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1 Introduction

In cells, DNA forms long chains made up of four chemical units known as
nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T). In these DNA
chains or sequences, a number of important, known functional regions, at both large
and small scales, contain a high occurrence of one or more nucleotides. We will refer
to these as poly-regions (for example, a region that is rich in nucleotide A, will be
called poly-A). Such regions include:

• Isochores: Multi-megabase regions of genomic sequence that are specifically
GC-rich or GC-poor. GC-rich isochores exhibit greater gene density. Human
ALU and L1 retrotransposons appear preferentially in isochores with
composition that approaches their own.

• CpG islands: Regions of several hundred nucleotides that are rich in the
dinucleotide CpG which is generally under-represented (relative to overall GC
content) in eukaryotic genomes. The level of methylation of the cystine (C) in
these dinucleotide clusters has been associated with gene expression in nearby
genes.

• Protein binding regions: Within these domains, tens of nucleotides long,
dinucleotide, or base-step composition, can contribute to DNA flexibility,
allowing the helix to change physical conformation, a common property of
protein-DNA interactions.

Despite the importance of poly-regions, their algorithmic identification and study
has received only limited attention. To the best of our knowledge, there has been
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yet no formal definition of poly-regions, in their most general form. Moreover, most
methods that have been applied (or developed) so far are designed for limited types
of poly-regions and target specific compositions (mainly G + C-rich or CpG islands).

The main contributions in this paper include:

• a formal definition of the problem of discovering poly-regions of items or
patterns in a sequence

• an exact algorithm that uses a set of sliding windows over the sequence

• two approximate algorithms for detecting poly-regions: the first one is
entropy-based and uses recursive segmentation techniques and the second one
is based on the majority vote

• the application of an efficient arrangement mining algorithm by Papapetrou
et al. (2009) to extract the complete set of frequent arrangements of these
poly-regions

• an extensive experimental evaluation of our algorithms by testing their
efficiency on the Dog genome

• an analysis of some standard types of poly-regions that have been detected on
exons, introns, and nucleosomes in four different genomes: Dog, Chicken,
Mouse, and Yeast.

2 Related work

Most approaches for identifying DNA regions of specific compositions use DNA
segmentation techniques. One family of DNA segmentation algorithms employs
statistical methods based on:

• The Maximum Likelihood Estimation (MLE) of the segments where the MLE
is computed for the segments, given a restriction on their minimum length
(Fu and Curnow, 1990). In the same setting, several dynamic programming
approaches have been developed, such as Bement and Waterman (1977) and
Auger and Lawrence (1989).

• The hidden Markov chain model, where Churchill (1989, 1992) and Perina
et al. (2009) use HMM’s to model the segmentation of DNA sequences and
predict the locations of possible segments in mitochondrial and phage
genomes, assuming that different segments can be classified into a finite
number of states, i.e., poly-A, or A + T -rich.

• The Variable-Length Markov Chain Model (VLMC) by Gwadera et al. (2008)
where the segment boundaries of a sequence are discovered by computing a
VLMC for each segment using the Bayesian Information Criterion (BIC) and
a variant of the Minimum Description Length (MDL) principle; in DNA the
proposed method selects segments that closely correspond to the annotated
regions of the genes.

• The walking Markov model, where Ficket et al. (1992) examined the base
composition of human and E.coli genomes and analyse the phenomenon of
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strand symmetry, i.e., each base has the same number of occurrences on each
strand, and notice the poor fit of Markov models and observe that there is less
local homogeneity than necessary for most existing segmentation models,

• Bayesian models such as Ramensky et al. (2000), where the Bayesian estimator
is used as a measure of homogeneity.

Another family of DNA segmentation algorithms includes those that work in a
hierarchical manner (top-to-bottom) employing recursive segmentation of DNA
sequences, where at each stage a split point is chosen based on a specific criterion,
e.g., the Jensen-Shannon Divergence (Grosse et al., 2002; Zhang et al., 2005). Such
algorithms have been proposed in Bernaola-Galvan et al. (1996, 2000), Grosse et al.
(2002), Zhang et al. (2005) and Arvey et al. (2009) and their main focus was to find
domains in DNA that are homogeneous in base composition or more specifically
in C+G content. Moreover, in Li et al. (2002) and Li (2001), it is shown that
there are many other applications of the recursive segmentation algorithm to the
analysis of DNA sequences, such as detection of isochores (large homogeneous
C+G domains), CpG islands (small homogeneous CG domains), etc. Another
recursive segmentation approach is presented in Oliver et al. (1999), where the DNA
sequence is divided into compositionally homogeneous domains by iterating a local
optimisation procedure at a given statistical significance. Once the DNA sequence is
partitioned into domains, a global measure of Sequence Compositional Complexity
(SCC), accounting for both the sizes and compositional biases of all the domains in
the sequence, is derived.

There have been studies on similar problems, called “change-point problems”
that have been applied to DNA sequence segmentation Carlstein et al. (1994), Braun
and Mueller (1998) and Braun et al. (2000)). The basic form of the multiple change
point problem assumes that there exists a set of points in a sequence where the
distribution of the sequences changes. Thus, each grouping of consecutive literals
(that will form a segment) will arise from a different distribution. The methodology
they follow can be broken down into first determining how many change-points exist
in a sequence, and then finding their locations. Also, in Szpankowski et al. (2003),
a study on change-points (transitions between homogeneous and inhomogeneous
regions of DNA) is carried out, and rigorous methods of information theory are
employed to quantify structural properties of DNA sequences.

