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Software defects can be very expensive, especially when encountered in economically
critical or safety critical systems. Many of these defects can be avoided if it can be
ensured that a program meets its specification. When the specification is given for-
mally, for example with assertions embedded in the source code, automated software
verification methods can be applied to determine whether a program complies to its
specification.

Recently there has been much interest in combining underapproximation and overap-
proximation based approaches to software verification. Such a technique is employed
by the DASH algorithm originally developed at Microsoft, which generates tests to
improve an underapproximation of the program under test. Simultaneously, an over-
approximating abstraction of the program is refined with information gathered from
test generation.

We present an open source implementation of the DASH algorithm for the verification
of C programs compiled on the LLVM compiler framework. Our implementation
is an extension of the dynamic symbolic execution tool LCT. We also present a
detailed method for constructing the weakest precondition based refinement operator
employed by DASH for instructions of the LLVM internal representation.

To maintain a mapping between concrete executions and the abstraction DASH
needs to evaluate predicates on the concrete states visited during test executions. A
straightforward implementation might store the complete concrete states of each
executed test or might employ expensive re-executions to recover the concrete states.
We present a technique which allows only the concrete values of pointer variables to
be stored while still requiring no re-executions.

Finally we present a case study to show the viability of our tool. We also document a
more powerful abstraction refinement method used in DASH and evaluate its effect.
Keywords: automated testing, verification, dynamic symbolic execution, ab-

straction refinement
Language: English



Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Olli Saarikivi
Työn nimi: Testiohjatut todistukset C-ohjelmille LLVM-järjestelmässä
Päiväys: 16. toukokuuta 2013 Sivumäärä: 61
Professuuri: Tietojenkäsittelyteoria Koodi: T-79
Valvoja: Professori Keijo Heljanko
Ohjaaja: Diplomi-insinööri Kari Kähkönen
Ohjelmistovirheet voivat olla hyvin kalliita, varsinkin turvallisuus- ja talouskriittisissä
järjestelmissä. Monet näistä virheistä voidaan välttää jos voidaan varmistaa että ohjel-
mistot täyttävät nille annetut spesifikaatiot. Kun spesifikaatio on annettu formaalisti,
esimerkiksi lähdekoodiin kirjoitetuilla assertioilla, voidaan automaattisilla ohjelmis-
ton verifiointimenetelmillä tarkastaa että ohjelmisto täyttää sen spesifikaation.

Viime aikoina on ollut paljon kiinnostusta yhdistää yli- ja aliapproksimoivia lähes-
tymistapoja ohjelmistojen verifiointiin. DASH algoritmi toteuttaa tällaisen menetel-
män. Se generoi testejä parantaakseen aliapproksimaatiota verifioitavasta ohjelmasta.
Samanaikaisesti DASH hienontaa ohjelmaa yliapproksimoivaa abstraktiota testien
generoinnista kerätyllä informaatiolla.

Esittelemme avoimen lähdekoodin työkalun, joka toteuttaa DASH algoritmin LLVM
kääntäjäkirjastolla käännettyjen C ohjelmien verifiointiin. Toteutuksemme perustuu
dynaamisen symbolisen suorituksen työkaluun LCT:hen. Annamme myös yksityis-
kohtaisen menetelmän tuottaa DASH:n vaatima heikoimpiin esiehtoihin perustuva
abstraktion hienonnusoperaattori LLVM:n välikielen käskyille.

DASH evaluoi predikaatteja testien aikana nähdyille konkreettisille tiloille ylläpi-
tääkseen kuvausta testiajojen ja abstraktion välillä. Suoraviivainen toteutus saattaisi
tallentaa jokaisen ajetun testin kokonaiset konkreettiset tilat tai ajaa testejä toistami-
seen konkreettisten tilojen uudelleenkonstruoimiseksi. Esittelemme menetelmän jolla
ainoastaan osoittimia sisältävien muuttujien arvot tallennetaan ilman että testejä pitää
uudelleenajaa.

Lopuksi näytämme työkalumme käyttökelpoisuuden kokeiden avulla. Dokumen-
toimme myös DASH algoritmissa käytetyn tehokkaamman abstraktion hienonnuso-
peraattorin sekä esittelemme sen vaikutuksen kokeellisesti.
Asiasanat: automaattinen testaus, verifiointi, dynaaminen symbolinen suo-

ritus, abstraktion hienontaminen
Kieli: Englanti
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Chapter 1

Introduction

As our reliance on software grows, ensuring software correctness is an increasingly
important task for the software industry. A 2002 report conducted by NIST estimates
that the US economy loses $60 billion each year to problems associated with software
errors [41]. The cost of a single Microsoft security bulletin has been estimated to be
in the order of millions of dollars [15]. In safety critical systems software errors can
also lead to loss of life. For example, the deaths and serious injuries caused by the
radiation therapy machine Therac-25 are in part attributable to software errors [30].

One approach to preventing software errors is to design a specification, against
which the software will be written. The problem of determining whether a program
complies to its specification is called software verification. This process can be at least
partly automated when the specification is formal enough. Automated verification
methods involve exploration of the state space of the program to either find a violation
of the specification or a proof of program correctness. However, the state space of
a program can be very large as it often is exponential in the number of program
locations and amount of memory used by the program. This problem, dubbed state
space explosion [38], often makes enumerating all states of the program infeasible.

One approach to exploring the state space of a program is testing, where a program
is executed with sets of input values that will drive the execution to different parts of
the state space. Typically program specifications involve the reachability of specific
program locations and therefore it is desirable for the set of test executions to provide
a good coverage of the program’s source code. Traditionally the test inputs are selected
manually, e.g. by the programmer, which is often a slow process. One way to
automate the process is to generate the test inputs randomly. While this technique,
also known as fuzzing, can be effective in some cases [31], it can also generate many
tests that do not increase coverage. A directed test generation method called dynamic
symbolic execution (DSE) counters this problem by generating input values that will
drive the tests to previously unexplored execution paths [7, 13, 36, 37]. It has also been
called whitebox fuzzing in contrast to the “blackbox” approach of traditional fuzzing
[14]. In DSE the execution of a test is monitored to collect a symbolic constraint over
the program’s input variables for the path taken by the execution. This constraint
can then be supplied to a satisfiability modulo theories (SMT) solver to generate new

5



CHAPTER 1. INTRODUCTION 6

inputs that will drive subsequent executions to follow previously unexplored paths.
Even with each new test exploring a previously unexplored path, DSE does not yet

scale well to large real-world programs [14]. Gunter and Peled [18] propose a method
for letting the user specify with an LTL formula which parts of the program under test
should be explored, which could be useful e.g. for unit testing. In any case, except for
some trivial programs, verification methods based on testing will underapproximate
the state space, i.e. the set of states explored by the test executions will be a subset of
the program’s state space. This means that once the testing is done we can not say for
sure whether the program satisfies its specification: there could still exist unexplored
inputs to the program that would cause it to violate the specification.

While explicit state model checking of software is typically infeasible, it may be
possible to use an abstracted version of the program to check the specification. With
abstraction the behavior of the program is overapproximated by leaving out some
details. For example, in predicate abstraction [16] an abstract state space is formed
from the different valuations of a set of predicates on concrete variables of the program
to be verified. The abstract state space can often have a much smaller representation
than the state space of the original program, which may make it feasible to prove that
the abstracted program satisfies the specification. Because the abstracted program
is an overapproximation, any bad behavior of the original program is also present
in the abstraction and therefore if the abstraction is verified then so is the original
program. However, if the abstracted program does not satisfy the specification then
we can not necessarily say anything about the original program. The bad behavior
that violates the specification, called a counterexample, may be an actual behavior of
the original program, in which case it should be reported as a bug. On the other
hand, the counterexample might not be a feasible behavior of the original program, in
which case it is called a spurious counterexample.

To get rid of spurious counterexamples various abstraction refinement methods have
been developed. An abstracted program may contain a spurious counterexample when
too many details have been left out in the abstraction process. This can be remedied
by refining the abstraction, i.e., adding back some previously ignored facts about the
program. The process of selecting how to refine the abstraction can be guided by
analysis of the counterexample [9]. This approach, called counterexample guided
abstraction refinement, has been successfully used in a number of tools [3, 8, 19, 27].
These tools work by iteratively refining the abstraction until it is sufficiently precise
to prove that the specification is satisfied (assuming that it indeed is).

To explore the state space of an abstracted program the abstract transition relation
must be constructed. This relation is induced by the original program when evaluated
with respect to the abstract state space. The construction of the abstract transition
relation may be costly. For example, with the technique described by Graf and Saidi
[16] computing a successor state of a transition requires potentially a large number
of theorem prover calls. One way in which this can be alleviated is by only refining
the parts of the abstraction needed for eliminating the spurious counterexample. An
algorithm following this approach, called lazy abstraction, has been implemented in
the BLAST software verification tool [19]. With the lazy abstraction approach the
work done to construct the abstract transition relation can be partly reused when the
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abstraction is refined.
In 2005 Godefroid and Klarlund [12] predicted that testing and abstraction based

verification methods could be combined in useful ways. Yorsh, Ball and Sagiv [39]
propose one such approach, which aims to alleviate the cost of constructing the
abstraction by abstracting from a set of concrete test executions. In their method a
theorem prover is used to check that the concrete tests cover all the reachable abstract
states instead of directly computing the abstract transition relation. This can in the
best case reduce the number of required theorem prover calls when compared to pre-
vious methods. Kroening, Groce and Clarke [27] describe the CRunner tool, which
also combines information from concrete executions with counterexample guided
abstraction refinement. Their approach combines concrete executions with partial
SAT-based simulation of the program to make detecting spurious counterexamples
more efficient.

Combining DSE-based testing with abstraction refinement is attractive because the
two approaches can efficiently handle different types of programs [17]. Abstraction
refinement works well for programs that require tracking a relatively small number of
predicates to prove a property. Testing, on the other hand, can quickly find feasible
paths through code which could otherwise require refining the abstraction many
times to discover. The SYNERGY algorithm [17] implemented in Microsoft’s YOGI
tool [33] combines abstraction refinement with DSE in such a way that it retains
advantages from both. It simultaneously constructs a concrete execution tree of the
program and a partition of the program into abstract regions. From a testing point
of view, SYNERGY works similarly to DSE with the addition that the branches to
expand are selected along error traces found in the abstraction. This ensures that only
the parts of the program that may have an error are explored by testing. From an
abstraction refinement point of view, the test generation of SYNERGY is how spurious
counterexamples are detected. If the counterexample is spurious, then at some point
an SMT solver call to generate a test further along the error trace will fail. At this
point the abstraction is refined to remove the error trace.

