; Agrawal &
Srikant, 1994). Similar definitions are given in (Harms et al., 2002) for sequence
association rules, and in (Hoeppner, 2001; Hoeppner & Klawonn, 2001) for asso-
ciation rules among interval-based events. In the above works, the evaluation of
the rules is achieved by the usage of interestingness measures. The most common
ones (introduced in (Agrawal & Srikant, 1994)) are support and confidence. Using
a non Apriori-based technique that avoids multiple database scans, (E.Winarko
& J.F.Roddick, 2005) achieved to efficiently mine arrangements and rules in a
temporal database. These methods, however, do not consider any constraints for
the temporal relations and do not examine any measures for their rules other
than the commonly used confidence. Temporal association rules combine tradi-
tional association rules with temporal aspects by using time stamps that describe
the validity, periodicity, or change of an association. (Oezden, et al., 1998) stud-
ies the problem of mining association rules that hold only during certain cyclic
time intervals. It is argued that reducing the temporal granularity can lead to
the extraction of more interesting rules. In a same fashion, (Chen & Petrou-
nias, 1999; Abraham & Roddick, 1999) consider the discovery of association
rules in temporal databases and thus the extraction of temporal features of as-
sociated items. The support of the rules is measured only during these intervals.
Moreover, in (Ale & Rossi, 2000), the lifetime of an item is defined as the time
between the first and the last occurrence and the temporal support is calculated
with respect to this interval. In this way, the extracted rules are only active
during a certain time, and outdated rules can be pruned by the user. Finally,
(Lu, et al., 1998) studies inter-transaction association rules by merging all item-
sets within a sliding time window inside a transaction, whereas in (Tsoukatos
& Gunopulos, 2001) efficient techniques for mining spatiotemporal patterns are
proposed.

3.3. Interestingness Measures

There has been a variety of studies on other interestingness measures (Tan & Ku-
mar, 2000) that provide more accurate results by removing redundancy and limit-
ing the number of extracted rules to the most interesting ones. (Omiecinski, 2003)
proposes alternative association rule measures for evaluating the importance of
association rules in transactional databases, whereas (Kamber & Shinghal, 1996)
introduces some efficient techniques for evaluating the interestingness of rules.
An alternative definition of confidence for error-tolerant itemsets and continuous
data is described in (Steinbach, et al., 2007). (Hilderman & Hamilton, 1999) car-
ried out a survey on the existing interestingness measures and their significance
in association rule mining. In (Hilderman & Hamilton, 2001), a study on the
performance of different association rule measures is presented, where different
measures are being used to rank the extracted rules and determine the appropri-
ate measure for each dataset. Moreover, (Tan et al., 2002) provides the intuition
behind each interestingness measure and gives the basic properties that deter-
mine an effective rule measure. (Webb, 2006) proposed generic techniques that
provide effective control over the mining process and restrict the number of in-
significant rules. Finally, in (Xin, et al., 2006) the mining process is guided by the
user’s interactive feedback; a user-specific interestingness measure is employed,

16 P. Papapetrou et al

NULL

{A, B}
 {A, C}
 {B, A}
 {B, C}
 {C, A}
 {C, B}
{A, A}
 {B, B}
 {C, C}

A->A
 A>B
 A->B
 AC
 A|C
 A||C
 A>C
 A->C

{A}
 {B}
 {C}

{A, A, A}
 {A, A, B}
 {A, B, A}
 {A, B, B}
 {A, B, C}
{A, A, C}

AB*A|C*B||C
AB*AC*B|C
 A||B*A->C*BC
 ...

AA
 A|A
 A||A
 A >A
 A||B
AB
 A|B

Fig. 8. An arrangement enumeration tree.

which consists of a ranking function and a model of prior knowledge that has
been defined by the user. Finally, there has been some work on constraint-based
mining of frequent itemsets, where the goal is to mine the top K patterns that
maximize an interestingness measure (other than the typical support threshold)
and satisfy a set of constraints (Webb & Zhang, 2005).

Despite all the aforementioned studies there has been yet no approach that
considers interestingness measures on interval-based rules other than the tradi-
tional support and confidence.

To recap, there have been various approaches on mining frequent arrange-
ments of temporal intervals; most of them however, are Apriori-based, in some
cases (Kam & Fu, 2000) the extracted patterns are limited to certain forms,
and no constraints are considered. Furthermore, in most cases the extraction of
arrangement rules is performed after the detection of the frequent patterns and
no attempt has been made to push it into the mining process. Also, no other
measure is used, except for the traditional support and confidence, to evaluate
the interestingness of each rule. Current algorithms target all rules that satisfy
the desired measures and do not incorporate any constraints regarding the form
of each rule. In this work, we present a constrained-based approach that employs
a “tree-like” structure to mine frequent arrangements of temporal intervals. Fur-
thermore, the problem of extracting arrangement rules is being considered, and in
our case, efficient pruning techniques are applied and the notion of arrangement
rules is generalized by including constraints and other interestingness measures
except for the traditional support and confidence.

4. Algorithms

A straightforward approach to mine frequent patterns from a database of e-
sequences D is to reduce the problem to a sequential pattern mining problem by
converting D to a transactional database D′. Without any loss of information,
we can keep only the start and end time of each event interval. For example, for

Mining Frequent Arrangements of Temporal Intervals 17

every event interval (ei, ts, te) in D, that describes an event ei starting at ts and
ending at te, we only keep ts and te in D′. Now, we can apply an efficient existing
sequential pattern mining algorithm, e.g., SPAM (Ayres et al., 2002), to generate
the set of frequent sequences FS in D′. Every pattern in FS should be post-
processed to be converted to an arrangement. However, this approach has two
basic drawbacks, regarding cost and efficiency: (1) the patterns in FS will carry
lots of redundant information due to the nature of the sequential pattern mining
algorithm. In particular, for each extracted frequent pattern, all its sub-patterns
will be included in FS. Some of these sub-patterns however, will hold incomplete
arrangements and thus FS will include redundant results. Consider for exam-
ple the following pattern: f = {Astart, Bstart, Aend, Cstart, Cend, Bend},
and assume that it is frequent in D′ and thus it is included in FS. Then the
sequential pattern algorithm will also generate all possible sub-patterns of f , e.g.
f1 = {Astart, Bstart}, f2 = {Astart, Bstart, Aend}, f3 = {Astart, Bstart, Bend},
etc. These sub-patterns correspond to incomplete arrangements and they con-
stitute redundancy for the result set. As shown in Section 5 for small supports a
sequential pattern mining approach can yield up to 70% redundancy; (2) post-
processing can be costly, since each frequent pattern f should be converted to
an arrangement. For the arrangement representation scheme presented in this
paper, the complexity for post-processing f is O(|f |2), since we need to define
all pair-wise relations between each event interval in the sequence. This cost can
be reduced if more efficient representations are used, however the problem of
redundancy remains.

Next, we describe three efficient algorithms for mining frequent arrangements
of temporal intervals that address the previous problems. The first two, employ
a tree-based enumeration structure, like the one used in (Bayardo, 1998; Zaki,
2001; Ayres et al., 2002). The first algorithm uses BFS to generate the candidate
arrangements, whereas the second uses DFS. Although the BFS-based approach
is equivalent to Apriori and (Winarko & Roddick, 2007), the algorithm is further
extended to include temporal and structural constraints. The third algorithm
employs a prefix-growth approach, similar to (Pei et al., 2001). In our approach
the interval-based representation of the database is retained as opposed to (Wu
& Chen, 2007); thus we achieve a better scalability.

4.1. The Arrangement Enumeration Tree

The tree-based structure used by the first two algorithms is called arrange-
ment enumeration tree. An arrangement enumeration tree is shown in Figure
8. The root of the tree contains the empty set. Each level k consists of a
set of nodes, denoted as N(k), that hold the complete set of k-arrangements.
Let nk

i denote node i on level k, where i indicates the position of nk
i in the

k-th level based on the type of traversal used by the algorithm. Every node
nk

i ∈ N(k) holds a set of labels E . These labels are used to create all the
arrangements that can be defined using those labels and all the available types
of relations. These arrangements are enumerated using a set of intermediate
nodes Mk(nk

i). Each node in Mk(nk
i) is linked directly to nk

i and represents
an arrangement A={E , R} where E is defined by the labels in nk

i and R is one
of all the possible combinations of relations for the labels in E . For the case
shown in Figure 8, E = {A, B, C} and on level 1, N(1) = {{A}, {B}, {C}},
i.e. we have one node for every item in E . Then, performing temporal joins

18 P. Papapetrou et al

A

esid
 Intv-List

1

1

2

2

3

3

4

[1, 3]

[6, 12]

[1, 2]

[10, 12]

[4, 7]

[9, 11]

[6, 14]

B

esid

1

1

2

2

3

3

4

[1, 3]

[8, 11]

[2, 6]

[11, 15]

[1, 3]

[11, 12]

[1, 5]

Intv-List

4
 [7, 10]

Fig. 9. ISId-Lists for items A and B.

on the nodes of level 1, the set of the 2-arrangements of Level 2 is gener-
ated, with N(2) = {{A, A}, {A, B}, {A, C}, {B, A}, {B, B}, {B, C},
{C, A}, {C, B}, {C, C}}, and for each node n2

i set Mk(nk
i) is defined. In

general, on level k: (1) N(k) is created by joining the nodes in N(k-1) with those
in N(1), (2) for every node nk

i , Mk(nk
i) is defined and then linked to nk

i . The
arrangement enumeration tree is created as described above, using the set of
operands defined in Section 2 and it is traversed using either breadth-first or
depth-first search.