In addition, DNA amplifications, i.e., mutations that increase the copy number
of a specific DNA segment are frequently observed in a variety of human cancers
and have been recently studied in Myllykangas et al. (2006, 2008). The goal of
was to classify human cancers based on their amplification patterns and explore
the biological and clinical fundamentals behind their amplification-pattern based
classification. Nonetheless, in this paper we provide a more general formulation that
is not limited to repeats of this type but can cover any type of highly occurring
pattern along a large DNA sequence.

A sliding window approach with fixed size window has been applied on the
human genome by Venter (2001) and Larsen et al. (1992) to detect G + C-rich
regions and CpG islands. Also, in Olivera et al. (2002), a reliable segmentation
method is used to partition the longest contigs in the human genome into Long
Homogeneous Regions (LHGRs), thereby revealing the isochores.
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Finally, a statistical approach for evaluating the significance of ‘burstiness’ in
DNA sequences has been studied by Haiminen et al. (2008) and others. This work,
however, was limited to detecting unusually bursty episodes of size 2. Assessing
the statistical significance of poly-regions is a very challenging topic and of great
biological interest, though it is not one within the scopes of this paper.

All the aforementioned methods have been designed and tuned for a specific
problem setting, i.e., to detect poly-regions of pre-defined or fixed compositions.
Though there have been large amounts of work related to finding such regions, there
has yet not been any general formulation covering all types of regions where there
exists a high occurrence of some pattern. In this paper, our goal is to approach the
problem using a more general setting.

3 Problem formulation

A sequence T = {t1, t2, . . . , tm} is an ordered set of items, where ti ∈ Σ,
∀i ∈ [1, m]. Since we are studying DNA sequences, Σ corresponds to the alphabet
consisting of the four nucleotide types that appear in DNA, i.e., Σ = {A, C, G, T}.
A poly-region is a triplet P = {X , start, end} that corresponds to a segment of T ,
where there is a ‘high occurrence’ of pattern P.X , starting at position P.start and
ending at position P.end in T . There are two types of patterns P.X that are being
studied in this paper: in the first case, P.X corresponds to a set of items from Σ,
whereas in the second case, P.X is a sequence of items from Σ. Based on the pattern
type, two types of poly-regions are considered, formally defined as follows:

• Poly-region of Type I: P = {I, start, end}, where I ⊆ Σ is a set of items,
with tstart ∈ I and tend ∈ I. |I| corresponds to the number of items in I.
Examples of poly-regions of Type I are: poly-{A} (known as poly-As),
poly-{A,C} (known as poly-{A+C}s), etc.

• Poly-region of Type II: P = {S, start, end}, where S = s1, s2, . . . , s|S|
is a sequence of items, with each si ∈ Σ, tstart = s1 and tend = s|S|. |S|
corresponds to the size of pattern S, i.e., the length of the sequence.
An example of a poly-region of Type II is: poly-{CG} (also known as
CpG-island).

A poly-region where the size of pattern P.X is k, is called k-poly-region. Given a
Type I poly-region P = {I, start, end}, with |I| = k, the frequency fi of each
item ti ∈ {tP.start, . . . , tP.end} is the number of occurrences of ti in that region
over the length of the region. Hence, the total frequency of I is defined as follows:

fP.I =
∑|I|

i=1 fi

|I| . (1)

The density of a type I poly-region P is d, if fI ≥ d and fi ≥ d
2k , ∀i ∈ I. This

means that the sum of the individual frequencies of each item should be at least d
and each individual frequency should be at least d

2k . For example, a poly-{A+C} of
size 20 should have at least 20d

4 A’s, at least 20d
4 C’s, and the sum of A’s and C’s

should be at least 20d.
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In the case of a Type II poly-region P = {S, start, end}, the frequency of S is
defined as

fP.S =
|S| ∗ No(P, T )

P.end − P.start + 1
. (2)

where No(P, T ) is the number of non-overlapping occurrences of sequence P.S in
{tP.start, . . . , tP.end}. Also, the density of a type II poly-region P is d, if fP.S ≥ d.

Given a density threshold min_density, a poly-region of density d is said to be
dense, if d ≥ min_density. In Figure 1, we can see four examples of poly-regions:

1 is a poly-A region, with P = {{A}, 5, 14} with density 80%

2 is a poly-{A,C} region, with Q = {{A, C}, 20, 29}, where each one has a
frequency of 40%

3 is a poly-ApC, with = {{AC}, 32, 39} and density 75%

4 is a poly-CpT, with P = {{CT}, 49, 60} and density 91%.

Given two poly-regions P and Q, both of the same type (either I or II), with
P = {X , P.start, Q.start}, and Q = {Y, P.end, Q.end}, the merging of P and
Q is a new poly-region P ′, with

P ′ = {X , min{P.start, Q.start}, max{P.end, Q.end}}. (3)

Notice that merging is only allowed when P and Q are of the same type and
P.X = Q.Y . Also, a poly-region P = {X , start, end} is said to be contained in
another poly-region Q = {Y, start, end}, if Q.start ≤ P.start, Q.end ≥ P.end, and
P.X = Q.Y . A dense poly-region P with density dP is maximal, if there exists no
poly-region Q with density dQ such that dQ ≥ min_density and P is contained in Q.