The DASH algorithm [4] (also implemented in the YOGI tool) presents several
improvements over SYNERGY. The refinement method in DASH for maintaining the
abstraction avoids extra solver calls: while SYNERGY uses a solver call to refine the
abstraction, DASH uses information from the failed test generation attempt to do the
refinement. DASH also presents a technique for efficiently handling programs with
pointers by using concrete pointer aliasing information gathered from tests. Finally,
while the SYNERGY algorithm only supports single-procedure programs, in DASH
programs with multiple procedures are supported via a recursive call to the algorithm
for each procedure call.

In this work we present an implementation of the DASH algorithm for C programs.
The tool, called LCT-D, is a modification to the DSE tool LCT [21–23]. We have
implemented our program transformations with the LLVM compiler framework [29].
The main contributions of this work are as follows:

1. We present LCT-D, an open source tool implementing the DASH algorithm for
verifying C programs compiled to the LLVM intermediate representation.
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2. We describe a strategy for constructing weakest preconditions for LLVM basic
blocks in the presence of pointers.

3. We document and evaluate the effectiveness of a more powerful abstraction
refinement method that can be applied when an abstract region’s predicate
becomes unsatisfiable.

4. We describe a method for mapping traces from test executions back to the ab-
straction that does not require directly evaluating predicates of abstract regions.

5. We present initial case studies showing the viability of our tool.

Due to time constraints we have placed several restrictions on the scope of our work.
First, we have not implemented the interprocedural support for DASH described in
[4]. While the feature itself is not conceptually very complex, we estimated that
handling all of its implementation details would have been a significant undertaking.
Second, we omit support for all pointer arithmetic, including array accesses. How to
support arrays with symbolic indices in DASH has not been described and we believe
the task is at least non-trivial. Finally, we have only implemented support for the
LLVM instructions needed to run our case studies. Most notably this does not include
the getelementptr instruction, which is used for C structure support.

The rest of this work is structured as follows. Chapter 2 goes over the basics of
abstraction refinement and dynamic symbolic execution, and provides an overview of
the LLVM intermediate representation. Chapter 3 describes the DASH algorithm in
the context of a program model reminiscent of the LLVM intermediate representation.
We also present our strategy for constructing weakest preconditions and the alternate
abstraction refinement method for unsatisfiable predicates in regions. Chapter 4
describes our implementation, including our method for mapping execution traces
back to the abstraction. In Chapter 5 we present preliminary case studies and discuss
their results. Finally, Chapter 6 provides some concluding remarks and discussion on
directions for future research.



Chapter 2

Background

In this chapter we go over some background theory needed for understanding the
DASH algorithm. First we go over the basics of dynamic symbolic execution, on which
the test generation method in DASH is based. Next we provide a short explanation of
abstraction refinement and step through a running example to familiarize the reader
with the type of abstraction employed in DASH. Finally we provide an overview of
the LLVM intermediate representation to help in understanding our program model
and some special handling presented in Chapter 3.

2.1 Dynamic Symbolic Execution

Dynamic symbolic execution [13, 36, 37] (DSE) is a technique for systematically ex-
ploring all execution paths of a program. In DSE symbolic constraints for program
inputs are gathered during execution to form a path constraint for the execution. This
path constraint is then used to solve new sets of inputs that will drive subsequent
executions to follow previously unexplored paths.

We now apply DSE to the example program in Figure 2.1. The example program
marks its inputs by calls to input(). The program also has two lines, 5 and 9, which
have calls to error(). We would like to find a set of inputs that will cause the program
to execute one of these calls.

Initially the program will be executed with random inputs. Let us assume the first
random input given to the program is 5, which means that x == 13 will not hold and
the next statement executed will be the return 0, terminating the program. During
this execution symbolic counterparts for the statements executed are recorded in the
execution tree shown in Figure 2.2(a). For the statement on line 2 we get the constraint
x1 = input1 indicating that the first input gets assigned to x’s first symbolic value x1.
For the if statement two child nodes corresponding to the two branches are added to
the tree. The edges to the children are labeled with constraints that must be true for
the program to follow the path to the child in question. In our example the constraint
for the branch taken in the first execution is ¬(x1 = 13) and the constraint for the
unexplored branch is the negation of the first one, (x1 = 13).

To generate the inputs for the next execution we select the unexplored branch

9



CHAPTER 2. BACKGROUND 10

1int main() {
2int x = input ();
3if (x == 13) {
4if (x < 10)
5error ();
6int y = input ();
7x = x + y;
8if (x < 0)
9error ();
10}
11return 0;
12}

Figure 2.1.: A running example program for DSE

which is shown in Figure 2.2(a) drawn with a dashed line. The path constraint for
reaching this branch is (x1 = input1)∧ (x1 = 13). This constraint is passed to an SMT
solver, which will return a satisfying assignment where input1 gets the value 13. The
program is then executed again with the new input assignment. This time the program
will go to the true branch of the first if statement and the false branch of the second
one. On line 6 a second call to input() is encountered. Because this value was not
set in the input assignment we instead use a random value. For this example let us
assume the value 20 is used, which results in the execution taking the false branch also
for the last if statement on line 8.

The path followed by the second execution is added to the execution tree. The
updated tree can be seen in Figure 2.2(b). For the next execution let us assume the path
selected is the one labeled “Target” in Figure 2.2(b), for which the path constraint is
(x1 = input1)∧ (x1 = 13)∧ (x1 < 10). When querying an SMT solver for an assignment
for this constraint we will find that the constraint is unsatisfiable (evident from x1
being required to be both 13 and less than 10). From this we know that there exist no
inputs with which the program would reach the node at the end of the target path.
Therefore, we remove that node from the execution tree resulting in the tree shown
in Figure 2.2(c).

The next iteration begins by selecting the lone unexplored path in Figure 2.2(c), and
passing its path constraint, (x1 = input1)∧(x1 = 13)∧¬(x1 < 10)∧(y1 = input2)∧(x2 =
x1+ y1)∧ (x2 < 0), to an SMT solver. We get a satisfying input assignment of, for
example, input1 = 13 and input2 =−15. Executing the program with these inputs will
cause it to follow the desired path after which it executes line 9 and thus reaches an
error. The final execution tree with the path to the error is shown in Figure 2.2(d).

For a more in depth explanation of DSE see for example the paper by Godefroid,
Klarlund and Sen [13].
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1int main() {
2int x = 0;
3int y = x;
4while (x == y) {
5x++;
6if (x == y)
7error ();
8y = input ();
9}
10return 0;
11}

Figure 2.3.: A running example program for abstraction refinement

2.2 Abstraction Refinement

Abstraction refinement is a technique for model checking large or infinite state systems
by trying to verify the property of interest in a simpler abstraction of the system. The
abstraction may exhibit spurious counterexamples (ones that do not correspond to an
execution of the concrete system) and because of this an abstract-check-refine loop is
used [3, 9, 19]:

abstract Choose a set of predicates and build an abstraction of the program. The
states in the abstraction, which are also called regions, correspond to truth
assignments of the chosen predicates.

check Check whether the abstraction conforms to the property we wish to verify.
If it does then we can stop with a “pass” result. Otherwise, we get an abstract
counterexample. If this counterexample is also an execution of the program then
we can stop with a “fail” result. If not, then we have a spurious counterexample
and we proceed to the next step.

refine Infer a new predicate, which will remove this spurious counterexample. Add
this new predicate to the predicates used to build the abstraction and return to
the first step.

Consider the running example program in Figure 2.3, for which we wish to verify
that the error on line 7 is not reachable. Dynamic symbolic execution (see Section 2.1)
can not be used to verify this, because due to the loop on line 4 the program has an
infinite number of execution paths. We will show how abstraction refinement can be
applied to this verification task.

On the first iteration of the abstract-check-refine loop we have no predicates selected
for the abstraction. Therefore, the initial abstraction is simply the program’s control
flow graph (CFG) shown in Figure 2.4. From this we can then find a counterexample
path of (2,3,4,5,6,7). To check whether this counterexample is spurious we can
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Figure 2.4.: CFG for the example program
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2∧ p

3∧ p

4∧ p

5∧ p

6∧ p

7∧ p8∧ p

10∧ p

2∧¬p

3∧¬p

4∧¬p

5∧¬p

6∧¬p

7∧¬p8∧¬p

10∧¬p

Error Error

Figure 2.5.: Regions of the abstraction constructed with the predicate p := (x = y)

gather the constraints for the path projected to the original program. For our example
the path constraint is (x1 = 0)∧ (y1 = x1)∧ (x1 = y1)∧ (x2 = x1+ 1)∧ (x2 = y1). By
passing this constraint to an SMT solver we would find out that the constraint is
unsatisfiable and, therefore, the counterexample is indeed spurious.

Now we must select a predicate which eliminates this spurious counterexample. It
turns out that adding the predicate p := (x = y) will work. The details of how the
predicates to refine with are inferred can be quite involved and vary between different
approaches to abstraction refinement. We omit these details here for brevity.

On the second iteration we construct the abstraction while observing the predicate
p. The state space of the abstraction is shown in Figure 2.5. For each region in the
original abstraction we now have two versions: one in which p is true and another
in which ¬p is true. A state of the concrete program belongs to a region if it is in
the corresponding program location and predicate for the region is true in that state.
The transition relation in the abstraction is such that there is a transition between
two regions if there is also a transition between two concrete states belonging to the
regions. Regions that are not reachable from an initial region (i.e. a region containing
an initial state) are drawn with dashed lines and transitions from unreachable regions
are omitted.
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To get a sense of how the transitions between regions work look at the transition
from 5∧ p to 6∧¬p. This transition exists because if p is true and the statement x++
is executed then in the next state p will necessarily be false as y can not be x and x + 1
at the same time. For the same reason a transition from 5∧ p to 6∧ p does not exist.

Regions can also have multiple outgoing transitions. For example from 8∧¬p
there is a transition both to 4∧ p and 4∧¬p. This is because whether executing the
statement y = input() makes p true or false depends on the nondeterministic input.

If we check the new abstraction for a counterexample we will find that the error
regions are now unreachable. Because any concrete execution of the program can be
simulated by the abstraction we have now verified that the example program can not
execute the error statement.

In this example we presented the state space of the abstraction directly. In actual
implementations of the technique the representation of the abstract model may be
more compact. For example boolean programs have been used [3] or the abstraction
may be represented implicitly in a search tree [19].

2.3 The LLVM Intermediate Representation

Our tool LCT-D targets verification of C programs compiled to the intermediate
representation of the LLVM compiler framework, which is a flexible compiler backend
and a collection of related technologies. The program model we use in Chapter 3 to
describe the DASH algorithm is reminiscent of the LLVM intermediate representation
(LLVM IR). This section will give an overview of the basic concepts of the LLVM IR.