4.2. BFS-based Approach

In this section we consider an event interval mining algorithm that uses the
arrangement enumeration tree described above to generate the set of candidate
arrangements and then prunes those that are not frequent or cannot lead to
any frequent arrangement if expanded. The algorithm traverses the tree using
breadth first search which is equivalent to the Apriori-based approaches described
in Section 3. The main characteristic of this algorithm is that a set of constraints
has been incorporated into the mining process.

4.2.1. The Mining Process

To accelerate the mining process, the ISIdLists (Interval Sequence Id Lists) struc-
ture is introduced, that attains a compact representation of the intervals and a
relatively low join cost. More specifically, an ISIdList is defined for every arrange-
ment generated by this process. The head of the list is the representation of the
arrangements using R and the event labels comprised in it; each e-sequence is
of type (id, intv-List), where id is the e-sequence id in D that supports the
arrangement, and intv-List (interval List) is a double-linked list of all the time
intervals during which the arrangement occurs in the corresponding e-sequence
in D.

Consider, for example, an e-sequence database D with three unique items
A, B and C, as in Figure 10. The ISIdLists of A and B are shown in Figure 9.
Let Fk denote the complete set of frequent k-arrangements and Ck the set of
candidate frequent k-arrangements. Our algorithm will first scan D to find F1,
i.e. the complete set of 1-arrangements. To achieve this, a scan will be performed
on D for every event type ei. If the number of e-sequences in D that contain
an interval of ei satisfies the support threshold, ei will be added to F1, and its
ISIdList will be updated accordingly.

In order to generate the candidate 2-arrangements, we use the arrangement

Mining Frequent Arrangements of Temporal Intervals 19

Database D

id
 e-sequence

1

2

4

3

A [1, 3], B [1, 3], A [6, 12], B [8, 11], C [9, 10]

A [1, 2], B [2, 6], A [10, 12], B [11, 15], C [14, 17]

B [1, 3], A [4, 7], A [9, 11], B [11, 12] , C [12, 14]

B [1, 5], A [6, 14], B [7, 10], C [8, 9]

Fig. 10. An e-sequence database D.

enumeration tree described above to get the nodes of level 2, along with the set
of their corresponding intermediate nodes. These nodes are generated based on
F1 found in the previous step. The way this is done in (Papapetrou et al., 2005)
is too naive: all possible combinations of 2 event intervals would be checked by
making multiple scans (one per candidate 2-arrangement) on the ISIdLists of
each event label; the ones satisfying the minimum support threshold constraint
would be added to F2. In this paper we follow a more efficient approach which
is based on the Apriori principle: for any 2-arrangement that is frequent in D,
each of the two event intervals that form the arrangement should occur in at
least min sup number of transactions. Thus, once we get the event labels of the
frequent 1-arrangements, we check which pairs of these event labels co-occur in
at least min sup transactions. If a pair of event labels does not satisfy the above
criteria, then there is not need to check the intermediate nodes for any potential
frequent temporal relations. This technique introduces additional pruning and is
applied at each candidate generation step, resulting in a significant acceleration
of the mining process, as shown in the experimental section.

Moving to the next levels, i.e. generating the set of frequent k-arrangements,
we traverse the nodes on level k-1. Note that these nodes correspond to the set
of frequent (k-1)-arrangements. For every node nk−1

i , a new node nk
i is created

on level k. The aforementioned pruning technique is also applied here: given
a node on level k-1 and a new event label, we check whether the number of
transactions where they co-occur is above min sup. If so, the set of intermediate
nodes Mk(nk

i) is generated, one for every type of correlation of the items in nk
i ;

otherwise that node is pruned. For every node in Mk(nk
i) an ISIdList is created

that contains: (1) the set of items of nk
i , (2) the types of 2-relations between

them, (3) for every type of 2-relation a pointer to the intermediate nodes on
Level 2 that correspond to that 2-relation. Also, note that if an arrangement
is found to be infrequent, then the node in the tree that corresponds to that
arrangement is no further expanded.

For efficient support counting we adopt a ”bitmap-like” representation (Ayres
et al., 2002). Each ISIdList contains an array T of size |D|, where T (j) = 1 if
the arrangement represented by the ISIdList is contained in e-sequence j, and
T (j) = 0 otherwise. When two ISIdLists are joined, a logic AND is performed
on the two bitmap arrays and the bitmap array for the new node is determined.
The support of each arrangement is determined by summing its bitmap array.

The above process is more clear through the following example: consider
database D in Figure 10 and assume that min sup = 2. Scanning D and filtering
with min sup, we get F1 = {{A}, {B}, {C}}. Based on F1 and the enumeration
tree, set F2 of the frequent 2-arrangements is generated. In our case, we get all the
possible pairs of the 1-arrangements in F1, i.e. N(2), and for every pair of events in
the arrangements, D is scanned to get all the types of relations between them, i.e.

20 P. Papapetrou et al

Meet (A, B)

esid

2

3

[1, 2] , [2, 6]

Intv-List

 [9, 11] , [11, 12]

A

esid
 Intv-List

1

1

2

2

3

3

4

[1, 3]

[7, 10]

[1, 2]

[10, 12]

[4, 7]

[9, 11]

[6, 14]

B

esid

1

1

2

2

3

3

4

[1, 3]

[8, 9]

[2, 6]

[11, 15]

[1, 3]

[11, 12]

[1, 5]

Intv-List

4
 [7, 10]

C

esid

1

2

3

4

[9, 10]

[14, 17]

[12, 14]

[8, 9]

Intv-List

Follow (A,
 B)

esid

1

2

[1, 3] , [8, 9]

Intv-List

 [1, 2] , [11, 15]

3
 [4, 7] , [11, 12]

Contain (B, C)

esid

1

4

[8, 11] , [9, 10]

Intv-List

 [7, 10] , [8, 9]

Follow (A, C)

esid

1

2

[1, 3] , [9, 10]

Intv-List

 [1, 2] , [8, 9]

2
 [10, 12] , [8, 9]

3
 [4, 7] , [10, 12]

3
 [9, 11] , [12, 14]

Follow (B, C)

esid

1

2

[1, 3] , [9, 10]

Intv-List

 [2, 6] , [8, 9]

3
 [1, 3] , [12, 14]

4
 [1, 5] , [8, 9]

Contain (A, C)

esid

1

4

[6, 12] , [9, 10]

Intv-List

 [6, 14] , [8, 9]

{A, B}

{A, C}

{B, C}

Contain (A,
 B)

esid

1
 [6, 12] , [8, 11]

Intv-List

4
 [6, 14] , [7, 10]

Follow (A, A)

esid

1

2

[1, 3] , [6, 12]

Intv-List

 [1, 2] , [10, 12]

3
 [4, 7] , [9, 11]

Follow (B, B)

esid

1

2

[1, 3] , [8, 11]

Intv-List

 [2, 6] , [11, 15]

3
 [1, 3] , [11, 12]

4
 [1, 5] , [7, 10]

{A, A}

Follow (B, A)

esid

1

2

[1, 3] , [6, 12]

Intv-List

 [2, 6] , [10, 12]

3
 [1, 3] , [3, 7]

3
 [1, 3] , [9, 11]

4
 [1, 5] , [6, 14]

{B, A}

{B, B}

{A, B, C}

Contain (A, B) * Contain (A, C) * Contain (B, C)

esid

1

4

Intv-List

Fig. 11. The set of frequent 2 and 3-arrangements.

M2. If these relations satisfy the support threshold they are added to F2. Then we
produce F3 based on F2. The algorithm first creates N(3), following a breadth-
first search traversal, along with the set of intermediate nodes. Every node in
M3 that satisfies min sup is added to F3, which in our case consists of only one
arrangement: {(A, B, C), (>, >, >)}. F1, F2 and F3 are shown in Figure
11. The main steps of this method are described in Algorithm I, considering an
input database D, a minimum support threshold min sup, an interestingness
measure λ, a set of constraints C and an integer k.

4.2.2. Applying Constraints

The most naive way of applying the set of constraints CT is to do so after the
generation of each arrangement and before the application of any interestingness
measure. Applying constraints, however, is meant to speed up the mining process
and the degree to which CT is applied for pruning determines the efficiency of
pruning. Gap, overlap and contain constraints are applied during the second step
of the algorithm, when the set of frequent 2-arrangements is created. Finally,

Mining Frequent Arrangements of Temporal Intervals 21

input : D: a database of e-sequences.

min sup: minimum support threshold.

CT : a set of temporal constraints.

λ: an interestingness measure.

K: an integer.

ε: the event interval threshold.

output : The set F of the frequent arrangements in D that satisfy CT .

The set AR of the top K rules that satisfy the constraint λ.

F = ∅;
C1 = ∅;
foreach event type ei do

if ei exists in D then

C1 = C1 ∪ ei;

end
end

F1 = {ei ∈ C1 | ei.cupport ≥ min sup , Cd is satisfied}; j = 2; while Fj−1 6= ∅ do

N(j) = generate candidates (N(j − 1), N(1));

// The next set of nodes on the tree is determined, following BFS traversal

foreach node nj
i ∈ N(j) do

Mj(nj
i) = generate krelations(j, CT);

// this function generates the nodes in Mj , along with their ISIdLists.

// for the case where j = 2, it ensures that Cct, Cg and Co are satisfied.