Figure 1 Example of two poly-regions (see online version for colours)

Finally, a poly-region can be seen as an event interval, which (based on Papapetrou
et al. (2005, 2009)) is a triple (ei, tistart, tiend), where ei is an event label, tistart is the
start position of the event and tiend is the end position in the DNA sequence. A set
of event intervals, ordered by their start time, is called an event interval sequence
or e-sequence. Thus, a set of poly-regions of a DNA sequence T corresponds to an
e-sequence where each event is a poly-region and the event start and end points are



Mining poly-regions in DNA 7

the start and end points of that poly-region. A more detailed analysis on the above
terminology and concepts is given in Section 5.

Our goal is to first find the complete set of poly-regions given an input
DNA sequence and then apply an efficient algorithm for mining frequent
arrangements of temporal intervals to discover arrangements of poly-regions that
occur frequently

1 in the sequence

2 among different segments of the sequence.

For (2), the Hybrid-DFS proposed by Papapetrou et al. (2005, 2009) applies
directly, whereas for (1) an approach similar to that described in Mannila and
Toivonen (1996) for mining frequent episodes over a sequence of instantaneous
events can be employed.

Problem statement: Given a sequence T = {t1, t2, . . . , tm}, a density constraint d,
a minimum poly-region size min_poly, a maximum poly-region size max_poly and
a support threshold min_sup, are goal is to:

1 Discover the complete set PS of maximal poly-regions of type I and II in T ,
where each region has density of at least d and size ∈ [min_poly, max_poly],
and then

2 given PS , define a set of segments of T , and based on a support threshold
min_sup, extract the complete set F of arrangements of poly-regions of type I
and II that occur frequently in those segments.

4 Extracting poly-regions

Since we are studying DNA, Σ = {A, C, G, T}. In this setting, we are going to
cover the following cases of poly-regions:

• Poly-regions P = {I, start, end} of Type I, with: |I| = 1 (giving a total of
K1 = |Σ| poly-regions), and 2 ≤ |I| ≤ 3 with all items in I are different
from each other (giving a total of K2 = (|Σ|+1)|Σ|

2 poly-regions)

• Poly-regions P = {S, start, end} of Type II, where 2 ≤ |S| ≤ 3. Notice
that if |S| = 2, the two nucleotides should be different from each other, and if
|S| = 3, the case where all three nucleotides are the same is excluded (giving
K3 = |Σ| (|Σ| − 1) + |Σ| (|Σ|2−1 poly-regions).

4.1 Recursive segmentation

The idea of recursive segmentation based on a measure of divergence has been used
in earlier works, such as Bernaola-Galvan et al. (1996), Grosse et al. (2002) and
Zhang et al. (2005). Li et al. (2002) describes how it can be applied to DNA for
detecting G + C-rich regions and CpG islands. In this section, we present a general
method for poly-regions of Type I and II. Our method uses recursive segmentation



8 P. Papapetrou et al.

and also applies an alphabet reduction technique to efficiently handle poly-regions
of both types.

Before proceeding to a detailed description of the algorithm, let us first
give some basic definitions. Let T = {t1, t2, . . . , tm} be the input sequence
and Tl,r = {tl, . . . , tr} be a segment of T , i.e. the subsequence of T starting
at tl and ending at tr, for 1 ≤ l, r ≤ m. A segmentation of T is denoted as
Tseg = {n1, n2, . . . , nM−1}, where each ni is an index of a point in T . Trivially,
Tseg defines M segments, where each segment starts at point tnj−1 and ends at point
tnj , with the first segment starting at point t1 and ending at point tn1 and the
last segment starting at point tnM−1 and ending at point tm. Given a segment Tl,r,
fr(Tl,r) = {fri, i = 1, . . . , t} denotes the set of frequencies of each distinct item in
Tl,r, where each item frequency is the number of occurrences of this item in that
segment.

Given a sequence T , with t distinct items, HT = −
∑

fri log2 fri,
for i = 1, . . . , t is the Jensen-Shannon Entropy of T , where fri is the frequency of
item i in T . Assume that T is split into two segments T1,r and Tr+1,m. Then, the
Jensen-Shannon Divergence of the two segments is defined as

D(n) = HT −
(

r

m
HT1,r

+
m − r

m
HTr+1,m

)
(4)

4.1.1 The algorithm in detail

Starting with the original sequence T , the algorithm looks for that position
r ∈ [2, |T | − 1] in T that maximises the JSD value of the two segments T1,r and
Tr+1,m. The same process is applied recursively to each segment until a halting
condition is satisfied. In our case, the halting condition requires that each segment
should be of length between min_poly and max_poly. Thus, the splitting continues
while there are segments of size larger than max_poly. In the case where a segment
is of size less than min_poly, the recursion halts without reporting that segment.

The algorithm, as described above, can efficiently detect regions of high
occurrence of a single nucleotide. However, if we are interested in poly-regions of
more than one nucleotides or poly-regions of Type II, the above process may fail.
To achieve an efficient segmentation for both types of poly-regions, a preprocessing
step is applied, which has been suggested in Li et al. (2002) for the detection of
isochores. When looking for poly-regions of two nucleotides, say poly-{W, Y }, the
original sequence is transformed to a new sequence as follows: each W and Y
nucleotide is replaced by literal X , whereas the rest are replaced by a literal taken
from Σ (each time a different literal is chosen and when all literals of Σ have
been used, we start over). For example, if S = ACAAAGCGA and we are looking
for poly-regions of A, S will be converted to S′ = XAXXXCGTX , given that
Σ = {A, C, G, T}. The same idea is followed when looking for all poly-regions of
Type I. As for poly-regions of Type II, the input pattern is detected in the sequence
and all the literals that are part of the pattern are changed to X , whereas the
other ones are replaced as in the case of Type I poly-regions. The benefit of this
replacement is the following: at each step of the segmentation, two regions are under
consideration, say r1 and r2. If r1 is of high occurrence of the desired pattern and in
r2 (which is the rest of the sub-sequence under consideration) all literals are different,
the entropy difference between r1 and r2 will be maximised.
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The steps of the recursive segmentation algorithm are given below:

• Given an input sequence T , for each type of poly-region, T is converted to T ′

as described above.