The LLVM IR [1, 28] is a type-safe, low-level, static single assignment (SSA) [2, 34]
based representation used in LLVM for most program transformations. The LLVM
IR uses a register-based representation, where an unlimited number of named registers
are available. Due to the SSA form, for each used register there exists exactly one
instruction that assigns to it. Situations where alternate values need to be assigned to
the same register are encoded with the phi instruction, which selects a value based
on along which control flow edge the instruction is reached. The phi instruction is
explained in more detail in Section 3.3, where its handling in the DASH algorithm is
presented.

LLVM IR exists in three equivalent representations: as C++ data structures, in
a binary representation called LLVM bitcode or in a human readable assembly lan-
guage. For our purposes the assembly language representation is the most useful to
understand. An example of the assembly language can be seen in Figure 2.7, which is
the result of compiling the C program in Figure 2.6.

Control flow inside functions is represented as jumps between basic blocks, which
are lists of non-terminator instructions followed by a single terminator instruction.
Terminator instructions encountered in LLVM IR generated from C programs include
branching, goto and return instructions. Additionally an unreachable instruction
may be used to indicate that the end of that basic block is never reached. Non-
terminator instructions include for example all arithmetic, conversion and comparison
instructions.
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1int a = 20;
2
3int main() {
4int x = 0;
5int y;
6if (x > a) {
7x = x - 10;
8y = x;
9} else {
10y = 0;
11}
12return y;
13}

Figure 2.6.: An example program to be compiled to LLVM IR

@a = global i32 20, align 4 1
2

define i32 @main() nounwind uwtable { 3
entry: 4

%x = alloca i32, align 4 5
store i32 0, i32* %x, align 4 6
%0 = load i32* %x, align 4 7
%1 = load i32* @a, align 4 8
%cmp = icmp sgt i32 %0, %1 9
br i1 %cmp, label %if.then, label %if.end 10

11
if.then: 12

%2 = load i32* %x, align 4 13
%sub = sub nsw i32 %2, 10 14
store i32 %sub, i32* %x, align 4 15
br label %if.end 16

17
if.end: 18

%y = phi i32 [ %sub, %if.then ], [ 0, %entry ] 19
ret i32 %y 20

} 21

Figure 2.7.: The example program in Figure 2.6 compiled to LLVM IR
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Memory in LLVM IR is accessed through the load and store instructions. While
in LLVM IR the memory is addressed on the byte level, our tool only supports
programs in which all memory accesses either do not overlap or access exactly the
same bytes. In the rest of this work we will only consider such programs. Memory
is allocated in three ways: statically by declaring a global variable, dynamically on
the stack through the alloca instruction or dynamically on the heap by calling a
runtime library function (e.g. malloc() in C).



Chapter 3

DASH on LLVM

In this chapter we explain the DASH algorithm [4], which combines dynamic sym-
bolic execution with counterexample guided abstraction refinement. DASH attempts
to generate tests based on counterexamples found in the abstraction. When DASH
fails to generate a test it refines the abstraction to remove the counterexample. The
tests can be seen as an underapproximation of the reachable states of the program
under test, which DASH tries to expand to include an error. The abstraction on the
other hand is an overapproximation which, if error free, also proves the program
under test to be so.

Determining the reachability of error states for arbitrary programs is in general
undecidable and as such running DASH on a program has three potential outcomes:

• An error is found and inputs that lead the program to the error are returned.

• The verification succeeds if the abstraction is refined to remove all error traces.

• The algorithm may not terminate.

The following description of the DASH algorithm has been adapted from Beckman
et al. [4]. In our model a program P is a tuple (N , E , n0,λ,B), where:

• N is a finite set of nodes corresponding to program locations.

• E ⊆N ×N is a set of control flow edges.

• n0 is the program’s entry point.

• λ : E → Stmts labels each control flow edge with a statement.

• B is the set of variables in the program. We assume that all variables are of either
integer or pointer type.

In the following explanation we use the notion of a map, which is a partial function
with some additional notation for updating it. Given a map M we adopt the following
notations:

• M (x) is the value of x in the map M .

18
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• M[x 7→ y] is a map otherwise identical to M , except that now x maps to y.

• M[x 67→] is a map otherwise identical to M , except that the mapping for x has
been removed.

The set Stmts in the definition above is the set of statements present in the program
P . Table 3.1 lists the types of statements used in our program model. Programs
written with these statements correspond to single procedure programs in a subset
of the LLVM IR. For better readability we have chosen to write the binary and the
comparison expressions in the style of the C programming language.

The state of a program is a tuple (n,Y,W , U ), where n is the current program
location, Y and W map the program’s variables and memory addresses, respectively,
to their current values and U is a set of addresses that have already been used for
memory allocation. The state space Σ of the program is the product of all possible
values of n, Y , W and U . Now we define the transition relation→⊆Σ×Σ so that
for all s , s ′ ∈ Σ it holds that s → s ′ if and only if there is a statement op ∈ Stmts
that is enabled in s such that executing op in s according to the semantics laid out in
Table 3.1 would take the program to the state s ′. Note that the semantics do include
undefined operations. For example we do not define what happens on division by
zero. However, from now on we assume that programs have no concrete executions
which would result in undefined behavior.

Let s0 ∈ Σ be the initial state of the program. A property ϕ ⊆ Σ is a set of states
that we want to verify to not be reachable from s0. The problem instance is now a
pair (P,ϕ) of the program and the property. Let→+ be the transitive closure of the
relation→. Now the answer to (P,ϕ) is “fail” if there exists a state s ∈ ϕ such that
s0→+ s and “pass” otherwise.

As a set of states, the property ϕ can be any property expressible as a predicate over
the program’s variables and memory. This includes any property expressible with the
C language’s assert macro.

3.1 The Algorithm

For a given problem instance (P,ϕ) to detect “fail” instances the DASH algorithm will
attempt to find a sequence of states (s0, s1, . . . , sn) such that s0 → s1 → ·· · → sn and
sn ∈ ϕ. We call such a sequence of states an error trace.

To detect “pass” instances the DASH algorithm maintains an abstraction Σ' which
partitions the state space Σ into a finite number of equivalence classes. We refer to the
equivalence classes of the abstraction Σ' as regions. Let→'⊆Σ'×Σ' be a transition
relation such that for all regions R, R′ ∈Σ' it holds that R 6→' R′ if and only if there
exist no states s ∈ R and s ′ ∈ R′ such that s → s ′. In other words, the transition
relation→' may be an overapproximation. Let R0 ∈Σ' be the region that contains
the initial state s0 and ϕ' be the regions that contain a state from ϕ. An abstract error
trace is a sequence of regions (R0, R1, . . . , Rn) such that R0→' R1→' · · · →' Rn and
Rn ∈ ϕ'.
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Given the current state (n,Y,W , U ), a statement op is enabled if there exists a control
flow edge (n, n′) ∈ E such that op= λ(n, n′). After a statement is executed the new
state is (n′,Y ′,W ′, U ′). How Y ′, W ′ and U ′ change depends on the statement.

Statement Semantics

r = v1 <op> v2 The program moves to the state (n′,Y ′,W , U ), where Y ′ =
Y [r 7→ Eval(v1 <op> v2)]. The function Eval(e) computes the
result of an expression e . If the operands v1 and v2 are variables
they are determined by the current states Y of the program’s
variables. Alternatively, the operands may also be constants. The
operation <op> is one of the binary operators available in the
C language. All operands are 32 bit integers. Booleans are rep-
resented with zero as false and other values as true. We do not
consider pointers to be integers, i.e., all pointer arithmetic is
forbidden. We assume that no undefined operations (e.g. divide
by zero) are encountered.

r = v The program moves to the state (n′,Y ′,W , U ), where Y ′ =
Y [r 7→ Y (v)], i.e., the value of v is assigned to r . The operand
v may alternatively be a constant, in which case the destination
state is one with Y ′ = Y [r 7→ v].

r = input The program moves to a state where the value of the variable
r in Y is replaced with an arbitrary integer. Because this state-
ment induces multiple transitions the result of executing it is
nondeterministic.

r = load a The program moves to the state (n′,Y ′,W , U ), where Y ′ =
Y [r 7→W (a)].

store v a The program moves to the state (n′,Y,W ′, U ), where W ′ =
W [a 7→ Y (v)]. If the operand v is a constant then the destination
state is instead one with W ′ =W [a 7→ v].

a = allocate A memory address m ∈ N such that m 6∈ U is selected and the
program moves to the state (n′,Y ′,W , U ′), where Y ′ = Y [a 7→
m] and U ′ =U ∪{m}. Because no pointer arithmetic is allowed,
the way m is selected is not important.

(v1 <comp> v2)
!(v1 <comp> v2)

In addition to the requirement that the program location is cor-
rect these statements are only enabled if also the condition repre-
sented is true. Otherwise these guard statements have no effect.
The comparison operator <comp> is one of the comparison oper-
ators available in the C language.

Table 3.1.: The statements of the program model and their semantics
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Figure 3.2.: Flowchart for the DASH algorithm

Theorem 1. Given a problem instance (P,ϕ), if there exists an abstraction which does
not have an abstract error trace then the answer to the instance is “pass”.

Proof. Assume (P,ϕ) is a “fail” instance and Σ' is an abstraction with no abstract
error trace. There exists an error trace (s0, s1, . . . , sn). Let Region : Σ → Σ' be a
function that maps each state to the region that contains it. Now for the sequence
of regions (T0,T1, . . . ,Tn) such that Ti =Region(si ) for i ∈ [0 . . . n] it holds that: (1)
because s0 → s1 → ·· · → sn then from the definition of →' it follows that T0 →'
T1→' · · · →' Tn and (2) Tn ∈ ϕ' because sn ∈ ϕ and Region(sn) = Tn. Therefore Σ'
does have an abstract error trace and the original assumption must be false.

In addition to the abstraction, the DASH algorithm maintains a set C of test runs,
which are pairs consisting of an execution trace, represented by a sequence of states,
and a sequence of input values.