Cj = Mj ;

foreach candidate c ∈ Cj do

if c.support < min sup then

Cj .remove(c); // removes c from Cj .

prune subtree(c); // prunes subtree(c).

end
end

Fj = Cj ;

extract rules(D, Cj , λ, K); // this is Algorithm II

end
end
Algorithm I: A BFS-based algorithm for discovering the complete set of frequent temporal
arrangements and the top K arrangement rules in a database of e-sequences given a set
of constraints and an interestingness measure.

the duration constraint is applied at the first step when the set of frequent 1-
arrangements is created.

4.2.3. Generating Arrangement Rules

Regarding the rule generation, two approaches can be followed: one is to extract
the rules after the mining process is completed, i.e. given the complete set F
of frequent arrangements and the user-specified interestingness measure λ, we
apply a technique similar to the one proposed in (Agrawal & Srikant, 1994) to
extract the rules implied from F and maximize λ. The second and more efficient
approach is to prune using λ with optimistic estimates. This means that during
the mining process we are going to use λ for pruning as aggressively as possible.
This, however, depends on whether λ satisfies the anti-monotonicity property.

22 P. Papapetrou et al

If so then it can be incorporated into the mining process; if not then the first
approach is employed. More details on this step are given in Section 4.6.

4.3. DFS-based Approach

In the BFS approach the arrangement enumeration tree is explored in a top-
bottom manner, i.e. all the children of a node are processed before moving to
the next level. On the other hand, when using a depth-first search approach, all
sub-arrangements on a path must be explored before moving to the next one. A
DFS approach for mining frequent sequences has been proposed in (Tsoukatos &
Gunopulos, 2001). Based on this, the previous algorithm can be easily modified
to use a depth-first search candidate generation method. This can be done by
adjusting function generate candidates() so that it follows a depth-first search
traversal. Consider the previous example: our algorithm will first generate node
n1

1 = {A} followed by M(n1
1), then n2

1 = {A, A} followed by M(n2
1), and so

on. Again, the constraints are applied in a similar fashion as in BFS; the rule
extraction is described in Section 4.6.

The advantage of DFS over BFS is that DFS can very quickly reach large
frequent arrangements and therefore, some expansions in the other paths in the
tree can be avoided. For example, say that a k-arrangement A is found to be
frequent. Then, the set of all sub-arrangements of A will also be frequent accord-
ing to the Apriori principle. Thus, those expansions can be skipped, reducing the
cost of computation. To do so, one more step is added to Algorithm 4.2.1: when a
node is found to contain a frequent arrangement, each sub-arrangement is added
to F . However, this approach has a significant drawback: in BFS each node in
Mk for k ≥ 3 contains pointers to its corresponding nodes in M2. In DFS this is
not possible since Mk is not completely generated due to the type of traversal.
Therefore, in the current case, DFS needs to scan through D multiple times to
determine the frequency of each 2-relation contained in a candidate arrangement.
On the other hand, BFS already had this information available in M2. Know-
ing the set of 2-arrangements before constructing the set of 3-arrangements can
prevent us from making expansions that will lead to infrequent arrangements.

4.4. Hybrid DFS-based Approach

A hybrid event interval mining approach is considered, based on the following
observation: since the ISIdLists contain pointers to the nodes on the second
Level of the tree, a DFS approach would be inappropriate since for every node
nk

i we would have to scan the database multiple times to detect the set of 2-
relations among the items in that node. In the BFS approach these nodes will
already be available, since they have been generated in the second step of the
algorithm. Thus, we use a hybrid DFS approach that generates the first two
levels of the tree using BFS and then follows DFS for the rest of the tree. This
would compensate for the multiple database scans discussed above, since the set
of frequent 2-arrangements will already be available thereby eliminating the need
for multiple database scans.

Mining Frequent Arrangements of Temporal Intervals 23

A

B

C
C

3
1
 4
 7
 15
 19
 23
 30
 42

D

time

C

3
1
 4
 7
 15
 19
 23
 30
 42

D

time

Projection with respect to A

A

B

C

Prefix Arrangement A:

Fig. 12. An Example of a Projection.

4.5. A Prefix-based Approach

A prefix-based algorithm for mining frequent arrangements of temporal intervals
is presented. We will show that in the case of interval-based events, a prefix-
growth approach is quite inefficient, especially when the size of the e-sequences
is large and there is repetition of the same event labels in the same e-sequence.

Consider an arrangement A = {E , R} and an e-sequence S. The projection
of S with respect to A is the remaining part S′ of S, if the first occurrence of A
in S is removed. Figure 12 shows an example of a projection. Next, we define the
projection of an e-sequences database with respect to an arrangement. Using the
definition given in (Pei et al., 2001) for the sequential approach, we can define
the projection of an e-sequence database D with respect to an arrangement A
as the e-sequence database D′ produced from D, if each e-sequence in D is
projected with respect to A. However, this definition is incomplete. The problem
is illustrated by the example shown in Figure 13, where an e-sequence database
of two e-sequences is considered. Following the basic steps of the prefix-growth
mining algorithms with support threshold min sup = 2, we have:

1. Scan D for frequent 1-arrangements: in our case we detect A and C.
2. Project the database with respect to each of the arrangements found at Step

1.
3. The projection with respect to A is shown in Figure 13 and will yield one new

locally frequent arrangement, C, since the support threshold equal to 2.
4. The result of Step 3 is the detection of A → C in the first e-sequence and

A | C in the second.
5. Another projection follows with respect to C, but it produces an empty e-

sequence database and therefore the mining process is terminated.

As it can be seen, we failed to get A | C with support 2. In fact, A | C
was produced after the first projection, as shown in Figure 13, but it was not
considered frequent since its support was erroneously calculated as 1. This ex-
ample shows that when an e-sequence database is projected with respect to a
prefix arrangement, finding only the first occurrence of the arrangement may
hide some patterns and prevent the mining algorithm from detecting them.

Thus, given an e-sequence database D and an arrangement A, the projected
e-sequence database D′ with respect to A can be obtained from D, if from each
e-sequence in D we find every occurrence (not just the first one) of A and project
with respect to each one of them. It can be seen that such an approach can lead

24 P. Papapetrou et al

A

C

time
Prefix Arrangement: A

Support Threshold: 2

A

A

time

C

time

A

C

Detected

Arrangements

A

C

Detected twice

(
Correct
)

Sequence 1

Sequence 2
 A

C

C

A

time

Support = 1

Correct

Support = 1

Wrong

Fig. 13. An Example of an e-sequence database of two e-sequences and a projection that does
not work.

to a huge computational cost, since for each e-sequence in the database, all the
combinations of the occurrences of a prefix should be examined and not just the
first one.

In our experimental evaluation we show the performance of the prefix-growth
approach and compare it with the BFS and DFS approaches presented previ-
ously.

4.6. Applying Other Interestingness Measures

In the previous sections, three efficient methods are presented for mining the
complete set F of frequent arrangements of an e-sequence database D. What re-
mains to be done is to discover the set of top K arrangement rules that maximize
the given interestingness measure λ in D. A very important issue here, is how
optimistic can our pruning be using λ. This, in fact, depends on the properties of
λ and more specifically on anti-monotonicity. Next, we present two approaches
to handle λ based on whether it is anti-monotone or not.

4.6.1. Handling Interestingness Measures that do not Preserve
Anti-monotonicity

If an interestingness measure λ does not preserve the anti-monotonicity property,
we have two options: (1) infer the arrangement rules from the extracted frequent
arrangements after the mining process is completed (this process is similar to
the one described in (Agrawal & Srikant, 1994) for mining association rules), (2)
find an upper or lower bound for λ and apply pruning with optimistic estimates.

The first option is quite straightforward. Given F and D, for each Ai ∈ F ,
with Ai = {E , R}:
1. E is split into two sets E1 and E2, such that E1∪E2 = E and E1∩E2 = NULL.

Based on R, two arrangements are defined:A1 = {E1, R1} andA2 = {E2, R2}.
2. Apply λ on r : A1 ⇒R12

λ, D A2.
3. If r satisfies λ add it into the set of valid rules, else discard r.

Mining Frequent Arrangements of Temporal Intervals 25

4. If the set of rules has reached the desired size K, the rule with the smallest λ
value (let it be λ min) is removed and replaced by the new rule, as long as the
new rule’s value is greater than λ min. If not, then the new rule is discarded.

The above algorithm will produce the complete set of top K arrangement
rules that maximize λ. Moreover, based on the mining process and the constraints
applied during the extraction of the frequent patterns we have ensured that these
rules will satisfy the set of constraints CT .

However, it would be more efficient if λ could guarantee early and optimistic
pruning during the mining process. The only problem is that λ is not anti-
monotone. One way to overcome this issue and achieve some pruning is to find
a bound value (upper or lower) bound λ for λ, such that when an arrangement
A is reached on the tree, if λ(A) < Upperbound λ < λ, then none of the rules
implied by A can lead to an arrangement that satisfies λ and thus these rules
can be pruned. In a similar fashion, if λ(A) > Lowerbound λ > λ, then all rules
implied by A can lead to an arrangement that satisfies λ; thus all these rules
are immediately added to the result. One such bound was used in (Bayardo,
et al., 1999) for association rules and the following claim extends it for the case
of arrangement rules:

Claim 1: If all-confidence(A) ≥ λ, then all rules implied by A can lead to
an arrangement that satisfies confidence. Thus these rules are not considered
any further and are immediately added to the result set.

Proof: Since all-confidence of an arrangement is the minimum confidence of
any rule inferred from it, the Claim is straightforward.