• Given T ′, JSD(T1,r, Tr+1,m) is calculated for each r ∈ [2, m − 1].

• Let n be the index of T ′ where JSD is maximised. T ′ is segmented, and
position n is reported. If the halting condition is satisfied for a segment, the
segmentation process terminates for that segment, otherwise it proceeds
recursively.

• When the above process is completed, a segmentation
Tseg = {n1, n2, . . . , nM−1} of M segments is generated. Each of these
segments is a candidate poly-region. Next, a linear scan is performed on Tseg .
Each segment is checked whether it satisfies the density constraint and it is
further expanded both ways until the density constraint is violated. Finally,
when a poly-region is found it is reported.

A major weakness of such approach is that the poly-region pattern we are looking
for needs to be pre-defined before we pre-process the original sequence. Then, for
each additional pattern we need to start from scratch and pre-process the sequence
again. Thus, we cannot get all poly-regions by one single pass, but for each specific
poly-region pattern we need to perform one full recursive segmentation. Also, due to
its recursive nature and as confirmed by the experimental evaluation, this approach
is approximate, i.e., there may be a small fraction of false dismissals.

4.1.2 Complexity

Every time the sequence is split into two subsequences. The number of splits is
O(log(|T |/(max_poly − min_poly))), where |T | is the size of the original sequence.
Since on each recursion each segment is read once and at the final step we
just perform a linear scan, the total runtime of each run of the algorithm is
O(|T | log |T |). Now, given that the alphabet size is Σ, the number of times the
algorithm is run is K ′, the total runtime of the algorithm is O(K ′|T | log |T |), and
since K ′ is a constant (and K ′ << |T |), this becomes O(|T | log |T |).

4.2 Sliding windows

The key idea behind this approach is to use a set of sliding windows over the input
sequence. Each sliding window keeps statistics of a segment that mainly include the
number of occurrences of each candidate element (meaning each item or sequence
of the poly-regions we are looking for) in that segment. Combining these statistics
efficiently produces the complete set of poly-regions in the sequence.

More formally, the proposed algorithm is given a sequence T , a density factor d,
a minimum window size min_poly and a maximum window size max_poly. The first
step is to define a set of sliding windows W . Let W = {w1, w2, . . . , wn}, where
wi corresponds to sliding window i and n = |W| = max_poly − min_poly + 1. Each
sliding window wi is a triplet {Ci, wi

start, wi
end}, where Ci is a set of statistics for

wi, wi
start is an index to the starting position of wi on T and wi

end is an index
to the ending position of wi on T . Ci is a set of t counters {C1, C2, . . . , Ct},
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with t = K1 + K3 or t = K ′
1 + K ′

3 if reverse complements are excluded. The value
of each counter is the number of occurrences of the corresponding item/sequence in
the window. Moreover, the piece of T covered by W is stored at each time instance.
Given this setting, at any time, we can extract the top k frequent items in each
window.

Also, we keep a list L of the poly-regions discovered so far. Each record in
L corresponds to a poly-region label and points to a list of all the poly-regions
discovered so far with this label. Upon discovery of a new poly-region we insert it
into L based on its label.

4.2.1 The algorithm in detail

The algorithm has three phases: the Initialisation Phase, the Sliding Phase and the
Merging Phase. During the first phase, W is initialised; this phase is completed as
soon as the first max_poly characters of the sequence are read. Then the algorithm
proceeds with the Sliding Phase, where W slides across the sequence until it reaches
the end of the sequence. Before inserting each new poly-region into L the Merging
Phase is activated, to identify any old poly-region that can be absorbed by the new
one. More details on the three Phases are given below:

• Initialisation phase: The first min_poly characters are read and window w1 is
created. This is in fact the window of the smallest size in W . The counters of
w1 are updated based on what has been read so far. For each new character
sj , a window wi, for i = 2, . . . , n, of size min_poly + i − 1 is created starting
at character s1 and ending at character sj . The counters of each window wi

are updated based on the counters of the previous window (i.e., wi−1. Let
Ci−1

j , for j = 1, . . . , t denote the counters of the (i − 1)th window. Then
Ci

j = Ci−1
j , for j = 1, . . . , t. This process is repeated until j = max_poly.

Every time a new window is created and all the counters are updated, the
window is checked for items that satisfy the density constraint. If so, it
constitutes a poly-region and is added into L after applying the Merging
Phase. Upon completion of the current phase, W has been fully created.
Notice that in this phase, no sliding is performed on the windows.

• Sliding phase: During this phase, W keeps sliding to the right and for every
new item si, the corresponding counters are updated, i.e., for each wi in W ,
Csi = Csi + 1. Since each window in W is moved one position to the right,
the counter of the element that is no longer in the window has to be decreased
by one, i.e., for each wi in W , CSstart = CSstart − 1. Finally, the start and end
pointers of each window are updated accordingly. After a slide is performed
and all counters are updated, each window is checked for having any itemset
or sequence satisfying the density threshold. Starting with the window of
maximum size, if element c is found to satisfy the density threshold, then this
window is reported as a poly-region of c. Since we are only looking for
maximal windows, the counter of c is not checked any more in the rest of the
windows in the current instance of W . Finally, each poly-region is added into
L after applying the Merging Phase.