The flowchart in Figure 3.2 presents a rough sketch of the DASH algorithm. Pseu-
docode for its main procedure is presented in Figure 3.3. DASH follows a modified
version of the abstract-check-refine loop introduced in Section 2.2. Whenever an ab-
stract error trace is found, DASH will attempt to generate a test that extends the set of
regions that are known to be reachable along the abstract error trace. If the test gener-
ation fails then the counterexample was spurious and DASH will refine the abstraction
to eliminate the abstract error trace. The main procedure uses the auxiliary proce-
dures GetAbstractTrace, GetCombinedConstraint, Solve, RunTest, RefinePred
and SplitFrontier. The purpose of these procedures will be explained in the follow-
ing explanation of the algorithm.
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Input : P , ϕ
Output : (“fail”, t ), where t is an error trace of P , or

(“pass”,Σ'), where Σ' does not have an abstract error trace

Σ' :=
⋃

n∈N{{s ∈Σ | the program location of s is n}}
→' := {(R, R′) ∈Σ'×Σ' |exist s ∈ R and s ′ ∈ R′ such that (s , s ′) ∈ E}
C := {RunTest(ε, P)}
loop

if Σ' has an abstract error trace then
τ := GetAbstractTrace(Σ',→', ϕ) // Find counterexample
(φ,A) := GetCombinedConstraint(τ, P , C)
(isSat, Itest) := Solve(φ) // Check if spurious
if isSat then
(t , Iall) := RunTest(Itest, P) // If not, extend frontier
C := C ∪{(t , Iall)}
if t has a state from ϕ then

return (“fail” , t )
end if

else
p := RefinePred(τ, A) // If spurious, refine abstraction
(Σ',→') := SplitFrontier(Σ',→', τ, p)

end if
else

return (“pass” ,Σ')
end if

end loop

Figure 3.3.: The DASH algorithm

To explain the algorithm we will step through a running example of applying DASH
to verify the program in Figure 3.4. The example program takes one input, which
is marked by the call to input(). We wish to verify that no matter what this input
value is the program can not execute the error statement on line 6.

At startup DASH creates the initial abstraction Σ' and related transition function
→' from the program’s control flow graph: states from Σ are partitioned into regions
such that there is one region for each separate program location. There is a transition
from a region R to another region R′ if the program location of R has an edge to the
program location of R′. The initial abstraction of our example program is shown
in Figure 3.5. Regions are represented by a program location that the contained
states must be in together with an optional constraint written as a predicate over the
program’s variables and memory. None of the regions in the initial abstraction have
any constraints yet, which can be seen by the regions in Figure 3.5 being labeled only
by line numbers from Figure 3.4.

We have also labeled edges in Figure 3.5 with their corresponding statements.
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1int main() {
2int x = input ();
3if (x>20) {
4x = x-20;
5if (x==0)
6error ();
7}
8return 0;
9}

Figure 3.4.: Example program to verify with DASH
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Error

x = input

!(x > 20)
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!(
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Figure 3.5.: The initial abstraction for the example program in Figure 3.4
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Notice how the edges (3,4) and (3,8) are labeled with guard statements. These are
used to represent the “then” and “else” branches of the if statement on line 3 of the
program in Figure 3.4.

Before entering the main loop DASH will run one test on the program with ran-
dom inputs, which is accomplished by calling the procedure RunTest with an empty
sequence of inputs. This results in a random test because once values in the provided
input sequence run out, RunTest will supply random values to any r = input state-
ments executed. The procedure RunTest returns a pair containing the sequence of
states executed together with the input values used (including random ones).

For our example let us assume that on the line 2 in Figure 3.4 the variable x is
initialized to a value of 15. The set C is initialized to contain this random test, which
is a pair ((2,3,8), (15)). This is visualized in Figure 3.5 with the edges that are covered
by the trace being wavy.

After initialization, the first iteration of DASH’s main loop starts by finding the
abstract error trace τ = (2,3,4,5,6), also shown in Figure 3.6(a). The call to the
procedure GetAbstractTrace in Figure 3.3 always returns an abstract error trace such
that after the first region not visited by a test from C no subsequent region has been
visited either. If any abstract error trace exists, we can be sure that there is one that
satisfies this requirement because any abstract error trace can be converted to fulfill it.
Given an arbitrary abstract error trace τ′ = (R0, R1, . . . , Rn) let Rk−1 be the last region
that contains a state si−1 ∈ C and let (s0, s1, . . . , si−1) be the execution trace leading
up to si−1. Now, the desired abstract error trace is τ′′ = (R′0, R′1, . . . , R′i−1, Ri , . . . , Rm),
such that (Ri , . . . , Rm) = (Rk , . . . , Rn) and for each h ∈ [0 . . . i−1] it holds that sh ∈ R′h .

After finding the abstract error trace, DASH will try to extend the frontier of the
abstract error trace τ. Frontier(τ,C ) is the pair of adjacent regions (Rk−1, Rk) such
that Rk−1 has been visited by a test in C and Rk has not. On the first iteration of our
example the frontier is (3,4).

First the procedure GetCombinedConstraint in Figure 3.7 is called to construct a
constraint φ that is satisfiable if and only if there exists a sequence of inputs that will
cause the program to follow the abstract error trace up to the frontier and across it.
To construct φ, GetCombinedConstraint selects from C a sequence of inputs Ifrontier

that are known to take the program to the frontier. In our example the only test that
has a state in the frontier region Rk−1 is the one with the input sequence (15), which
is therefore selected.

To create the constraint we call the procedure GatherConstraints, which uses
techniques similar to those used in dynamic symbolic execution (see Section 2.1) to
gather a path constraint of the program’s execution to and over the frontier. In our
example the statements executed are x = input and x > 20. The path constraint
φpath for these is (x1 = input1)∧ (x1 > 20). Note that x1 is a variable that represents
the first value assigned to the program’s variable x. In general a path constraint is
the weakest predicate over the inputs of the program such that the execution will
still follow the given path. The combined constraint φ is a conjunction of the path
constraint φpath and the constraint from the region Rk . In our example Rk has no
additional constraint and, therefore, we have φ := φpath. In addition to the path
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(b) After the first frontier has been ex-
tended
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p1 := (x−1 = 0)

(c) After splitting the frontier (5,6)
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3

4∧¬p2 4∧ p2

5∧¬p1 5∧ p1

8 6

frontier

p2 := (x−1 = x−2− 20)∧ p1

(d) After splitting the frontier (4,5∧ p1)

Figure 3.6.: Various stages of the abstraction for the example program in Figure 3.4
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2

3∧¬p3 3∧ p3

4∧¬p2 4∧ p2

5∧¬p1 5∧ p1

8 6

frontier

p3 := (x−2 > 20)∧ p2

(e) After splitting the frontier (3,4∧ p2)

2∧¬p4 2∧ p4

3∧¬p3 3∧ p3

4∧¬p2 4∧ p2

5∧¬p1 5∧ p1

8 6

Error

p4 := (x−2 = input−1)∧ p3

(f ) Final abstraction for the example program

Figure 3.6.: Various stages of the abstraction for the example program in Figure 3.4
(cont.)

Output : (φ,A), where φ is the combined constraint to the target region and A is the
assignment of pointers at the frontier

procedure GetCombinedConstraint(τ, P , C)
(Rk−1, Rk) := Frontier(τ,C )
Ifrontier := inputs I such that ∃(t , I ) ∈C : t ∩Rk−1 6= ;
(φ,A) := GatherConstraints(Ifrontier, τ, P)
return (φ,A)

end

Figure 3.7.: The procedure for constructing the combined constraint to the target
region
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constrain φ, the procedure GatherConstraints records pointer aliasing information,
which is returned in A. We can ignore this for now as the example program does not
use any pointers.

Be aware that when the part of the path constraint for crossing the frontier is
generated, the condition value for the branching operator may be concrete (i.e. not
dependent on input values). In DSE such a situation is never encountered as only
symbolic branches can be subject to test generation. In DASH this situation must be
handled by evaluating the concrete constraint at the frontier. If the constraint is true
then it can be omitted. If it is false then the whole path constraint will be unsatisfiable
and the solver call can be skipped. Alternatively, the concrete constraint can just be
added to the path constraint, letting the the SMT solver handle the situation.

Once GetCombinedConstraint has returned, the constraint φ is passed to the
procedure Solve (see Figure 3.3), which will indicate whether φ is satisfiable or not.
Solve will also return the assignment as a sequence of input values (in this case only a
value for input1) if it is satisfiable. On the first iteration of our example φ is satisfiable
and we get a satisfying sequence of inputs. Let us say the sequence is (38). This
input sequence is then used to run a test with a call to the procedure RunTest, which
executes the program with the given inputs. RunTest returns an execution sequence as
a sequence t of states the execution visited and the sequence Iall of all the inputs given
to the program. The sequence Iall has as a prefix the inputs given to RunTest followed
by any that the program may have retrieved after the supplied sequence ran out. For
our example program the call RunTest((38), P) returns a pair ((2,3,4, 5, 8), (38)). The
new execution trace and inputs are then added to the set C , which is illustrated in
Figure 3.6(b).

Note that here we identify the states in the execution trace by the regions they
belong to. For how we have implemented this mapping from states in execution traces
to regions see Section 4.5.

We are now finished with the first iteration of DASH on our example program.
The next iteration starts like the first one. We still find the same abstract error
trace τ = (2,3,4,5,6), which is passed to GetCombinedConstraint. However, now
the frontier has moved forward to (5,6) and the resulting constraint is φ := (x1 =
input1)∧ (x1 > 20)∧ (x2 = x1 − 20)∧ (x2 = 0). This constraint is unsatisfiable and
return value from Solve(φ) will indicate this.

The constraint φ being unsatisfiable means that there can not exist a sequence of
input values that would cause the program to follow τ over the frontier. DASH will
exploit this information to refine the abstraction by splitting the frontier region Rk−1
in the manner presented in Figure 3.8. Notice how after the split, the region Rk−1∧¬p
is the one visited by the execution trace and the edge from it to the region Rk has been
eliminated. To perform this split DASH needs a predicate p such that no state s ∈ Rk−1
reachable by executions following τ for which p does not hold has a transition s → s ′

such that s ′ ∈ Rk . One example of such a predicate is the weakest precondition [10],
which is defined as the weakest predicate over the program’s variables such that after
executing a statement some postcondition holds. In this context the postcondition is
that specified by the region Rk . While we will use weakest preconditions while going
through the current example, the actual algorithm uses a slightly different type of
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split with p
====⇒Rk−1
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Figure 3.8.: The refinement performed by DASH

Output : (Σ',→'), such that the split has been performed

procedure SplitFrontier(Σ',→', τ, p)
(Rk−1, Rk) := Frontier(τ)
Σ' := (Σ' \ {Rk−1})∪{Rk−1 ∧ p, Rk−1 ∧¬p}
→' :=→' \{(R, R′) ∈→' |R= Rk−1 ∨R′ = Rk−1}
→' :=→' ∪{(R, Rk−1 ∧ p) |R ∈ Parents(Rk−1)}

∪ {(R, Rk−1 ∧¬p) |R ∈ Parents(Rk−1)}
∪ {(Rk−1 ∧ p, R) |R ∈Children(Rk−1)}
∪ {(Rk−1 ∧¬p, R) |R ∈ (Children(Rk−1) \ {Rk})}

return (Σ',→')
end

Figure 3.9.: The procedure for splitting the frontier with a predicate

predicate which we will describe in Section 3.2. Also note that due to the slightly
stronger predicate that would actually be used, the region (Rk−1 ∧ p) still has both
outgoing edges present in Figure 3.8.