Another sort of pruning would be to find a way to imply whether a rule sat-
isfies λ by calculating a simpler form of the rule that reduces the computational
cost. There have been several works on bounding interestingness measures for
frequent itemset mining (Bayardo et al., 1999; Webb & Zhang, 2005; Omiecin-
ski, 2003). These bounds were used to prune the search space during the rule
extraction process. In this paper we borrow some of those bounds and infer some
new ones to incorporate some of the non anti-monotone measures into the min-
ing process.

1. Bounding Confidence:
Given an arrangement A, for any rule r : A1 ⇒R12

λ, D A2 implied from A,
where λ in this case stands for confidence, we have the following claim:

Claim 2: If cover(A2)
cover(A1)

< min Confidence, then r does not satisfy λ.

Proof: Straightforward from the definition of confidence.

2. Bounding Leverage:
Given an arrangement A, for any rule r : A1 ⇒R12

λ, D A2 implied from A,
where λ in this case stands for leverage, we have the following claim:

Claim 3: If cover(A1) > 1− min Leverage
cover(A2)

or cover(A2) > 1− min Leverage
cover(A1)

,

26 P. Papapetrou et al

input : D: a database of e-sequences.

Ck: the set of candidate k-arrangements.

λ: an interestingness measure.

K: an integer.

output : The set AR of top K arrangement rules in D that satisfy λ.

AR = ∅;

foreach Ai = {E, R} ∈ Ck do

if λ is anti-monotone and Ai does not satisfy λ then

prune the subtree beyond Ai;

continue;

end

apply bounds on Ai;

if λ(Ai) ≤ Upperbound λ ≤ λ then

continue;

end

// apply lower bound, if such bound exists

foreach e ∈ E do

split E into two sets E1 = {e1, ..., e} and E2 = {e + 1, ..., e|E|};
prune split();

// based on the set of rules RA defined in the previous level

// prune the split if necessary.

based on R: define A1 = {E1, R1} and A2 = {E2, R2};
apply λ on r : A1 ⇒D

λ A2;

if r does not satisfy λ then

continue;

end

if |AR| ≥ K then

min = minimum λ-value in AR;

if r.λ ≥ min then

remove rule with λ = min;

AR = AR ∪ r;

end
end

if |AR| < K then

continue;

end
end

end
Algorithm II: Extracting the set of arrangement rules given a set of candidate arrange-
ments.

then r does not satisfy λ.

Proof: Shown in (Webb & Zhang, 2005) for association rules and it can be
easily extended for arrangement rules.

Mining Frequent Arrangements of Temporal Intervals 27

4.6.2. Handling Interestingness Measures that Preserve
Anti-monotonicity

In this subsection we consider the case where the interestingness measure λ
preserves the anti-monotonicity property. If λ is anti-monotone, it can be used for
pruning very early during the mining process. When an arrangementA is reached
on the enumeration tree, if there exists no rule r inferred from A satisfying λ,
then the subtree of the node representing A is pruned, since it cannot produce
any interesting rule. However, if there exists a set of rules RA for which λ holds,
then the mining process continues with the subtree. In this case though, the rules
that are going to be discovered in the subtree depend on RA, based on which,
the rule extraction process can be accomplished faster by excluding those rules
that will definitely not satisfy λ. Let RA = {r1, r2, ..., rn} be the set of rules
inferred from the arrangement at node n on the tree, where ri : Ai ⇒RAiBi

λ, D Bi.
When n is expanded, for each new arrangement C = {E , R}, we follow the
same process as in the previous section to discover the new arrangement rules,
however the search is limited by RA as follows:

1. E is split into two sets E1 and E2.
2. If there is no arrangement Ai = {Ei, Ri} in the antecedent part of any rule in
RA, such that E1 ⊇ Ei, then due to the anti-monotonicity property, E1 cannot
be the antecedent part of any rule inferred from C; thus this split is skipped.

As it can be seen, an anti-monotone interestingness measure λ can be used
for more efficient and optimistic pruning (meaning that it can be used to prune
as aggressively as possible) and thus lead to a faster rule extraction. Algorithm
II shows how we can extract the set of top K rules, given set of frequent arrange-
ments.

5. Experimental Setup

Experiments that compare the performance of our algorithms with SPAM (Ayres
et al., 2002) are presented. 1 All experiments have been performed on a 2.8Ghz
Intel(R) Pentium(R) 4 dual-processor machine with 2.5 gigabytes main memory,
running Linux with kernel 2.4.20. The algorithms have been implemented in
C++, compiled using g++ along with the -O3 flag, and their run time has been
measured with the output turned off. Note that for SPAM, the post-processing
time of converting the sequential patterns to arrangements has not been counted.
Also, as mentioned in Section 4, SPAM is tuned as follows: for every event interval
we keep only the start and end time; as for the postprocessing phase, the frequent
arrangements are extracted from the sequential patterns as described in the same
section. The patterns found by SPAM consist of a set of start and end points of
event intervals, which are converted to arrangements at the postprocessing phase.
SPAM manages to discover the same patterns extracted by our algorithms, but,
as expected, it produces a great number of redundant patterns.

For our experimental evaluation we have used both real and synthetic datasets.
Next, we present an analysis of our experimental evaluation, first by comparing

1 The code was obtained from: http://himalaya-tools.sourceforge.net/Spam/.

28 P. Papapetrou et al

our algorithms with respect to their run time and then by showing their perfor-
mance for each of the interestingness measures described in Section 2.5.

5.1. Experiments on Real Data

We have performed a series of experiments on two real datasets. One was an anno-
tated database of ASL utterances, which is available online at: http://www.bu.edu/
asllrp/. The other was a sample network dataset of ODFlows taken from Abi-
lene, which is an Internet2 backbone network, connecting over 200 US universities
and peering with research networks in Europe and Asia.

5.1.1. Experiments on the ASL SignStream Database

The first series of experiments have been performed on the ASL database created
by the National Center for Sign Language and Gesture Resources at Boston
University. The SignStream(TM) database used in this experiment consists of
a collection of 884 utterances, where each utterance associates a segment of
video with a detailed transcription. Non-manual markings play a crucial role in
the grammar of ASL (Baker-Shenk, 1983; Coulter, 1979; Liddell, 1980; Neidle
et al., 2000), thus for our experiments we focused only on: specific non-manual
gestures (e.g., raised eyebrows, head tilt forward), functional identification of
clusters of these non-manual gestures that carry syntactic meaning (e.g., ’wh-
question’, ’negation’), and part-of-speech identifications of manual signs (e.g.,
verb, wh-word), each one occurring over a time interval. The overall list of field
names and labels included in the database are given in Table 2.

We first tested our algorithms on subsets of sentences from the database:
those that contained marking of a wh-question, and another that contained
marking of negation. Our goal was to detect all frequent arrangements that oc-
curred during wh-questions and negative sentences. In these two datasets, called
Dataset 1 and Dataset 2 respectively, the number of e-sequences was 73 and
68, with an average number of items per sequence equal to 32 and 26 respec-
tively. Since all four algorithms produce the same results, in our experiments
we compare their run time. As shown in Figures 16(a) and 16(b), Hybrid DFS
outperformed both BFS and SPAM for supports less than 30%. Note that for
a support threshold of 3%, SPAM produced 25628 patterns as opposed to 7574
arrangements produced by Hybrid DFS, which induces 70% redundancy in the
results, and for a support threshold of 5% the redundancy was 63.4%. On aver-
age, Hybrid DFS was approximately 1.5 to 2 times faster than BFS and almost
three times (or more) faster than SPAM. In many cases, the performance of
the prefix-growth approach was very poor, as it was predicted in the analysis
of Section 4. We tested the qualitative performance with respect to the setting
of parameter ε, where varied between 2 and 6 instants. In our case, low values
of ε gave the most meaningful results, since the amount of noise in the ASL
dataset was limited to a small number of frames. For higher values of ε, the
detected relation types changed, and as a result the number of extracted fre-
quent arrangements decreased, hiding many of the interesting patterns. For all
experiments presented in this section, ε = 3.

Next, our algorithms were tested on the whole Signstream(TM) database

Mining Frequent Arrangements of Temporal Intervals 29

Table 2. List of Field Names and Labels.

Fields Field Names Field Labels

Head position tilt fr/bk tilt fr/bk s
turn turn

tilt side tilt side
jut jut

Head movement nod nod
shake shake

side to side side< − >side
jut jut

Body body lean body lean
body mvmt body mvmt
shoulders shoulders

Eyes, Nose
and Mouth eye brows eye brows

eye gaze eye gaze
eye aperture eye apert

nose nose
mouth mouth

English mouthing English mouthing
cheeks cheeks

Neck neck neck

Grammatical
information negative negative

wh question wh question
yes-no question yes-no question

rhetorical question rhq
topic/focus topic/focus

conditional/when cond/when
relative clause rel. clause

role shift role shift
subject agreement subj agr
object agreement obj agr

adverbial adv

Part of Speech POS POS
Non-dominant POS POS2

Gloss Fields main gloss main gloss
non-dominant

hand gloss nd hand gloss

Text Fields English translation english

that contained 884 utterances with an average e-sequence size of 29 items per
e-sequence. We refer to this as Dataset 3. The algorithms have been tested for
various supports and have been compared in terms of run time. The experimental
results in Figure 16(c) show that in terms of run time, the Hybrid DFS-based
approach outperforms the BFS-based especially in small supports. SPAM starts
with a run time between that of BFS and Hybrid DFS and for small supports
the run time increases dramatically. The prefix-growth approach is again very
poor.