• Merging phase: For each new window wj , before it is inserted into L, the
corresponding record of L is scanned for a window wi such that the start
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points of wi and wj coincide and wi is contained in wj . Trivially, if such
window exists, it will be one of the last max_poly − min_poly + 1 inserted in
that record. Before the insertion of wj in L, wi is removed. Also, since the
windows inserted into L are ordered by their start time, if a window is
reached, with start point smaller than that of wj , then the process stops and
inserts wj in L.

Notice that at each step we do not need to check all the windows. Instead
we can start with the window of maximal size and prune some of the smaller
windows. More specifically, the value of each counter in a large window is an
upper bound for the value of the corresponding counters in the smaller windows
in W . Let the number of elements of type c (either itemsets or sequences) in

wi be N i
c . Then c is dense in wi, if Ni

c

|wi| ≥ d. Hence, the maximum size of the
window were these elements (of type c) can fit and fulfill the density constraint is
Ni

c

d . Based on this observation, we can start with the maximum window and then
apply the bound on each counter. This indicates which windows of the lower levels
should be searched for a candidate poly-region for each item. Consider Figure 1(2)
for example, and let d = 50%. Suppose that max_poly = 10, and currently the
maximum window in W is the DNA sequence segment shown in the Figure and
notice that Cc = 4. Then the maximum window in W , where item C can be dense, is
of size Cc

d = 8. Thus, in order to look for a poly-region of nucleotide C, we should
skip w9. The described method produces a set PS of poly-regions for the input
sequence T .

4.2.2 Complexity

Based on the previous analysis, it can be seen that at any time instance, the number
of windows under consideration is M = max_poly − min_poly + 1. Moreover, for
each window we keep t counters, which yields a total of tM counters. Also, for each
set of windows W we store the piece of the sequence that is covered by the maximum
window. Thus, the space complexity is O(|Σ|M + max_poly). Each element is read
once and then stored in W . At each slide, in the worst case M windows are
accessed. For each window, the value of t counters is checked and the last element
of each window is removed. Therefore, for each slide a total of Mt counters are
accessed. Also, when a window is determined to constitute a poly-region, at most M
records are accessed in the list L to check whether it overlaps with an existing poly-
regions. The above analysis yields a time complexity of O(|T |M). Since in practice
max_poly, min_poly << |S|, the algorithm is linear.

4.3 Majority vote

Another efficient approach is described in this section that employs the idea
of the majority vote, first used in Misra and Gries (1982) for finding repeated
items in a sequence. The same concept was later used in Golab et al. (2003)
for finding frequent items over sliding windows. Our goal is to improve the
performance of the sliding window algorithm by having only a single sliding
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window w along with:

• a set of primary counters Cp

• a set of secondary counters Cs.

The primary counters are used to indicate regions that are candidate poly-regions.
If a candidate poly-region is detected, then the set of secondary counters is examined
to check if it actually is a poly-region.

In particular, the algorithm uses t1 = 3 + K2 primary counters and t2 = K1 +
K3 secondary counters, along with a set of buffers holding the literal corresponding
to each primary counter. All counters are initially set to zero, the first literal of
the input sequence is read and stored under the right buffer, and the corresponding
primary counter is increased by one. Each time a new literal is read, the sequence
index is increased by one. If the new literal matches one stored under a buffer, then
the corresponding primary counter is increased by one, otherwise it is decreased
by one; if a primary counter reaches zero, the literal currently in its buffer is
replaced by the new one. In any other case, we move on to the next literal in the
sequence. When an element (either itemset or sequence) is identified in the sequence
the corresponding secondary counters are updated so that, at any time during the
sequence scan, each secondary counter is equal to the number of occurrences of
the corresponding element in the window. This process continues until the whole
sequence is read. In the case of Type I poly-regions of a set of literals, all literals in
the set are considered to be the same during the scan. As for poly-regions of Type II,
they can be seen as a single literal. For example, consider the sequence ACACCAC.
In this case, the first literal is AC, the next is CA, the next ACA, then CA and
so on. This explains the need for more than one primary counters: 1 counter for
the single items, K2 counters for the itemsets, 1 counter for poly-regions of Type II
with |X | = 2 and one for poly-regions of Type II with |X | = 3, yielding a total of
t1 primary counters.

The benefit of this approach is that the behaviour of the primary counters can
imply high occurrence of a set of items or subsequence in a specific region of the
sequence. In fact, we have two cases:

• if a primary counter increases rapidly, then there is high occurrence of the
corresponding literal stored in the buffer implying the existence of a
poly-region

• if a primary counter decreases rapidly, then the corresponding literal in the
buffer does not occur frequently in that region.

Instead another literal might be in majority in the region, which will constitute a
poly-region. However, this might not be the case since decrease on a primary counter
only implies that the corresponding literal in the buffer is not in majority in that
area and does not necessarily imply majority of another literal.

Let w be the sliding window, and cS
i be the value of counter i at the beginning of

w, and cE
i be the value of the counter at the end of w. The following lemmas hold,

based on the previous analysis for each primary counter.

Lemma 4.1: If ∃ Ci ∈ Cp such that ∆Ci > 0 and ∆Ci ≥ |w|(2d − 1), where d is
the density constraint, then w corresponds to a poly-region.
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Proof: Since w corresponds to a poly-region P of say element c, the number of
occurrences of c in P is Nc ≥ |w|d. The counter will be increased by one at least
|w|d times, and it will be decreased by one at most |w|(1 − d) times. Thus, the total
change of the counter in a poly-region can be at least |w|(2d − 1).