To produce the splitting predicate DASH calls the procedure RefinePred. For our
example the statement associated with the frontier is x == 0 and because the region
across the frontier has no additional predicate, the weakest precondition p is simply
(x−1 = 0). The index is −1 because negative indices are used for symbolic values in the
splitting predicates to differentiate them from ones in path constraints.

The predicate p is passed along to the procedure SplitFrontier shown in Fig-
ure 3.9. This procedure performs the splitting operation in Figure 3.8. The region
Rk−1 is removed from the abstraction and replaced by two new regions, (Rk−1 ∧ p)
and (Rk−1 ∧ ¬p). All transitions for Rk−1 that were in →' are replicated for the
new regions except the transition (Rk−1 ∧¬p)→' Rk , which is the one we want to
eliminate. The new abstraction and its transition relation, shown in Figure 3.6(c), are
returned and the main DASH algorithm overwrites the previous versions with the
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refined ones. In the figure the predicate has been renamed to p1. This concludes the
second iteration of DASH.

On the third iteration the abstract error trace found in the abstraction (see Fig-
ure 3.6(c)) is (2,3,4,5∧ p1, 6) and the frontier examined is (4,5∧ p1). The only input
sequence found in C that will take the program to the frontier region 4 is still (38).

For this frontier the call to GatherConstraints in the GetCombinedConstraint
procedure will also have to consider the predicate p1 in the region over the frontier.
The constraint returned will beφ := (x1 = input1)∧ (x1 > 20)∧ (x2 = x1−20)∧ (x−1 =
x2)∧(x−1 = 0), where the path constraint part is (x1 = input1)∧(x1 > 20)∧(x2 = x1−20)
and the constraint from the region 5∧ p1 is (x−1 = 0). The two parts have been “glued”
together with the constraint (x−1 = x2), which links the symbolic value of x in p1
with its last symbolic value in the path constraint part.

The constraint is effectively the same as on the previous iteration and a call to
Solve(φ) will again return a value indicating it is unsatisfiable. The procedure
RefinePred now has to create a weakest precondition for the statement x = x - 20
and the postcondition (x−1 = 0). The resulting predicate is p2 := (x−1 = x−2− 20)∧
(x−1 = 0). This predicate is used to split the frontier region 4 in the abstraction, the
result of which is shown in Figure 3.6(d).

On the fourth iteration the abstract error trace in the current abstraction (see
Figure 3.6(d)) is (2,3,4∧ p2, 5∧ p1, 6) and its frontier is (3,4∧ p2). This time there are
two input sequences in C that will take the program to the frontier, (38) and, from the
initial test, (15). Assume we select the input sequence (15). The resulting constraint
is φ := (x1 = input1)∧ (x1 > 20)∧ (x−2 = x1)∧ (x−1 = x−2− 20)∧ (x−1 = 0), which is
again unsatisfiable.

The procedure RefinePred will then be called to create a weakest precondition
for the statement x > 20 and the postcondition p2. For these we get the predicate
p3 := (x−2 > 20)∧ p2, which is then used to split region 3. The resulting abstraction
can be seen in Figure 3.6(e). Note that we have written predicate p3 as a conjunction
with the postcondition it was constructed for.

The final iteration proceeds largely as before. For the frontier (2,3 ∧ p3) the
constraint (x1 = input1)∧ (x−2 = x1)∧ (x−2 > 20)∧ (x−1 = x−2 − 20)∧ (x−1 = 0) is
created. It is again unsatisfiable. From the statement x = input and the postcondition
p3 we get the weakest precondition p4 := (x−2 = input−1)∧ p3.

The final version of the abstraction, which has been refined with p4 is shown in
Figure 3.6(f). The regions that have a path to the error region 6 have been boxed.
Notice that the region containing the initial state (marked with the wedge above it)
no longer has such a path. Because of this, at the beginning of the next iteration
DASH will not find an abstract error trace. This proves that there is no set of inputs
that would cause the program to encounter the error and DASH will return a pair of
(“pass”,Σ').
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3.2 Suitable Predicates

To do the refinement outlined in Figure 3.8 we need to have a predicate p such that
having no edge from (Rk−1 ∧ ¬p) to Rk is sound, which means that the predicate
must not be too strong. As a trivial example if we use p = ⊥ as the predicate then
all possible concrete traces would belong to Rk−1 ∧¬p and removing the edge to Rk
would not be sound. On the other hand the predicate p must not be too weak for
DASH to make progress. For example, using p => as the predicate would cause all
concrete traces to belong to Rk−1 ∧ p and the frontier for the next iteration to be
effectively the same. To capture these requirements for predicates we use the following
definition of a suitable predicate [4].

Definition 1 (Suitable predicate). Let τ be an abstract error trace and let (Rk−1, Rk)
be its frontier. A predicate p is said to be suitable with respect to τ only if all
possible concrete states obtained by executing τ up to the frontier belong to the
region Rk−1 ∧¬p, and if there is no transition from any state in Rk−1 ∧¬p to a state
in Rk .

Theorem 2. A suitable predicate ensures that refinement performed by the DASH algo-
rithm is sound.

Proof. Let there be an abstract error trace τ = (R0, R1, . . . , Rn) and let (Rk−1, Rk) be
its frontier. The refinement in Figure 3.8 splits the region Rk−1 into two regions,
(Rk−1 ∧ p) and (Rk−1 ∧¬p). All concrete states from Rk−1 belong to one of these new
regions: if a state that is in Rk−1 does not belong to Rk−1 ∧ p then p is not true for
that state and therefore the state belongs to Rk−1 ∧¬p. Because no other regions are
modified we can be sure that the refined abstraction contains all the concrete states
from the original.

The only edge eliminated from these new regions is (Rk−1 ∧¬p, Rk). However, by
Definition 1 there are no transitions from any concrete state in Rk−1∧¬p to a state in
Rk and, therefore, all concrete traces from the original abstraction are still contained
in the refined one. Because the refined abstraction contains all concrete states and
traces from the original, the refinement is sound.

To define progress we will first define a strict partial order À on abstract error
traces. Given two abstract error traces τ = (R0, R1, . . . , Rn) and τ′ = (T0,T1, . . . ,Tn)
of length n, we say that τ À τ′ if one of the following conditions holds.

1. For all i ∈ [0 . . . n] it holds that Ri ⊇ Ti and there exists a k ∈ [0 . . . n] such that
Rk ⊃ Tk .

2. For the frontiers (x − 1, x) = Frontier(τ) and (y − 1, y) = Frontier(τ′) it holds
that x < y and for all i ∈ [0 . . . n] it holds that Ri = Ti .

Now τ À τ′ if in τ′ the frontier has moved forward or if states have been removed
from at least one region. Note that two abstract error traces must at least visit the
same program locations to be comparable under À. With this relation we can define
progress.
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Definition 2 (Progress). Let (τ0,τ1, . . . ) be a sequence of abstract error traces exam-
ined by DASH. We say that DASH makes progress if there do not exist i and j such
that i < j and τ j À τi .

Theorem 3. If suitable predicates are used to perform refinement, then the DASH algo-
rithm makes progress.

Proof. Assume that in the sequence of abstract error traces (τ0,τ1, . . . ) examined by
DASH there exists τi and τ j such that i < j and τ j À τi . Because DASH never removes
visited states from the forest F , the frontier can not move backwards and thus the
second condition for τ j À τi can not hold. According to the first condition there
exists at equal indices a pair of regions, Rk ∈ τ j and Tk ∈ τi , such that Rk ⊃ Tk .
However, all regions in τ j are either the same as corresponding regions in τi or
they are products of refinement with a suitable predicate. Because the new regions
produced by refinement can never hold more states than the original, there can be no
regions Rk and Tk . Therefore the original assumption is false.

3.2.1 Suitable Predicates from Weakest Preconditions

Next we outline a method with which the procedure RefinePred can construct
predicates that satisfy Definition 1. The construction is based on weakest preconditions
[10]. We will explain this method with example statements from our program model.
For a list of statement types and their semantics refer to Table 3.1.

Given a statement op ∈ Stmts and a predicate φ (also called the postcondition),
the weakest precondition WP(op,φ) is the weakest predicate whose truth before op’s
execution implies φ after op is executed. For example, consider the statement op =
“x = x + 1” and postcondition φ= (x−1 < 7). The weakest precondition for these is
WP(op,φ) = (x−1 = x−2+ 1)∧ (x−1 < 7).

A weakest precondition p constructed for an abstract error trace τ and its frontier
(Rk−1, Rk) is also a suitable predicate. Because DASH only splits the frontier when no
inputs exist to force the execution across the frontier then no concrete state reachable
by executing τ to the frontier belongs to Rk−1 ∧ p. If there was such a state then
the weakest precondition being true would imply that the execution would cross
the frontier. Also, if there was a transition from any state in Rk−1 ∧¬p to a state in
Rk then p would not be the weakest precondition because a precondition that also
includes the concrete state in question would be weaker.

In the presence of memory and pointers constructing weakest preconditions may
not be as straightforward as in the example above. For example, if we have a statement
o1 = “x = load p” together with some postcondition φ we could have WP(o1,φ) =
(x−1 = m) ∧φ, where m is used to represent the memory pointed at by p. Now
consider using this weakest precondition as the postcondition for another statement
o2 = “store 5 q”. Because the result of the store depends on whether p and q are
equal the weakest precondition must handle both cases:

WP(o2,WP(o1,φ)) =((p−1 = q−1)∧ ((m = 5)∧ (x−1 = m)∧φ))∨
=((p−1 6= q−1)∧ ((x−1 = m)∧φ))
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The number of disjuncts in the predicate scales exponentially with the number of
memory locations referenced by the postcondition. In the general case if we have
k memory locations then we must handle 2k different aliasings. A solution to this
problem is to use aliasing information gathered from a concrete test run. For this
purpose we define the projection of a weakest precondition down to a specific aliasing
constraint α as follows [4]:

WP↓α(op,φ) = α∧WP(op,φ)

This projected weakest precondition can be constructed to only consider one aliasing
situation thus avoiding the exponential number of disjuncts. In the example above if
the concrete aliasing situation was that q and p are equal, then we would have:

WP↓α(o2,WP↓α(o1,φ)) = (p−1 = q−1)∧ ((m = 5)∧ (x−1 = m)∧φ)

Using this projected weakest precondition and adding a term to handle the remaining
aliasings we get a predicate that can be used for refinement as the predicate returned
by the procedure RefinePred:

WPα(op,φ) = ¬α∨WP↓α(op,φ)

Consider a predicate p constructed with WPα in the context of the splitting op-
eration in Figure 3.8. The region Rk−1 ∧¬p contains only states where the aliasing
constraint α is true. Other aliasing situations belong to the region Rk−1 ∧ p and the
predicate p does not constrain their subsequent control flow.