The results produced by our algorithms have been examined and evaluated
by linguists who had been involved in collecting the ASL data and producing
the annotations for this dataset 2. According to their feedback, our algorithms

2 Carol Neidle and Robert G. Lee, of Boston University.

30 P. Papapetrou et al

eye-aperture squint

wh-word

wh-word

lowered eye-brows

wh-word

eye-aperture blink

lowered eye-brows

wh-word

49%

43%

52%

55%

Pattern
 Pattern
Support
 Support

wh-word

lowered eye-brows

eye-aperture

blink
 37%
32%

eye-aperture squint

wh-word

lowered eye-brows

verb

verb

eye-aperture

blink

lowered eye-brows

wh-word

21%

24%

57%

28%

Pattern
 Pattern
Support
 Support

wh-word

lowered eye-brows

eye-aperture blink

23%
22%

eye-aperture squint

lowered eye-brows

lowered eye-brows

wh-question

wh-question
negation

verb

eye-aperture wide

Dataset 1

Dataset 3

verb

verb

eye-aperture

blink

58%

46%

57%

72%

Pattern
 Pattern
Support
 Support

lowered eye-brows
 63%
43%

eye-aperture squint

lowered eye-brows

lowered eye-brows

negation
negation

verb

Head tilt: side
 lowered eye-brows

negation

Head tilt: side

Dataset 2

Fig. 14. Some Frequent Patterns of Datasets 1, 2 and 3.

managed to detect a set of ASL patterns that have been already known: for
example, the strong correlation between wh-question marking and lowered eye-
brows. Similar correlations were found between the occurrence of what had been
labelled as ”negative” marking and the non-manual behaviors that comprise this
marking (such as side-to-side head shake). Similarly, it was unsurprising that wh-
words co-occurred with the non-manual markings associated with wh-questions.
Nonetheless, it is good that our approaches independently found known corre-
lations. Also, some other discovered patterns were considered to be trivial (e.g.,
that the onset of a behavior preceded the behavior itself) or in some cases, an
artifact of the selection criterion used to define the sample of data under con-
sideration. For example, within the set of negative sentences, verbs frequently
co-occurred with marking of negation (whereas this would not be true of verbs in
non-negative sentences). For example, a “verb” would always occur in a “nega-
tion”, or a “wh-word” is always included in a “wh-question”. Linguists have
evaluated and confirmed the correctness of the patterns and rules discovered by
our algorithms. In Figure 14 we can see some of the most frequent arrangements
detected in Datasets 1, 2, and 3. In terms of memory requirements, Hybrid DFS
outperformed the rest, as shown in Figure 15 for Dataset 3. The other two ASL
datasets had similar behavior. For all three datasets Hybrid DFS outperformed
SPAM by a factor of 2.4 and BFS by a factor of 1.8.

5.1.2. Applying Interestingness Measures on the ASL Datasets

The main motivation behind the application of interestingness measures during
the mining process was to reduce the number of extracted patterns to the most
interesting ones (for the user), removing most of the trivial cases described pre-
viously. All six interestingness measures presented in Section 4 have been applied

Mining Frequent Arrangements of Temporal Intervals 31

Table 3. Number of Extracted Rules from Datasets 1, 2, 3, and 4.

λ Supp λ ds 1 ds 2 ds 3 ds 4

lift 0.5 0.1 87 22 25 156
lift 0.5 0.3 55 16 9 133
lift 0.5 0.5 46 14 2 87
lift 0.4 0.5 187 149 53 241
lift 0.3 0.5 453 47 155 786

conviction 0.5 0.5 29 47 13 68
conviction 0.4 0.5 112 47 16 142
confidence 0.5 0.5 46 14 2 81
confidence 0.4 0.5 148 53 14 251
leverage 0.4 0.3 6 1 6 25
leverage 0.4 0.2 25 3 12 43
all-conf. 0.5 0.5 46 15 15 84
all-conf. 0.4 0.5 54 53 59 122
all-conf. 0.3 0.5 67 56 64 143

to the ASL Datasets, leading to the discovery of different sets of rules that maxi-
mize each one of them. The basic observation from the extracted patterns on the
ASL database was that applying only the support threshold yielded a huge num-
ber of redundant patterns that do not provide any useful information. Therefore,
except for the support we applied all the interestingness measures described pre-
viously. Table 3 shows the number of rules extracted by our algorithms for each
of the three ASL Datasets. As we can see, lift, confidence and conviction pro-
duced an interesting number of rules, whereas the number of rules that maximize
leverage and all-confidence was pretty small. In Figure 17 we present some of
the top patterns in the ASL dataset with regard to each interestingness measure.
Notice that the first column of the figure gives the complete arrangement that
takes part in the rule, the second column shows the antecedent arrangement, the
third column shows the consequent arrangement and the fourth column gives
the value of each interestingness measure.

The application of interestingness measures managed to remove trivial cases
and preserve those already known to the linguists. In our case lift and conviction
had the best performance among all the measures we examined. Leverage also
did a very good job in removing trivial rules, however it also removed a great
number of known rules, and in many cases the number of extracted rules was
extremely small. Our experimental evaluation showed that the combination of
interestingness measures and the efficient arrangement mining algorithms can po-
tentially provide more meaningful results. Nonetheless, an evaluation by experts
is always needed to determine the most effective measure for a given application.

5.1.3. Experiments on Network Data

Our algorithms have also been tested on a network dataset of 960 e-sequences
with an average e-sequence size of 100 items per e-sequence. The data has been
obtained from a collection of ODFlows obtained from Abilene, that consists of 11
Points of Presence (PoPs), spanning the continental US. Three weeks of sampled
IP-level traffic flow data were collected from every PoP in Abilene for the period
December 8, 2003 to December 28, 2003. We have selected two routers that were
shown to have a high communication rate with each other, and have monitored
the IP connections from one (LOSA: router in LA) to the other (ATLA: router in
Altanta) for three days. An e-sequence in our dataset is the set of IP connections

32 P. Papapetrou et al

5101520253035404550
0

5

10

15

20

25

30

35

Support in %

M
em

or
y

in
 M

B

Dataset 3

SPAM
BFS
H−DFS
PREFIX

5101520253035404550
0

10

20

30

40

50

60

70

80

90

100

Support in %

M
em

or
y

in
 M

B

Network Dataset

SPAM
BFS
H−DFS
PREFIX

(a) (b)

Fig. 15. Memory requirements for Dataset 3 and the network dataset.

from LOSA to ATLA for every 15 minutes. Due to the huge number of IP
addresses, we have selected 200 IPs that appear most frequently in these three
days. The dataset that resulted from the above process is called Dataset 4.

Our experiments focused only on run time for the same reasons described
earlier. In a qualitative experiment, the parameter ε was tuned to vary between
3 and 15. Due to the nature of the dataset, the number of extracted patterns was
huge since the average e-sequence size was too high. As before, the number and
type of extracted patterns varied with respect to ε; unfortunately, no interesting
or surprising patterns were found. In this case, “interestingness” means that
the patterns were meaningful (from a network point of view), and described an
expected communication behavior of the two routers. The run time comparison
of the four algorithms is shown in Figure 16(d), and it is quite similar to that
of the ASL datasets; again Hybrid DFS outperforms the other algorithms in
low supports. In terms of memory requirements, the trends are the same as
those for the ASL datasets. In Figure 15 we can see that for low supports,
BFS consumes twice as much memory as Hybrid DFS, whereas the Prefix-based
approach requires four times the memory used by Hybrid DFS.

5.1.4. Applying Interestingness Measures on the Network Dataset

As far as the arrangement rules are concerned, all six interestingness measures
have been applied and a great number of rules have been extracted, most of
which were interesting (from the point of view described earlier). In Table 3 we
can see the number of rules generated by each interestingness measure. The main
observation here is that the number of rules generated for the network dataset
by each measure is greater than that for the ASL datasets. This is expected due
to the nature of the network dataset, i.e. the average e-sequence size is larger,
and the number of relations (and thus arrangements) is greater, due to the high
communication rate in the network.

5.2. Applying Temporal Constraints

The usage of temporal constraints is application specific. Depending on the pat-
terns that the user is targeting and also on the nature of the dataset, an optimal
setting can be defined for the temporal constraints. This setting will result in the
elimination of undesired patterns and at the same time provide further pruning.

Mining Frequent Arrangements of Temporal Intervals 33

Table 4. Performance of H-DFS with Constraints on Dataset 3. µ is the mean interval duration
in the dataset.

Const. Const. # of Runtime
type value extracted in sec

patterns

Gap ∞ 7574 512
Gap 39 (µ× 2) 4375 261
Gap 52 (µ× 3) 4453 278
Gap 65 (µ× 4) 4562 299
Gap 78 (µ× 5) 5766 345

Overlap [19.5, ∞) = [µ /2, ∞) 6175 426
Overlap (13, 19.5] = (µ /3, µ/2] 5512 331
Overlap (9.75, 13] = (µ/4, µ/3] 5409 315
Overlap (0, 9.75] = (0, µ/4] 5321 302

Contain no bounds 7574 512
Contain (80%, 100%] 6441 484
Contain (70%, 80%] 6521 492
Contain (60%, 70%] 6625 501

Temporal constraints have been applied to both real datasets (Dataset 3 and
the Network dataset) and achieved efficient pruning. Temporal constraints have
been set according to the mean duration of the intervals in each dataset. Ta-
ble 4 provides a summary of the impact of these constraints on Dataset 3 (the
support threshold has been set to 3% and the mean interval duration is 19.5
seconds). It can be seen that as constraints get tighter, the number of extracted
patterns decreases and at the same time the run time improves. The same be-
havior has been observed with the Network dataset. In general, the effectiveness
of temporal constraints highly depends on the nature of the dataset and the user
requirements. If for example the event intervals in a dataset are spread apart
then the gap constraint should be set to a high value; if on the other hand they
are too close to each other then the gap constraint should be low. The best way
of setting these constraints is to first extract some statistics on the given dataset,
i.e. mean, standard deviation, etc., and then consult with the experts to deter-
mine what type of constraints and what thresholds should be applied to that
specific dataset; this way we can achieve further pruning at a lower run time and
at the same guarantee meaningful results.