Lemma 4.2: If ∃ Ci ∈ Cp such that ∆Ci < 0 and |∆Ci| ≥ |w|(2d − 1), then w is
a candidate poly-region.

Proof: Lemma 4.2 is proved by an argument similar to that for Lemma 4.1.
However, in this case, since the fact that the counter decreases does not necessarily
mean that the same literal appears consecutively. Thus, w corresponds to a candidate
poly-region.

Lemma 4.3: If for all counters Ci ∈ Cp, |∆Ci| < |w|(2d − 1), then w cannot be a
poly-region.

Proof: Straightforward, from the above Lemmas.

The algorithm applies the above lemmas each time w slides to the right. Every time a
poly-region is discovered by Lemma 1, it is added into the set of poly-regions. When
a candidate poly-region is discovered by Lemma 4.2, the set of secondary counters
in w are invoked to check whether it actually corresponds to a poly-region and if
not it is discarded.

4.3.1 The algorithm in detail

Let w be the sliding window, and cS
i be the value of counter i at the beginning

of w, and cE
i be the value of the counter at the end of w. Also, let the change

on a counter be ∆Ci = cE
i − cS

i . The main steps of the algorithm are the following:

• If for all primary counters in Cp, ∆Ci < |w|(2d − 1), slide to the right.

• If ∃ Ci ∈ Cp such that ∆Ci > 0 and ∆Ci < |w|(2d − 1), then w is reported
as a poly-region.

• If ∃ Ci ∈ Cp such that ∆Ci < 0 and ∆Ci < |w|(2d − 1), then w is a
candidate poly-region. Each of the secondary counters is checked. If for a set
of secondary counters C ′ ⊆ Cs, ∆Cj = CE

j − CS
j ≥ |w|d (∀j ∈ C′), then w is

reported as a poly-region of C′.

• Steps 1–3 are repeated until the whole sequence is scanned.

Finally, we get a set of poly-regions of size |w|. However, according to the problem
formulation, the poly-regions should be of size min_poly to max_poly. To capture
all these regions, we set |w| = min_win

2 and when a poly-region is detected, it is
expanded as much as possible in order to detect all the maximal legal poly-regions
in the range of [min_win, max_poly] in that area, keeping in mind that a valid
poly-region should start and end with specific literals (a poly-A should start and
end with an A). This step is the most costly one of this method. Notice that
once a poly-region of size |w| is discovered, the expansion should make sure that
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the final poly-region will:

• include w

• be of size ∈ [min_win, max_poly]

• start and end with the appropriate literals.

To satisfy the third condition efficiently, an index of each literal in Σ is built at
the beginning of the algorithm, such that for each literal in Σ we get to know the
positions where it occurs in the sequence. This requires a single scan, and the indices
are stored in |Σ| arrays, one for each literal. Also, for each array we keep a pair
of pointers that move according to w: while w scans the sequence the pointers slide
over the indices so that they include the positions where each literal occurs in that
part of the sequence currently under w. To satisfy the second condition we need to
expand w both ways. Since |w| = min_win

2 , we need to check r = max_poly − |w|
positions to the right and to the left. Since w has to be fully contained in the larger
poly-region a maximum of r2 checks is needed: we have r candidate positions on
the left and r positions on the right and we check their combinations. Notice that
since the maximum poly-region size is bounded by max _poly, we can skip some of
the above checks, i.e., we first check the poly-region that starts at point wstart − r
and ends at wend, then the poly-region starting at point wstart − r + 1 and ending
at wend, and so on. If one of those windows is a valid poly-region we check for any
possible merging with any other region found in this step and then report the new
poly-region.

4.3.2 Complexity

In terms of space complexity, the algorithm is efficient, since it only needs to keep
two pointers (one to the start and one to the end point of the window w), a total
of t1 + t2 counters, a set of t1 + t2 buffers, and |S| index values. Regarding time
complexity, one sequence scan is needed to make the indices, and for each small
poly-region (of size |w|) we need to check at most O(r2) expansions. This gives
a total cost of O(|r2||S|). Notice that r = max_poly − |w| and since in practice
max_poly, min_poly << |S|, the algorithm is linear.

5 Discovering frequent arrangements of poly-regions

In this section we show have we can extract frequent arrangements of poly-regions
in a DNA sequence. We use an existing approach for mining frequent arrangement
of temporal intervals Papapetrou et al. (2005, 2009). Assuming that the set of poly-
regions in a given DNA sequence T have been discovered using one of the three
algorithms described above. Now, each of these poly-regions can be seen as an
interval-based event, i.e., an event that has a time duration. Thus, the discovered set
of poly-regions can be mapped to an interval-based sequence (i.e., e-sequence). An
arrangement is a set of events that are temporally correlated. For more details, the
reader can refer to Papapetrou et al. (2005) and Papapetrou et al. (2009).

The algorithm uses a sliding window w of size win to scan the whole e-sequence.
w is initially placed at the beginning of the e-sequence and includes the first
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win event intervals (in our case poly-regions) of T . The window keeps sliding
to the right (one event interval per slide) until it reaches the end of T , i.e.,
its right end includes the last event interval of T , for the first time. Based on
this formulation, a total of W = |S| + win − 1 overlapping windows is defined
over the sequence. The frequency of an arrangement A is defined as the fraction
of windows in which A occurs. Thus, given A and a window of size win, the
frequency of A is: freq(A, win) = |{w|A occurs in w}|

|W| . Notice that we could also
apply spatial (i.e., place limits on the distance between two poly-regions) and
structural constraints (i.e., apply regular expression constraints to the extracted
patterns) during the mining process so as to focus on certain types of patterns.