Theorem 4. The predicate WPα(op,φ) is a suitable predicate when it is returned from
the procedure RefinePred.

Proof. To prove that a predicate WPα(op, Rk) that is returned by RefinePred is a
suitable predicate (see Definition 1) we must show (1) that all possible concrete states
obtained by executing the abstract error trace τ up to the frontier belong to the
region Rk−1 ∧ ¬WPα(op, Rk) and (2) that there is no transition from any state in
Rk−1 ∧¬WPα(op, Rk) to a state in Rk :

1. Assume that there is a concrete state c reachable by executing τ up to the
frontier such that c 6∈ (Rk−1 ∧¬WPα(op, Rk)). Because the abstraction is sound
the concrete state c must satisfy Rk−1. Because our program model prohibits
pointer arithmetic then c must also satisfy α. From this it follows that c
satisfies WP↓α(op, Rk), because otherwise c ∈ (Rk−1 ∧ ¬WPα(op, Rk)) would
hold. However, WP↓α(op, Rk) ensures that after op is executed if α holds then
also Rk holds. This is a contradiction because for RefinePred to be called the
previous solver call must have found no inputs that would cause the program
to cross the frontier. Therefore there can be no concrete state c such that
c 6∈ (Rk−1 ∧¬WPα(op, Rk)).
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2. Assume that there is a concrete state c ∈ (Rk−1 ∧ ¬WPα(op, Rk)) that has a
transition to Rk . From ¬WPα(op, Rk) we get

¬WPα(op, Rk)
⇔ α∧¬WP↓α(op, Rk)
⇔ α∧¬(α∧WP(op, Rk))
⇔ α∧¬WP(op, Rk)

Now ¬WP(op, Rk) ensures that there can be no transition to Rk and the original
assumption is false. Therefore there is no state with a transition from (Rk−1 ∧
¬WPα(op, Rk)) to Rk

3.2.2 Suitable Predicate Construction Rules

We will now provide a detailed set of rules for constructing suitable predicates for
the statements in our program model (see Table 3.1). The suitable predicates are con-
structed using temporary variables (instead of substitution) to represent assignments.
For this purpose we associate each predicate with a variable version map V which
maps each variable to an integer representing its current version. For example, if we
have a variable x then its current version is xV (x). When variables are assigned to,
the predicate is written to assign to the current version of the variable, after which
the version number of the variable is decremented. This ensures that any further
suitable predicates constructed with this predicate as their postcondition will refer
to the version of the variable that exists before the assignment. Initially all variables
are mapped to the version number −1. This way these negative variable version
numbers do not get mixed up with the positive variable version numbers created
during dynamic symbolic execution.

Consider the situation where we are constructing a suitable predicate for the
statement store 7 p and a target predicate (y−1 = m1)∧ (x−1 = m2)∧ (x−1 6= y−1),
where m1 and m2 represent memory locations. To construct the predicate we need to
know which memory locations the store statement assigns to. Variables for memory
locations are added when constructing suitable predicates for statements that read
from memory. To construct suitable predicates for statements that write to memory
the following information will suffice:

1. the pointer each memory location mi appearing in the target predicate was read
through, and

2. an equivalence relation for pointers at the point before the statement for which
we are constructing the suitable predicate.

The first item can be addressed by associating with each suitable predicate a mentions
map M , which is a mapping from versioned variables to variables representing memory
locations. When we construct a new suitable predicate on top of an existing one the
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mentions map is inherited with the appropriate modifications. For load statements
a new mapping from the current version of the pointer to a new variable for the
memory location is introduced (or an existing mapping may be reused). Conversely,
store statements remove mappings to the variables representing memory locations
that the store assigns to.

The equivalence relation for pointers is obtained from a concrete execution that has
visited the frontier region. During the test run we record the values of all assignments
to pointers. Using the recorded information we then construct a map A from all
pointers to their current values at the frontier. We can check if two pointers are
equivalent by checking whether they map to the same value.

Now each suitable predicate constructed is associated with a variable version map V
and a mentions map M . Given a statement op and the assignment A of pointers at the
frontier, the suitable predicate p ′ =WPα(op, p) can be constructed by following the
rules in Table 3.10. Each rule describes how a new suitable predicate p ′ is constructed.
The rules also produce new versions of the variable version and the mentions maps
as V ′ and M ′. These are stored with p ′ for constructing further suitable predicates
where p ′ is the postcondition. For updating the maps the rules employ the notation
introduced in Section 3.1. In particular note the previously unused notation M [x 67→]
for removing the entry for x from the map M .

The rule for statements of the form x = y <op> z is straightforward: a new
constraint encoding the assignment is added to p ′ and the version number of x is
decremented in V ′. No special handling for pointers is needed because we assume our
programs do not contain pointer arithmetic.

Statements of the form x = input also encode the assignment in p ′ and decrement
the version number of x. The input is implemented here as a variable input, the
current version of which is assigned to x. Because each input statement should use a
new input we also decrement the version number of input in V ′.

For simple assignments the rule is similar to the one for assignment of binary
expressions in how p ′ and V ′ are updated. However, now the assignment may be
from a pointer to another, which must be handled by the rule. To explain this handling
we will first describe how the statements of the form x = load a are handled. A
load statement crates a new symbolic variable m to represent the memory location
from which the read happens. This variable m is stored in the mentions map M ′ so
that the current version of the pointer aV (a) maps to m. If M already contains an entry
for aV (a) then the variable representing the memory is reused as m and the mentions
map is not modified. The mapping from aV (a) to m is added so that we can resolve
for any subsequent store statements which memory locations the added constraints
should refer to. Now the handling of a simple assignment of the form x = y, where x
and y are pointers, can be understood. If a load has mentioned the current version of
the pointer x, then the assigned value yV (y) becomes the pointer value through which
the memory location is mentioned. To indicate this the mapping for xV (x) is removed
from M ′ and a new mapping from yV (y) to M (xV (x)) is added.

As explained above, for statements of the form x = load a a symbolic variable m
is selected to represent the memory location. In the new constraint p ′ this variable m
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Statement Actions

x = y <op> z
p ′ = p ∧ (xV (x) = yV (y) <op> zV (z))

V ′ =V [x 7→V (x)− 1]

x = input
p ′ = p ∧ (xV (x) = inputV (input))

V ′ =V [x 7→V (x)− 1][input 7→V (input)− 1]

x = y

p ′ = p ∧ (xV (x) = yV (y))

V ′ =V [x 7→V (x)− 1]

If x is a pointer and M contains xV (x) then also do:

M ′ =M[xV (x) 67→][yV (y) 7→M (xV (x))]

x = load a

Let m =

(

M (aV (a)), if M contains aV (a)

a new unique variable otherwise

p ′ = p ∧ (xV (x) = m)

M ′ =M[aV (a) 7→ m]

V ′ =V [x 7→V (x)− 1]

store x a

α=
∧

{aV (a) = b | b ∈ keys(M ), A(aV (a)) =A(b )}∧
∧

{aV (a) 6= b | b ∈ keys(M ), A(aV (a)) 6=A(b )}

p ′ =
�

p ∧
∧

{m = xV (x)|m =M (b ) where b ∈ keys(M )

and A(aV (a)) =A(b )}
�

∨¬α

M ′ =M except all keys b such that A(b ) =A(aV (a)) are removed.

a = allocate

Let s = an integer not used in any previous allocate
p ′ = p ∧ (aV (a) = s)

M ′ =M[aV (a) 67→]
V ′ =V [a 7→V (a)− 1]

(x <comp> y) p ′ = p ∧ (xV (x) <comp> yV (y))

!(x <comp> y) p ′ = p ∧¬(xV (x) <comp> yV (y))

Table 3.10.: Rules for suitable predicate construction
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is used for the assignment to xV (x) and the version number of x is decremented in V ′

due to the modification from the assignment. The mentions map M ′ is also modified
to record that m is mentioned through aV (a).

The rule for statements of the form store x a combines information from the
mentions map M and the pointer assignments A at the point before the statement. First
an aliasing constraint α is constructed by examining all pointer values currently in M .
For each mentioning pointer value b we create a constraint of the form (aV (a) = b )
if the pointers have the same value, i.e., A(aV (a)) is equal to A(b ). If the pointers are
not equal we instead create the constraint (aV (a) 6= b ). The aliasing constraint α is a
conjunction of all the created equalities and inequalities. Using α the constraint p ′

is then created. It is in this constraint that the form of the suitable predicate WPα
described in Section 3.2.1 can be seen. The created constraint is true if either α does not
hold or if the weakest precondition from the store statement in the current aliasing
situation holds. The weakest precondition part of the constraint is constructed by
examining all mentioned memory locations m in M and creating a constraint of the
form (m = xV (x)) if the pointer value b through which m is mentioned is equal to aV (a),
i.e., A(aV (a)) is equal to A(b ). Now, the weakest precondition part is a conjunction
of p and any new constraints created for mentioned memory locations. Finally, all
mentioned memory locations that were assigned to are removed from the memory
map, because any store statement executed before this one should not have any effect
on these.

The rule for statements of the form a = allocate selects a new integer s that has
not been used by any previous allocate statement. The modifications to p ′ and V ′

from assigning s to a are the same as in the other assignment statements described
above. However, an allocation always assigns to a pointer and as such the mentions
map might also be modified. If aV (a) is in the mentions map, then the mapping can
be removed because this allocate statement is the first point at which the value s is
seen and as such can not appear in any store statement that might be handled later
(i.e. earlier in the execution order). Note that if aV (a) is actually found in the mentions
map then the program under test reads from uninitialized memory. This could be
handled either as an error or as an additional input to the program.

Finally, the rules for the guard statements simply add the appropriate guard con-
straint to p ′. These statements do not modify variable versions or the mentions map
as they represent branching conditions and have no effect on the state of variables or
memory.

A situation not handled by the rules is when pointers are stored to or loaded from
memory. Proper handling of these situations would involve also having the mentions
map support entries of the form [m1 7→ m2], where a memory location is mentioned
through another memory location. When memory locations can appear as keys in
the mentions map the assignment A of pointers also needs to track memory locations
which contain a pointer. We have left support for loading and storing pointers for
further work.

In the DASH algorithm the constructed suitable predicates are combined with path
constraints generated by dynamic symbolic execution. As was already mentioned in
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the running example in Section 3.1, if we have a path constraint φpath and a predicate
p for a target state then p can be added to the end of the path constraint with the
help of some additional “glue” constraints. The additional constraints must ensure
the following:

1. The earliest versions of variables in p must be equivalent to their latest versions
found in the path constraint. If they are not found in the path constraint (i.e.
they are not symbolic) then they must be assigned concrete values obtained
from the test execution at the frontier.

2. Variables for memory locations that are still in the mentions map M must be
equivalent to their appropriate symbolic or concrete values.