5.3. Experiments on Synthetic Data

Due to the relatively small size of the current SignStream database, we have
generated numerous synthetic datasets to test the efficiency of our algorithms.

5.3.1. Synthetic Data Generation

The following factors have been considered for the generation of the synthetic
datasets: (1) number of e-sequences, (2) average e-sequence size, (3) number of
distinct items, (4) density of frequent patterns. Using different variations of the
above factors we have generated several datasets. In particular, our datasets
were of sizes 200, 500, 1000, 2000, 5000 and 10000, with average sequence sizes
of 3, 10, 50, 100 and 150 items per e-sequence. Moreover, we have tried various

34 P. Papapetrou et al

101520253035404550
0

5

10

15

20

25

30

35

40

45

Support in %

R
un

tim
e

in
 s

ec
on

ds

ASL Dataset 1

BFS
H−DFS
SPAM
PREFIX

101520253035404550
0

10

20

30

40

50

60

Support in %

R
un

tim
e

in
 s

ec
on

ds

ASL Dataset 2

BFS
H−DFS
SPAM
PREFIX

(a) (b)

51015202530
0

500

1000

1500

2000

2500

3000

3500

Support in %

R
un

tim
e

in
 s

ec
on

ds

ASL Dataset 3

BFS
H−DFS
SPAM
PREFIX

12345678910
0

50

100

150

200

250

300

350

400

450

500

550

Support in %

R
un

tim
e

in
 s

ec
on

ds

Network Dataset

BFS
H−DFS
SPAM
PREFIX

(c) (d)

Fig. 16. Results on Real Datasets: (a) ASL Dataset 1: |S|: 73, |A|: 52, |E|: 400.; (b) ASL
Dataset 2: |S|: 68, |A|: 26, |E|: 400.; (c) ASL Dataset 3: |S|: 884, |A|: 102, |E|: 400.; (d) Net-
work Dataset: |S|: 960, |A|: 100, |E|: 200 (where |S| denotes the size of the dataset, |A| the
average sequence size), and |E| the number of distinct items in the dataset.

numbers of distinct items, i.e. 400, 600 and 800. Also, we have considered differ-
ent densities of frequent patterns. We first created a certain number of frequent
patterns that with medium support thresholds of 20% (sparse), 40% (medium
density) and 60% (dense) would generate a lot of frequent patterns and then
added random event intervals on the generated sequences.

5.3.2. Experimental Results

The experimental results have shown that Hybrid DFS clearly outperforms BFS,
and especially in low support values and large database sizes Hybrid DFS is twice
as fast as BFS. Regarding the performance of SPAM, we have concluded that
in medium support values and small database sizes SPAM performs better than
BFS but worse than Hybrid DFS, whereas in small support values and large
datasets BFS outperforms SPAM. We compared the four algorithms on sev-
eral small, medium and large datasets for various support values. The results of
these tests are shown in Figure 20. As expected, SPAM performs poorly in large
sequences and small supports. This behavior is expected since for every arrange-
ment produced by BFS and Hybrid DFS, SPAM generates all the possible subsets
of the start and end points of the events in that arrangement. As the database
size grows along with the average e-sequence size, SPAM will be producing a
great number of redundant frequent patterns that yield to a rapid increase of
its run time. In all cases, the prefix-growth algorithm performs very poorly. In

Mining Frequent Arrangements of Temporal Intervals 35

wh-word

eye-brow OFFSET

Lift: 0.97

Leverage: 0.68

Confidence: 0.92

Conviction: 9.12

All-Confidence: 0.54

Antecedent
 Consequent
 Lambda

eye-aperture

blink

eye-brow ONSET

wh-question

wh-word

head mvmt: rapid

head shake

eye-aperture

blink

Lift: 0.72

Leverage: 0.52

Confidence: 0.85

Conviction: 3.03

All-Confidence: 0.51

wh-word

lowered eye-brows

Lift: 0.93

Leverage: 0.51

Confidence: 0.81

Conviction: 3.64

All-Confidence: 0.58

negative neg

head mvmt: rapid

head shake

POS: verb

negation

Lift: 0.79

Leverage: 0.33

Confidence: 0.96

Conviction: 0.77

All-Confidence: 0.51

negative neg

raised eye-brows

negation

Lift: 0.76

Leverage: 0.45

Confidence: 0.63

Conviction: 3.88

All-Confidence: 0.47

wh-word

eye-aperture

blink

Lift: 0.96

Leverage: 0.24

Confidence: 0.95

Conviction: 1.59

All-Confidence: 0.53

eye-aperture squint

wh-word

Body lean forward

lowered eye-brows
 Lift: 1.0

Leverage: 0.21

Confidence: 0.33

Conviction: 1.2

All-Confidence: 0.21

POS: noun

negation

Lift: 0.88

Leverage: 0.35

Confidence: 0.82

Conviction: 1.55

All-Confidence: 0.44

head mvmt: jut forward

wh-question

wh-word

lowered eye-brows

Lift: 0.41

Leverage: 0.15

Confidence: 0.82

Conviction: 0.78

All-Confidence: 0.46

wh-word

eye-brow OFFSET
eye-brow ONSET

wh-word

head mvmt: rapid

head shake

eye-aperture

blink

eye-aperture

blink

wh-question

wh-word

lowered eye-brows

negative neg

head mvmt: rapid

head shake

POS: verb

negation

negative neg

lowered eye-brows

negation

wh-word

eye-aperture

blink

eye-aperture squint

wh-word

Body lean forward

lowered eye-brows

POS: noun

negation

head mvmt: jut forward

wh-question

wh-word

lowered eye-brows

Arrangement

Fig. 17. Some of the discovered rules in Dataset 1 and Dataset 2.

medium supports and small datasets it can still do better than SPAM, but in
smaller supports and larger datasets its performance decreases dramatically.

In terms of memory requirements, Hybrid DFS outperformed SPAM by a
factor of 2.6 and BFS by a factor of 2.1. Some results are shown in Figure
18. For all the other cases (different e-sequence sizes, number of items per e-
sequence and average number of items per e-sequence) the trends are similar
and thus further results are omitted. It can be seen that despite the fact that
SPAM needs only one integer to represent an item of a sequence whereas BFS
and Hybrid DFS need three integers (one for the item, one for the start and
one for the end point), the later still outperform by an order of magnitude.
This proves the inefficiency of SPAM on interval-based event sequences. Also,
the efficiency of our algorithms has been tested with respect to different number
of items and different e-sequence size. The performance of the four algorithms
is shown in Figure 19. It can be seen that Hybrid DFS outperforms BFS by

36 P. Papapetrou et al

5101520253035404550
0

10

20

30

40

50

60

Support in %

M
em

or
y

in
 M

B

S:1000;A:20;E:400

SPAM
BFS
H−DFS
PREFIX

5101520253035404550
0

10

20

30

40

50

60

Support in %

M
em

or
y

in
 M

B

S:10000;A:20;E:400

SPAM
BFS
H−DFS
PREFIX

(a) (b)

Fig. 18. Memory requirements for the synthetic dataasets:(a) 1000 e-sequences with 20 items
per e-sequence on average, and 400 event labels; (b) 10000 e-sequences with 20 items per
e-sequence on average, and 400 event labels.

100200300400500600700800
0

10

20

30

40

50

60

Average e−sequence size

R
un

tim
e

in
 s

ec
on

ds

S:10000;A:50

BFS
H−DFS
SPAM
PREFIX

102030405060708090100
0

10

20

30

40

50

60

Average e−sequence size

R
un

tim
e

in
 s

ec
on

ds

S:10000;E:800

BFS
H−DFS
SPAM
PREFIX

(a) (b)

Fig. 19. Runtime comparison with respect to different e-sequence size and different average
number of items per e-sequence:(a) 10000 e-sequences with 50 items per e-sequence on average;
(b) 10000 e-sequences with 400 event labels.

at least an order of magnitude. SPAM and the Prefix-based approach perform
much worse, as expected.