6 Experimental evaluation

In our experiments we analyse the performance of the proposed algorithms in terms
of recall and runtime. We further investigate the types of poly-regions that occur
in different DNA locations (introns, exons, and nucleosomes), and detect frequent
arrangements of poly-regions in these different region types. All experiments were
performed on a 2.8Ghz Intel Pentium 4 dual-processor machine with 64GB of main
memory, running Linux with kernel 2.4.20. The algorithms have been implemented
in C++ and their runtime has been measured with the output turned off.

6.1 Data sets

We study four different genomes: Dog, Yeast, Chicken, and Mouse. DNA data
has been obtained from NCBI. 1 For our experiments we have investigated introns
and exons within the 39 chromosomes (including the X chromosome) of the
dog genome (Canis familiaris). Additional DNA data has been obtained from
http : //genie.weizmann.ac.il/pubs/nucleosomes06 that includes DNA sequences
around all nucleosome regions of: the Yeast in vivo (119 nucleosomes) and in vitro
(204 nucleosomes), the Chicken in vivo (177 nucleosomes) and the Mouse in vitro
(87 nucleosomes) genomes with an explicit annotation of the nucleosome positions
on the chromosomes.

6.2 Performance analysis

The three proposed algorithms have been compared in terms of runtime and recall
considering the following factors:

• size of the input sequence

• density of the poly-regions

• size of the minimum and maximum windows.

Recall corresponds to the percentage of poly-regions that could be retrieved by each
algorithm.

Regarding runtime, the basic observation is that the third algorithm (majority
vote-based) outperforms the rest. The sliding window approach is quite fast,
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outperforming the recursive segmentation approach. In Figure 2, we show the
performance of each algorithm with respect to the density constraint, which varies
from 40% to 80%, for Chromosomes 1 (approximately 127 million bases) and X
of the Canis Familiaris respectively. For Chromosome 1, the window range is
[10, 20], whereas for Chromosome X , the window range is [20, 40] for the Sliding
Window method and |w| = 40 for the Majority Vote. Notice that the runtime of
both (Sliding Window and Majority Vote) is affected by the selection of the window
size; however since |w| << |S| (as also discussed in the corresponding complexity
analysis sections) this affect is negligible.

Figure 2 Runtime comparison of the three algorithms for Chromosomes 1 (left figure)
and X(right figure), and the window range is [20, 40] for the Sliding Window
approach and |w| = 40 for the majority vote (see online version for colours)

Regarding recall, the sliding window approach achieved to find the complete set of
poly-regions. The recursive segmentation was proved to be less accurate managing to
find almost 80% (on average) of the total poly-regions. This was totaly expected for
both cases: the nature of the recursive segmentation is such that split points might be
chosen inside some poly-regions. This can happen mainly at the first segmentations
where the segments are relatively huge. As a result, these poly-regions are not going
to be included in the final segmentation. In the case of the majority vote, the
chosen window size might skip some poly-regions, due to its size and depending on
the value of the density constraint. For example, let S = . . . AACAA . . . , d = 80%,
w = 3 and max_win = 6; due to the value of d, a poly-region will be reported
only when all three literals in w are the same. Thus, the poly-region of literal A of
size 5 shown in S will be skipped. The experimental evaluation however, showed
that if the size of w is chosen to be min_win/2, the percentage of false negatives
will be less than 11%. Table 1 presents some results regarding the recall of the
algorithms showing that the majority vote method performs significantly better than
the recursive segmentation.

6.3 Our findings

In this section, we study the types of poly-regions identified in DNA. We consider
three different types of DNA regions: exons (coding regions), introns (non-coding
regions), and nucleosomes.
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Table 1 Recall of the three algorithms for chromosomes 1, 38 and X of the
Canis Familiaris the window size for the Majority Vote is the maximum value
in the range used for the sliding window approach

Poly-region Sliding Recursive Majority
Chrom. size windows segm. vote

1 [10, 20] 49325 (100%) 38223 (77%) 45582 (92%)
1 [18, 64] 26332 (100%) 23245 (88%) 24765 (94%)
38 [10, 20] 11285 (100%) 8195 (85%) 9980 (91%)
38 [18, 64] 8221 (100%) 6948 (72%) 7988 (97%)
X [10, 20] 1793112 (100%) 1291762 (72%) 1615344 (93%)
X [18, 64] 696261 (100%) 598455 (85%) 626762 (91%)

6.3.1 Poly-regions in exons and introns

Table 2 shows a summary of poly-regions detected in exons of Chromosome 1 of
the Dog genome. A much larger number of poly-regions have been discovered in
non-coding regions, but these regions are not biologically very interesting as opposed
to exons and thus we are not including our findings in this paper. Similar results have
been obtained for the rest of the chromosomes, but due to space limitations they
are omitted. The minimum density constraint was set to 80% and the poly-region
size varied between 10 and 60 nucleotide bases. We examined a total of 360457
exons with an average size between 147 and 186 nucleotides, and 194373 introns
with an average size between 5096 and 27521 nucleotides. The main observation
is that introns show a significantly larger accumulation of poly-regions than the
exons, especially poly-As, poly-Cs, poly-Ts, poly-CTs and poly-TGs. On the other
hand, exons have a high concentration of poly-As, poly-Ts and poly-TGs. Among
all poly-regions of Type II with S = 3, only poly-AATs, poly-ATTs, poly-TATs
and poly-ATAs show a significant occurrence in exons whereas in introns we can
also have poly-CCTs, poly-CTTS poly-GAAs and poly-GTTs.