Because concrete values from the execution are needed and storing the whole
history of concrete values for all test executions could be memory intensive we have
in our implementation chosen to re-execute the program to the frontier to obtain the
necessary values. In the pseudocode of the DASH algorithm this re-execution is part
of the GatherConstraints procedure.

3.2.3 Block Level Suitable Predicates

As already mentioned in Section 2.3, programs in the LLVM IR are structured into
basic blocks and control flow is transferred always to the beginning of a basic block.
Non-terminator instructions do not transfer control flow (i.e. the next instruction
listed in the block is the next to be executed), with the exception of the call instruc-
tion. In this work we omit support for programs with procedures and with this
restriction we know that when a basic block is executed the instructions listed in it
will be executed one by one until the terminator instruction is reached, after which the
control flow may jump to another basic block. Therefore, we can treat reachability in
the program on the level of basic blocks. Nodes in DASH’s abstraction will represent
basic blocks instead of single instructions. All suitable predicate construction and
splitting operations will be done on basic blocks.

To construct a suitable predicate for a basic block we can recursively apply the
construction from the previous section. Given a basic block b = (op1,op2, . . . ,opn)
and a postcondition φ the suitable predicate for φ when b is executed is:

WPα(b ,φ) = WPα(op1,WPα(op2,WPα(. . .WPα(opn,φ) . . . )))

A similar approach to combining sequences of operations in the control flow graph
has been presented by Beyer et al. [5], who also present a method for combining
alternate paths in a control flow graph.

3.3 Handling Phi Instructions

Programs in the LLVM IR (see Section 2.3) may contain phi instructions, which select
a value to assign based on which control flow edge the basic block containing the
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phi instruction is entered. In LLVM phi instructions are always before any other
types of instructions in a basic block (there may be multiple phi instructions). Each
phi instruction in a basic block contains a list of source-value pairs, which specify a
corresponding value (i.e. a variable or a constant) for every predecessor basic block.
The following is a phi instruction presented similarly to statements in our program
model:

r = phi [b1 7→ v1], [b2 7→ v2], . . ., [bn 7→ vn]

The semantics are such that if the previous basic block was bi where i ∈ [1 . . . n] then
r gets the value vi .

In dynamic symbolic execution whenever a phi is encountered the source basic
block is always known and therefore phi instructions simply reduce to simple as-
signments. For suitable predicate construction this is not the case. As a suitable
predicate can be used in multiple contexts we can not simplify phi instructions to
simple assignments at construction time. However, the simplification can be done if
we defer the construction as follows.

Assume we are constructing a suitable predicate WPα(oppred,WPα(opphi,φ)), where
oppred is an instruction belonging to the previous basic block and opphi is a phi. Because
oppred gives us the previous basic block we can now simplify the phi instruction to
a simple assignment. This observation can be extended to situations with multiple
sequential phi instructions. Now we can construct suitable predicates whenever the
first (in terms of the program’s execution order) instruction is not a phi. However, if
we have a suitable predicate of the form WPα(opphi,φ)) we are still stuck. To handle
these we can observe that in DASH suitable predicates are always solved in the context
of a specific execution path. Therefore, when we have a suitable predicate of the form
WPα(opphi,φ)) we can use this path information to finish the simplification for the
solver call in question.

In conclusion, we can now always simplify phi instructions before we need to solve
them due to the following: (1) phi instructions used to construct suitable predicates
that are used as postconditions for other suitable predicates can be immediately
simplified, and (2) the phi instruction in the outermost WPα application can be
simplified when combining with the path constraint.

There is one additional complication to constructing suitable predicates for phi
instructions: in LLVM all phi instructions at the beginning of a basic block are
executed atomically [40]. In other words a value assigned by a phi instruction is
visible only after all phi instructions in a basic block have been executed. These
semantics must be reflected in the suitable predicate construction. Consider a phi
instruction that has a variable x in one of its source-value pairs. Assuming x−k is the
current version of x before the constraints for the phi instructions have been created,
then the correct version to use in the constraint is as follows:

• x−k , if x is not assigned to by another phi in the same basic block.

• x−k−1, if x is assigned to by another phi in the same basic block. For the phi
instruction that assigns to x the constraint should be written so that it assigns
to x−k .
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Figure 3.11.: Refinement when Rk is unsatisfiable

3.4 Exploiting Unsatisfiable Regions

In the algorithm presented so far the only way to eliminate all paths to an error
region is to continue refining the abstraction until the initial region is split. However,
propagating the splitting all the way to the initial region can be expensive as it can
involve many steps during which the constraints grow as more suitable predicates are
constructed. Moreover, diamond structures in the CFG on the path from the initial
region to the current frontier will during the splitting duplicate the frontier even if
the code in the diamond structure is irrelevant to the verification task at hand. The
duplicated frontiers would all have to be propagated to the initial region to eliminate
them. The aggregate effect of this phenomenon is a combinatorial explosion as all
reverse paths back from the frontier are explored through the splitting process. For
an example of this see Chapter 5.

To alleviate this problem we have modified how DASH attempts to extend and
refine frontiers. In Figure 3.3 the constraint passed to the solver is of the form
φpath∧φglue∧Rk . Observe that if the constraint Rk of the target region is unsatisfiable
by itself, then no matter what the path constraint φpath is the conjunction will still
be unsatisfiable. Therefore, before attempting to generate a test to cross the frontier
we make an additional solver call Solve(Rk). If the constraint Rk is unsatisfiable,
then we can apply the stronger refinement presented in Figure 3.11 where we simply
remove the frontier edge (Rk−1, Rk). Note that because of the way phi instructions are
handled (see Section 3.3) the suitable predicates created for regions may be dependent
on the edge a region is entered. Due to this we can only remove the frontier edge and
not the whole target region.



Chapter 4

Implementation

In this chapter we will describe how we have implemented the DASH algorithm as a
modification to the Lime Concolic Tester (LCT), which is an open source dynamic
symbolic execution tool for C and Java programs. Our tool LCT-D extends the LLVM
based C support in LCT.

4.1 Lime Concolic Tester

Dynamic symbolic execution is described in Section 2.1 and this section will concen-
trate on the details of LCT necessary to understand our implementation. For a more
in-depth description of LCT see [21–23].

LCT uses a client-server model to distribute test execution and constraint solving
work. A testing server keeps track of the execution tree and selects which paths are
to be explored next. When a client connects to the server a new path to explore is
selected and the path constraint for the selected path is sent to the client. The client
calls an SMT solver with the path constraint and if the constraint was satisfiable the
client executes the program with the obtained inputs. During execution the client
sends details of each instruction it executes to allow the server to construct path
constraints for further tests. The clients lose all state after each execution and all
persistent state is stored on the testing server.

In LCT the client is implemented as an instrumented version of the program under
test. For C programs the instrumentation is implemented as an LLVM transform
pass, which adds the following calls to functions in LCT’s runtime library: (1) at the
program’s entry point a call to an initialization function and (2) for each instruction in
the program a call to a symbolic counterpart function in LCT’s runtime library. LCT
also assumes that inputs to the program have been marked with calls to functions of
the form lct_get_*(), where the wildcard is the type of the input. The initialization
function connects to the testing server and retrieves a path constraint. Next it calls
an SMT solver (currently Boolector [6]) to find values for the program’s inputs that
would satisfy the constraint. If the constraint was unsatisfiable the client reports to
the server and receives a new path constraint. When a satisfiable constraint is found
the execution is allowed to continue with the solved inputs. The symbolic counterpart

40
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functions send the details of the operations (e.g. what variables they operate on and
where the results are stored) to the testing server. As the client reports the operations
it executes, the server keeps the execution tree up to date by storing the corresponding
symbolic constraints for each operation as well as adding new branches as necessary.

The server is implemented as a Java application. The server is largely language
agnostic as language specific issues are handled in the client implementations.

4.2 Adapting Dash to the Distributed Model

The distributed model of LCT poses two restrictions on implementing DASH: (1) the
client loses all state between executions and therefore all persistent state must reside
on the server and (2) concrete values encountered during execution are only available
on the client unless explicitly sent to the server. The abstraction, solved input values
and traces of test execution are needed across iterations of DASH and are therefore
stored on the server. Because the server has the abstraction it also runs the main loop
of the DASH algorithm. On the other hand test execution, constraint gathering and
SMT solver calls are performed by the client. Figure 4.1 provides an overview of how
the functionality is divided between the server and the client.

Comparing the flowchart of the client-server version of DASH to the original
flowchart in Figure 3.2 we can see that when the server needs to execute a test it sends
the inputs to a client, which in turn executes the instrumented program with the
given inputs. During the execution the client sends back the input values used, which
include the new random inputs from the previously unexplored part of the path tested.
Concrete values of pointers are also sent to the server to allow the aliasings for the test
execution to be resolved. The client also informs the server which LLVM basic blocks
it executes. Using this path information the server checks that the client follows the
expected path (for the explored part) and maps the trace of the execution back to
the regions in the abstraction (for the unexplored part). The process of mapping
execution traces back to regions in the abstraction is discussed in detail in Section 4.5.

The server also needs the client to solve the constraints for checking whether fron-
tiers can be extended. This corresponds to calling the GatherConstraints and Solve
procedures in Figures 3.7 and 3.3, respectively. In LCT’s original implementation
of dynamic symbolic execution the server knows the path constraints for each past
test execution, which in DASH would allow the GatherConstraints procedure to
be implemented on the server. However, in Section 3.2.2 we noted that the suitable
predicates may have free variables that are not symbolic values in the path constraint
and therefore must be constrained to the concrete value at the frontier. Instead of also
recording all concrete values during test executions we have chosen to re-execute the
program to the frontier to recover them. This change also removes the need to store
the path constraints on the server as the path constraint may also be recovered during
the re-execution.

When attempting to extend a frontier the server sends to the client the inputs
that will take it to the frontier, the branching decision that will take it to the target
region and the predicate at the target region. The server also sends a list of free
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Figure 4.1.: Flowchart of DASH adapted to the client-server model of LCT
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variables (including mentioned memory locations), which is used by the client to
combine the path constraint with the target region’s predicate. The client then
executes the program under test up to the frontier during which it constructs the
path constraint and records the concrete or symbolic values for the free variables in
the target region’s predicate. Once the frontier is reached the client combines the
path constraint (including constraints to take the execution over the frontier) with
the target region’s predicate. Then the client calls an SMT solver with the combined
constraint. The client informs the server whether the constraint is satisfiable and
also sends the solved input values, if any, to the server to be used in a subsequent
test execution. See Section 4.4 for more details on how the combined constraint is
constructed.

LCT allows for constraint solving to be distributed among multiple concurrent
clients. However, our DASH implementation can not handle concurrent clients and
such an extension to the algorithm is left for future work.