6. Conclusions

In this paper, we have formally defined the problem of constraint-based min-
ing of frequent temporal arrangements of event interval sequences and presented
three efficient methods to solve it. The first two approaches use an arrangement
enumeration tree to discover the set of frequent arrangements. The DFS method
further improves performance over BFS by reaching longer arrangements faster
and hence eliminating the need for examining smaller subsets of these arrange-
ments. The prefix-growth approach is poor in performance, since the number
of projections can be really huge, especially when the input e-sequences have
repetitions of the same event label. We further extended our algorithms by ap-
plying constraints during the mining process. These constraints provide a more
user-specified focus on the structure of the extracted patterns. Moreover, except
for the support threshold, we have applied other interestingness measures and
focused on mining the top k arrangement rules that maximize a given inter-

Mining Frequent Arrangements of Temporal Intervals 37

510152025
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Support in %

R
un

tim
e

in
 s

ec
on

ds
S:1000;A:10;E:400

BFS
H−DFS
SPAM
PREFIX

2468101214161820
0

50

100

150

200

250

300

350

400

450

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:1000;A:20;E:600

BFS
H−DFS
SPAM
PREFIX

(a) (b)

2468101214161820
0

50

100

150

200

250

300

350

400

450

500

550

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:1000;A:50;E:800

BFS
H−DFS
SPAM
PREFIX

2468101214
0

5

10

15

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:2000;A:10;E:400

BFS
H−DFS
SPAM
PREFIX

(c) (d)

2468101214161820
0

50

100

150

200

250

300

350

400

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:2000;A:20;E:600

BFS
H−DFS
SPAM
PREFIX

2468101214161820
0

50

100

150

200

250

300

350

400

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:5000;A:20;E:400

BFS
H−DFS
SPAM
PREFIX

(e) (f)

5101520253035404550
0

100

200

300

400

500

600

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:5000;A:50;E:400

BFS
H−DFS
SPAM
PREFIX

5101520253035404550
0

500

1000

1500

2000

2500

3000

Support in %

R
un

tim
e

in
 s

ec
on

ds

S:10000;A:100;E:800

BFS
H−DFS
SPAM
PREFIX

(g) (h)

Fig. 20. Results on Synthetic Datasets: (a) Dataset 1: |S|: 1000, |A|: 10, |E|: 400, frequent pat-
terns of medium density.; (b) Dataset 2: |S|: 1000, |A|: 20, |E|: 600, sparse frequent patterns.;
(c) Dataset 3: |S|: 1000, |A|: 50, |E|: 800, dense frequent patterns.;(d) Dataset 4: |S|: 2000,
|A|: 10, |E|: 400, frequent patterns of medium density.;(e) Dataset 5: |S|: 2000, |A|: 20, |E|:
400, frequent patterns of medium density.;(f) Dataset 6: |S|: 5000, |A|: 20, |E|: 400, dense fre-
quent patterns.;(g) Dataset 7: |S|: 5000, |A|: 50, |E|: 400, dense frequent patterns.;(h) Dataset
8: |S|: 10000, |A|: 100, |E|: 800, dense frequent patterns.

38 P. Papapetrou et al

estingness measure. Our experimental evaluation demonstrates the applicability
and usefulness of our methods.

An interesting direction for future work is to adjust the definition of sup-
port to capture multiple occurrences of an arrangement within a database se-
quence. Furthermore, we could develop an efficient algorithm for mining closed
arrangements. In this case however, a prefix-based approach, like BIDE (Wang
& Han, 2004), would be extremely costly. Therefore, we should come up with
a method to produce the complete set of closed arrangements that will employ
more efficient projections or use different techniques to prevent the paramount
cost of multiple projections. Another direction for future work is to mine par-
tial orders of temporal arrangements and closed temporal arrangements. The
notion of mining partial orders of sequential patterns has been introduced in
(Mannila & Toivonen, 1996) and an interesting approach has been recently pro-
posed for closed sequential patterns in (Casas-Garriga, 2005). However, these
methods again assume that the events are instantaneous. Last but not least,
our algorithms could be applied on biological data, such as genes of different
organisms (Papapetrou et al., 2006). The ultimate goal would be to extract fre-
quent arrangements of nucleotide regions and produce interesting rules. These
patterns could be further used to determine various features of different groups
of organisms and possibly detect mutations or tandem repeats.
Acknowledgements. This material is based upon work supported in part by the
following National Science Foundation Grants: IIS-0705749, IIS-0308213, IIS-0329009
and IIS-0812309. We thank the anonymous reviewers for their very useful comments
and suggestions. Also, we would like to thank professor Carol Neidle (Department of
Romance Studies, Linguistics Program) for her very useful comments and feedback.

References

T. Abraham & J. F. Roddick (1999). ‘Incremental Meta-Mining from Large Temporal Data
Sets’. In ER ’98: Proceedings of the Workshops on Data Warehousing and Data Mining,
pp. 41–54.

R. Agrawal, et al. (1993). ‘Mining association rules between sets of items in large databases’.
In Proc. of ACM SIGMOD, pp. 207–216.

R. Agrawal & R. Srikant (1994). ‘Fast algorithms for mining association rules’. In Proc. of
VLDB, pp. 487–499.

R. Agrawal & R. Srikant (1995). ‘Mining Sequential Patterns’. In Proc. of IEEE ICDE, pp.
3–14.

J. M. Ale & G. H. Rossi (2000). ‘An Approach to Discovering Temporal Association Rules’.
In Proc. of the SAC, pp. 294–300.

J. Allen & G. Ferguson (1994). ‘Actions and Events in Interval Temporal Logic’. Journal of
Logic and Computation .

J. Ayres, et al. (2002). ‘Sequential PAttern Mining using a Bitmap Representation’. In Proc.
of ACM SIGKDD, pp. 429–435.

C. Baker-Shenk (1983). ‘A Micro-analysis of the Nonmanual Components of Questions in
American Sign Language’. Doctoral Dissertation .

R. Bayardo, et al. (1999). ‘Constraint-based Rule Mining in Large, Dense Databases’. In Proc.
of IEEE ICDE, pp. 188–197.

R. J. Bayardo (1998). ‘Efficiently mining long patterns from databases’. In Proc. of ACM
SIGMOD, pp. 85–93.

S. Brin, et al. (1997). ‘Beyond marketbaskets: generalizing association rules to correlations’.
In ACM International Conference on Management of Data (SIGMOD), p. 265276.

S. Brin, et al. (2004). ‘Dynamic itemset counting and implication rules for market basket data’.
In ACM International Conference on Management of Data (SIGMOD), p. 255264.

G. Casas-Garriga (2005). ‘Summarizing Sequential Data with Closed Partial Orders’. In Proc.
of SDM.

Mining Frequent Arrangements of Temporal Intervals 39

X. Chen & I. Petrounias (1999). ‘Mining Temporal Features in Association Rules’. In Proc. of
PKDD, pp. 295–300, London, UK. Springer-Verlag.

G. R. Coulter (1979). ‘American Sign Language Typology’. Doctoral Dissertation .
B. Davey & H. Priestley (2002). Introduction to Lattices and Oder. Cambridge University

Press.
E.Winarko & J.F.Roddick (2005). ‘Discovering Richer Temporal Association Rules from

interval-based Data’. In In Proc. DaWaK.
M. Garofalakis, et al. (1999). ‘SPIRIT: Sequential pattern mining with regular expression

constraints’. In Proc. of VLDB, pp. 223–234.
F. Giannotti, et al. (2006). ‘Efficient Mining of Temporally Annotated Sequences’. In SDM.
J. Han, et al. (2000). ‘FreeSpan: Frequent pattern-projected sequential pattern mining’. In

Proc. of ACM SIGKDD, pp. 355 – 359.
J. Han, et al. (2000b). ‘Mining frequent patterns without candidate generation’. In Proc. of

ACM SIGMOD, pp. 1–12.
S. Harms, et al. (2002). ‘Discovering sequential association rules with constraints and time

lags in multiple sequences’. In International Symposium on Methodologies for Intelligent
Systems (ISMIS), pp. 432–442.

R. Hilderman & H. Hamilton (1999). ‘Knowledge discovery and interestingness measures: A
survey’. Tech. Rep. 99-04, Department of Computer Science, University of Regina.

R. J. Hilderman & H. J. Hamilton (2001). ‘Evaluation of Interestingness Measures for Ranking
Discovered Knowledge’. Lecture Notes in Computer Science 2035:247.

F. Hoeppner (2001). ‘Discovery of Temporal Patterns - Learning Rules about the Qualitative
Behaviour of Time Series’. In Proc. of PKDD, pp. 192–203.

F. Hoeppner & F. Klawonn (2001). ‘Finding Informative Rules in Interval Sequences’. In
Advances in Intelligent Data Analysis, Proc. of the 4th International Symposium, pp.
123–132.

S.-Y. Hwang, et al. (2004). ‘Discovery of temporal patterns from process instances’. Computers
in Industry 53(3):345–364.

X. Ji, et al. (2007). ‘Mining minimal distinguishing subsequence patterns with gap constraints’.
Knowledge and Information Systems 11(3):259–286.

P. Kam & A. W. Fu (2000). ‘Discovering Temporal Patterns for Interval-Based Events.’. In
DaWaK, pp. 317–326.

M. Kamber & R. Shinghal (1996). ‘Evaluating the interestingness of characteristic rules’. In
Proc. of ACM SIGKDD, pp. 263–266.

S. Laxman, et al. (2007). ‘Discovering Frequent Generalized Episodes When Events Persist for
Different Durations’. IEEE Transactions on Knowledge and Data Engineering 19(9):1188–
1201.

M. Leleu, et al. (2003). ‘GO-SPADE: Mining Sequential Patterns over Databases with Con-
secutive Repetitions’. In Proc. of MLDM, pp. 293–306.

C. K.-S. Leung, et al. (2007). ‘CanTree: a canonical-order tree for incremental frequent-pattern
mining’. Knowledge and Information Systems 11(3):287–311.