Table 2 Types of poly-regions with density ≥80% in exons of chromosome 1 of the
Dog genome

Poly-region Percentile over Percentile
type all regions (%) among exons (%)

A 0.42 21.29
T 0.45 23.74
TG 2.25 56.69
A+C 2.96 75.19
A+G 4.38 79.29
A+T 10.11 83.65
C+T 4.40 77.87
G+T 2.82 74.46
A+C+G 16.64 94.38
A+C+T 27.51 96.70
A+G+T 25.35 96.90
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6.3.2 Poly-regions in nucleosomes

Our algorithms have also been applied to nucleosome regions of the Yeast (in vivo
and in vitro), Chicken (in vivo) and Mouse (in vitro) genomes. The extracted
poly-regions for the Yeast in vivo are shown in Table 3. The main observation
is that nucleosome regions show a larger accumulation of poly-regions than
exons; especially poly-regions of Type I with |I| ≥ 2, are present in almost every
nucleosome. We also noticed a high occurrence of poly-CAs and poly-TGAs in
the Mouse in vitro genome, which is not true for the other genomes we examined.
Similar observations have been obtained for the rest of the genomes.

Table 3 Types of poly-regions with density ≥80% in the Yeast in vivo

Poly-region Percentile over Percentile
Type all regions (%) among nucleosomes (%)

A 0.49 23.62
TG 1.79 56.78
A+C 2.85 88.94
A+G 3.92 91.46
A+T 7.75 97.49
C+T 3.20 87.94
G+T 2.69 82.41
A+C+G 14.38 99.50
A+C+T 31.17 100.00
A+G+T 30.64 100.00

In Figure 3, we see the histograms for each different frequent poly-region type for
the 4 organisms of the nucleosome data set. The x-axis corresponds to the actual
position on the nucleosome and the y-axis represents the percentage of nucleosomes
where this poly-region occurs in that specific position. We observed that in the
majority of nucleosome regions,

• There is a high occurrence of poly-regions of Type I and size 2 with
frequencies of approximately 20%. As for poly-regions of size 3, their
positioning is random, which is expected due to the fact that the alphabet size
is only 4.

• In some cases there is a sharp drop off towards the end of the nucleosomes.
This is true especially for poly-regions of Type I and sizes 2 and 3:
poly-A + C + G, poly-A + G + T and poly-TG in Mouse in vitro, poly-A + T
in the chicken in vitro.

• Some signs of periodicity are detected in a few histograms, for example in the
poly-C + G in the Yeast in vivo and poly-A + C in the Chicken in vitro.

• The only poly-di-nucleotide region (poly-region of Type II and size 2) that
appears in nucleosomes is TG. In the Chicken in vivo genome, there is a high
concentration of TGs at the beginning of the nucleosomes.
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Figure 3 Histograms of frequent poly-regions in the nucleosome areas of 4 organisms.
The x-axis corresponds to the actual nucleosome position and the y-axis
represents the percentage of nucleosomes where this poly-region occurs in that
position (see online version for colours)

6.3.3 Extracting temporal arrangements

Finally, an efficient mining algorithm has been applied to the extracted poly-regions,
as described in Section 4, to detect frequent temporal relations between them.
Specifically, the algorithm has been applied to the poly-regions of Chromosomes
1, 2 and X of the Canis Familiaris. An interesting number of frequent patterns
has been extracted. In all three cases we detected a great number of overlaps and
contains between poly-As and poly-Ts (in exons) as well as poly-Cs and poly-Gs
(in introns). Figure 4 gives a sample of the frequent arrangements that have been
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extracted from the exons of Chromosomes 1, 2 and X of the Dog Genome. The most
significant observation is the arrangement involving a follow relation of poly-TAs
and poly-{C + G}s. Similar but fewer arrangements have been discovered in the
nucleosomes (of the Yeast, Mouse and Chicken genomes). A sample of the highest
scoring arrangements is shown in Figure 5.

Figure 4 A sample of the extracted set of frequent arrangements of poly-regions in introns
of Chromosomes 1, 2 and X of the dog. The poly-region size varied between
10 and 40 nucleotides (see online version for colours)

Figure 5 A sample of the extracted set of frequent arrangements in nucleosome regions of
the Yeast, Mouse and Chicken genomes. The poly-region size varied between 10
and 40 nucleotides (see online version for colours)

7 Conclusion

We have formally defined the problem of detecting regions of elevated occurrence
of a literal or set of literals in a sequence and proposed three efficient algorithms to
solve it. The first algorithm employs a set of sliding windows over the input sequence
that maintains some statistics per segment and combines them to extract the
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complete set of poly-regions. The second algorithm is based on the idea of recursive
segmentation, whereas the third achieves linear running time by employing a
majority vote-based approach with a minimal number of false negatives. We further
applied an efficient arrangement mining algorithm to extract the complete set of
frequent temporal arrangements of the extracted regions and provided an extensive
experimental evaluation of our algorithms by testing their efficiency on four different
genomic regions of organisms. In our experiments, we extensively study the types
of poly-regions and arrangements that occur frequently in different DNA regions
(coding, non-coding, and nucleosomes). An interesting direction for future research
would be to assess the significance of bursty sequences by defining meaningful null
models and test statistics (based on, e.g., Haiminen et al., 2008).
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