S. K. Liddell (1980). ‘American Sign Language Syntax’. The Hague: Mouton .
J.-L. Lin (2002). ‘Mining Maximal Frequent Intervals’. Tech. rep., Department of Information

Management, Yuan Ze University.
J.-L. Lin (2003). ‘Mining Maximal Frequent Intervals’. In Proc. of SAC, pp. 624–629.
H. Lu, et al. (1998). ‘Stock Movement Prediction and n-dimensional Inter-Transaction Associ-

ation Rules’. In Proc. of the ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pp. 12:1–12:7.

C. Luo & S. M. Chung (2008). ‘A scalable algorithm for mining maximal frequent sequences
using a sample’. Knowledge and Information Systems 15(2):149–179.

H. Mannila & H. Toivonen (1996). ‘Discovering generalized episodes using minimal occurences’.
In Proc. of ACM SIGKDD, pp. 146–151.

H. Mannila, et al. (1995). ‘Discovering frequent episodes in sequences’. In Proc. of ACM
SIGKDD, pp. 210–215.

F. Moerchen (2006). ‘Algorithms For Time Series Knowledge Mining’. In Proc. of ACM
SIGKDD.

C. Mooney & J. F. Roddick (2004). ‘Mining Relationships Between Interacting Episodes’. In
Proc. of SDM.

C. Neidle (2002a). ‘SignStream: A Database Tool for Research on Visual-Gestural Language’.
Journal of Sign Language and Linguistics 4:203–214.

C. Neidle (2002b). ‘SignStream Annotation: Conventions used for the American Sign Language

40 P. Papapetrou et al

Linguistic Research Project’. American Sign Language Linguistic Research Project Report
11.

C. Neidle (2003). ‘Language Across Modalities: ASL Focus and Question Constructions’.
Linguistic Variation Yearbook 2:71–93.

C. Neidle, et al. (2000). ‘The Syntax of American Sign Language: Functional Categories and
Hierarchical Structure’ .

C. Neidle & R. G. Lee (2006). ‘Syntactic agreement across language modalities’. Studies on
Agreement .

C. Neidle, et al. (2001). ‘SignStream: A Tool for Linguistic and Computer Vision Research on
Visual-Gestural Language Data’. Behavior Research Methods, Instruments, and Comput-
ers 33:311–320.

B. Oezden, et al. (1998). ‘Cyclic Association Rules’. In Proc. of IEEE ICDE, pp. 412–421.
E. R. Omiecinski (2003). ‘Alternative Interest Measures for Mining Associations in Databases’.

IEEE Transactions On Knowledge and Data Engineering 15(1):39–79.
P. Papapetrou, et al. (2006). ‘Discovering Frequent Poly-Regions in DNA Sequences’. In Proc.

of the IEEE ICDM Workshop on Data Mining in Bioinformatics.
P. Papapetrou, et al. (2005). ‘Discovering Frequent Arrangements of Temporal Intervals’. In

Proc. of IEEE ICDM, pp. 354–361.
N. Pasquier, et al. (1999). ‘Discovering frequent closed itemsets for association rules’. In Proc.

of ICDT, pp. 398–416.
J. Pei, et al. (2000). ‘CLOSET: An efficient algorithm for mining frequent closed itemsets’. In

Proc. of DMKD, pp. 11–20.
J. Pei, et al. (2001). ‘PrefixSpan: Mining sequential patterns efficiently by prefix-projected

pattern growth’. In Proc. of IEEE ICDE, pp. 215–224.
J. Pei, et al. (2002). ‘Constraint-based sequential pattern mining in large databases’. In Proc.

of CIKM, pp. 18–25.
G. Piatetsky-Shapiro (1991). ‘Discovery, Analysis and Presentation of Strong Rules’. Knowl-

edge Discovery in Databases pp. 229–248.
M. Seno & G. Karypis (2002). ‘SLPMiner: An algorithm for finding frequent sequential patterns

using length-decreasing support constraint’. In Proc. of IEEE ICDM, pp. 418–425.
R. Srikant & R. Agrawal (1996). ‘Mining Sequential Patterns: Generalizations and Performance

Improvements’. In Proc. of EDBT, pp. 3–17.
Steinbach, et al. (2007). ‘Generalizing the notion of confidence’. Knowledge and Information

Systems 12(3):279–299.
P. Tan & V. Kumar (2000). ‘Interestingness Measures for Association Patterns: A Perspective’.

Tech. Rep. TR00-036, Department of Computer Science, University of Minnesota.
P. Tan, et al. (2002). ‘Selecting the right interestingness measure for association patterns’. In

Proc. of ACM SIGKDD, pp. 183–192.
I. Tsoukatos & D. Gunopulos (2001). ‘Efficient Mining of Spatiotemporal Patterns’. In Proc.

of the SSTD, pp. 425–442.
R. Villafane, et al. (2000). ‘Knowledge Discovery from Series of Interval Events’. Intelligent

Information Systems 15(1):71–89.
J. Wang & J. Han (2004). ‘BIDE: Efficient Mining of Frequent Closed Sequences’. In Proc. of

IEEE ICDE, pp. 79–90.
G. I. Webb (2006). ‘Discovering Significant Rules’. In Proc. of ACM SIGKDD.
G. I. Webb & S. Zhang (2005). ‘k-Optimal-Rule-Discovery’. Data Mining and Knowledge

Discovery 10:39–79.
E. Winarko & J. F. Roddick (2007). ‘ARMADA - An algorithm for discovering richer relative

temporal association rules from interval-based data’. Data Knowl. Eng. 63(1):76–90.
S.-Y. Wu & Y.-L. Chen (2007). ‘Mining Nonambiguous Temporal Patterns for Interval-Based

Events’. IEEE Transactions on Knowledge and Data Engineering 19(6):742–758.
D. Xin, et al. (2006). ‘Discovering Interesting Patterns Through User’s Interactive Feedback’.

In Proc. of ACM SIGKDD.
X. Yan, et al. (2003). ‘CloSpan: Mining Closed Sequential Patterns in Large Databases’. In

Proc. of SDM.
M. Zaki (2001). ‘SPADE: An efficient algorithm for mining frequent sequences’. Machine

Learning 40:31–60.
M. Zaki & C. Hsiao (2002). ‘CHARM: An efficient algorithm for closed itemset mining’. In

Proc. of SIAM, pp. 457–473.
M. J. Zaki (2000). ‘Sequence Mining in Categorical Domains: Incorporating Constraints’. In

CIKM, pp. 422–429.

Mining Frequent Arrangements of Temporal Intervals 41

Author Biographies

Panagiotis Papapetrou received the BSc degree in Computer Sci-
ence from the University of Ioannina, Greece in 2003 and the MA
degree in Computer Science from Boston University in 2006. Cur-
rently he is a PHD student in the Computer Science Department at
Boston University. His research interests include data mining, knowl-
edge discovery in databases, sequential and temporal pattern mining,
gesture and sign language recognition, human motion analysis, effi-
cient similarity-based retrieval and bioinformatics. He is a member of
the IEEE Computer Society.

George Kollios received his Diploma in Electrical and Computer En-
gineering in 1995 from the National Technical University of Athens,
Greece; and the M.Sc. and Ph.D. degrees in Computer Science from
Polytechnic University, New York in 1998 and 2000 respectively. He is
currently an Associate Professor in the Computer Science Department
at Boston University in Boston, Massachusetts. His research interests
include spatio-temporal databases and data mining, database security,
multimedia indexing, and approximation algorithms in data manage-
ment. He is the recipient of an NSF CAREER Award and his research
is supported by NSF.He is currently an Associate Editor for the ACM
Transactions on Database Systems and IEEE Transactions on Knowl-
edge and Data Engineering. He has served in many technical program
committees for top database and data mining conferences. He is a
member of ACM and IEEE Computer Society.

Stan Sclaroff is a professor of Computer Science and the chair of the
Department of Computer Science at Boston University. He received
the PhD degree from the Massachusetts Institute of Technology in
1995. He founded the Image and Video Computing research group at
Boston University in 1995. In 1996, he received a US Office of Naval
Research (ONR) Young Investigator Award and a US National Sci-
ence Foundation (NSF) Faculty Early Career Development Award.
Since then, he has coauthored numerous scholarly publications in the
areas of tracking, video-based analysis of human motion and gesture,
deformable shape matching and recognition, as well as image/video
database indexing, retrieval, and data mining methods. He has served
on the technical program committees of more than 80 computer vision
conferences and workshops. He has served as an associate editor for the
IEEE Transactions on Pattern Analysis, 2000-2004 and 2006-present.
He is a senior member of the IEEE.

42 P. Papapetrou et al

Dimitrios Gunopulos received the PhD degree from Princeton Uni-
versity. He has held regular and visiting positions at the Max-Planck-
Institute for Informatics, the University of Helsinki, the IBM Almaden
Research Center, the Department of Computer Science and Engineer-
ing at the University of California, Riverside, and the Department
of Informatics and Telecommunications at the University of Athens.
His research is in the areas of data mining and knowledge discov-
ery in databases, databases, sensor networks, peer-to-peer systems,
and algorithms. He has coauthored more than 100 journal and confer-
ence papers that have been widely cited. He has served as a Program
Committee co-Chair for IEEE ICDM 2008, ACM SIGKDD 2006, SS-
DBM 2003, and DMKD 2000, and he is currently an associate editor
for the IEEE Transactions on Knowledge and Data Engineering, the
IEEE Transactions on Parallel and Distributed Systems, and the ACM
Transactions on Knowledge Discovery from Data. He is a member of
the IEEE.

Correspondence and offprint requests to: Panagiotis Papapetrou, Department of Computer

Science, Boston University, Boston, MA 02215, USA. Email: panagpap@cs.bu.edu