4.3 Representing the Abstraction

To initialize the abstraction the server needs the control flow graph of the program
under test. Additionally details of the program’s instructions are needed on the server
for the suitable predicate construction. We record the required information during the
instrumentation of the program under test. When the instrumenter, which in LCT is
implemented as an LLVM transform pass, processes the program it also outputs a block
graph dump (BGD) file. An example of the format used for the BGD file can be seen in
Figure 4.3, which has been generated from the program in Figure 4.2. The BGD file
includes an entry for each basic block, each of which list the instructions contained
in it. For the supported arithmetic and memory operations the instructions written
to the BGD file closely match those in the LLVM assembly language. Although
programs with arbitrary calls are not currently supported, some call instructions
have specialized handling:

• Calls to the input functions of the form lct_get_*() in LCT’s runtime library
are written to the BGD file with the keyword input.

• Calls to the __assert_fail function, which is used to implement the assert
macro, are written with the keyword assertfail.

While the format is somewhat human readable it is designed to be so as a debugging
aid and is mainly intended for machine consumption. As such we will not devote
space to explaining its details. A grammar for the format is available in Appendix A.

Upon server startup the BGD file is used to initialize the abstraction. Each block
corresponds to one region in the abstraction. In the BGD file the blocks are associated
with numeric identifiers which are used in the terminators of the blocks. If a block’s
terminator mentions another block then the initial abstraction will contain a control
flow edge between the two blocks.

Initially there is a one-to-one correspondence between basic blocks and regions and
the abstraction is simply a graph connected by control flow edges. However, when
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1#include <lct.h>
2#include <assert.h>
3int x;
4int main() {
5x = lct_get_int ();
6char y = x;
7while (y != 0) {
8assert(x != y);
9++y;
10}
11return 0;
12}

Figure 4.2.: An example program for the block graph dump format

DASH begins performing refinement the regions will be split. To keep track of the
regions and the suitable predicates they have been split with we store for each basic
block a tree of regions. Whenever a region is split the predicate used for the refinement
is stored in the tree’s node that represents the region to be split and two new child
nodes are added to represent the region where the predicate is true and the one where
it is false. The control flow edges are moved from the split region to the new child
regions (see Figure 3.8). In other words, the structure of our abstraction is a forest of
regions, in which each tree corresponds to one basic block and the leaves of the trees
are connected by control flow edges to form the current version of the abstraction.
The tree structure used allows us to easily determine how any two regions seen by
DASH at any point in the algorithm are related to each other, which will be used in
Section 4.5.

4.4 Solving Constraints on the Client

In this section we will go over some of the details involved in solving the combined
constraints on the client. As was already explained in Section 4.2, when trying to
extend a frontier the server will send to the client:

• A set of inputs from a previous test execution that will take the execution to
the frontier.

• The index of the basic block at the frontier.

• A branching decision at the frontier that takes the client to the basic block of
the target region.

• The predicate of the target region, i.e., a conjunction of zero or more suitable
predicates.
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block %39782752 { 1
eq i32 %39873888 input 2
store %39873888 @39819272 3
eq i32 %39785192 load @39819272 4
eq i8 %39785320 trunc %39785192 8 5
goto %39782848 6

} 7
8

block %39782848 { 9
eq i8 %39812448 phi %39785320 %39782752 %39787728 %39810656 10
eq i32 %39812744 sext %39812448 32 11
eq i1 %39786256 ne %39812744 0 12
br %39786256 %39810272 %39810752 13

} 14
15

block %39810272 { 16
eq i32 %39786552 load @39819272 17
eq i32 %39786680 sext %39812448 32 18
eq i1 %39786832 ne %39786552 %39786680 19
br %39786832 %39810656 %39810464 20

} 21
22

block %39810464 { 23
assertfail 24
unreachable 25

} 26
27

block %39810656 { 28
eq i8 %39787728 add %39812448 1 29
goto %39782848 30

} 31
32

block %39810752 { 33
ret 0 34

} 35

Figure 4.3.: The block graph dump for the example program in Figure 4.2
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To generate the path constraint part of the combined constraint the program under
test is executed with the inputs from the server. During execution a constraint for the
path followed is collected by the instrumentation added to the program. When the
execution has reached the end of the basic block at the frontier the branching decision
received from the server is used to add a constraint that corresponds to the execution
entering the basic block of the target region. If the terminator at the frontier is a goto
instruction then no additional constraint needs to be added.

Now that the client has a path constraint for the path to the target region it needs to
combine this constraint with the constraint for the target region. To do this the free
variables in the target region’s constraint need to be constrained to the values at the end
of the frontier block. Two kinds of free variables may be present in the constraint: (1)
variables for current versions of the program’s variables and (2) variables for memory
locations that are still in one of the mentions sets of the suitable predicates comprising
the target region’s constraint.

To handle free variables of the first type, while the program under test is being
executed to the frontier a map from the variables in the program to their current
symbolic or concrete values is maintained (and also used in gathering the path con-
straint). When the end of the basic block at the frontier is reached this map will
contain the necessary values. For each free variable we add a new constraint of the
form (x−k = v), where x−k is the free variable from the target region’s constraint and
v is the appropriate symbolic value (if available) or concrete value (otherwise).

To create constraints for the free variables of memory locations we use a memory
map, which maps memory addresses to symbolic or concrete values. However, the
addresses of the memory locations are not known by the server and memory locations
are instead identified by what pointers are used in the load instruction that would read
the memory location, i.e., through what pointer they are mentioned. See Section 3.2.2
for details on how these mentions are maintained. To resolve the appropriate values
for the free variables the client also tracks the addresses that are assigned to these
mentioning pointers. Now when the end of the basic block at the frontier is reached
the values can be resolved by using the recorded addresses of the mentioning pointers
to look up the concrete or symbolic values stored in the memory map. With these
values we add new constraints of the form (mi = v) just as we did for the free variables
of the first type.

Now the combined constraint is a conjunction of the path constraint, the con-
straints generated for the free variables and the predicate of the target region. The
client may now solve the combined constraint and send the results back to the server.

4.5 Mapping Traces to Regions

In the pseudocode of the GetCombinedConstraint procedure in Figure 3.7 the process
of selecting a test that visits the frontier is presented as simply choosing a trace that
intersects the frontier region. However, in an actual implementation of the algorithm
it is not immediately clear what is the best way to decide to which regions the states
of a concrete trace belong to. When a test execution enters a program location which
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1

2∧¬p 2∧ p

3 4

Figure 4.4.: Example abstraction for mapping traces

due to splitting corresponds to multiple regions, we have to have a way to evaluate the
predicates to decide which region the concrete state belongs to. A trivial way of doing
this is to evaluate the relevant suitable predicates at each step of a test execution. In our
implementation this would have meant the client would request predicates from the
server during execution. However, it turns out that as long as (1) we know the region
of the last state of an concrete trace and (2) we can evaluate the pointer constraints
in each suitable predicate, then we can also resolve the regions of the previous states.
For example, consider the abstraction shown in Figure 4.4 and assume we wish to
determine which regions a test with the trace (1,2,3) belongs to. While regions 1 and
3 are clear, a selection must be made between (2∧ p) and (2∧¬p). Recall that p is a
weakest precondition for the execution proceeding to region 4 projected down to a set
of pointer constraints. If the test satisfies the pointer constraints then p must be false
because otherwise the execution would have proceeded to region 4. With this we can
evaluate p and make the selection between (2∧ p) and (2∧¬p). We will now present
this selection process more formally. Assume we have the following:

• t1 and t2 as adjacent states in a concrete execution trace,

• R′ as the abstract region t2 belongs to and

• A as the assignment of pointer values at t1.

We wish to determine the region that t1 belongs to. If the region that was originally
created for the program location of t1 has not been split, then we know that t1 belongs
to that. Therefore we focus on the case that the region has been split. Now we have a
set of candidate regions R0, R1, . . . , Rn. Each region is associated with a conjunction
of suitable predicates or their negations. Each predicate is of the form:

p = ¬α∨WP↓α(op, Rtarget)

We can evaluate α using the pointer assignments in A. If α was false then we
know that p is true and we are done. Otherwise, now that we know α is true then
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for WP↓α(op, Rtarget) to be true the state t2 must belong to the region Rtarget. More
succinctly p is true if and only if the following is true:

¬α(A)∨ (t2 ∈ Rtarget)

To evaluate t2 ∈ Rtarget we recognize that the region R′ which t2 belongs to and the
region Rtarget are related in one the following ways:

• The regions correspond to different program locations and thus R′ ∩Rtarget = ;.

• R′ = Rtarget

• Region R′ is a result of splitting (or multiple splits of) Rtarget and thus R′ ⊆ Rtarget.

• The regions are on different sides of a split and thus R′ ∩Rtarget = ;.

Note that Rtarget can not be a result of splitting R′ because R′ is a region currently
in the abstraction and therefore can not have been split. So now it holds that either
R′ ⊆ Rtarget or R′ ∩Rtarget = ;. Both can not be true because we know that R′ is not
empty. If R′ ⊆ Rtarget then because t2 ∈ R′ we also have t2 ∈ Rtarget. Alternatively if
R′ ∩Rtarget = ; then we know that t2 6∈ Rtarget.

Using the procedure outlined above we can evaluate any suitable predicate associated
with the candidate regions R0, R1, . . . , Rn in the state t1 and, therefore, we can decide
which region t1 belongs to. If we have the whole concrete trace T = (s0, . . . , sk−1, sk),
know the pointer assignments for all states in the trace and know the region for sk ,
we can now repeat this procedure to resolve sk−1 through s0.

To see how the method described above works in practice consider the example
abstraction in Figure 4.4. Assume we have some execution trace that visits the program
location 2 and that we wish to know whether the state belongs to (2∧ p) or (2∧¬p).
First, we evaluate the aliasing constraint α from p using the pointer assignments at
the program location 2. If α is false then we know that p is true and the correct region
must be (2∧ p). However, if α is true we must examine the subsequent control flow
of the execution trace. For p to be true when α is true, the next program location
must be 4. Since one of our assumptions was that the exact region of the next state in
the execution trace is known, we have enough information to evaluate p.

In our implementation the regions in the abstraction are stored as a forest, where
each tree represents the regions for a single program location. The leaves in the trees
are the regions currently in the abstraction while internal nodes represent regions
which have been split. In the forest R′ ⊆ Rtarget holds if and only if the node for R′ is
in the subtree rooted at Rtarget. Therefore, with the regions stored as a forest we can
check how any two regions are related by checking whether one is an ancestor of the
other.

Our approach differs from the one taken in the YOGI tool [32], which stores the
whole concrete state at each program location. We only store the concrete values for
pointer variables and avoid storing other concrete state by exploiting our knowledge
of the execution’s subsequent control flow. Similarly to the YOGI tool, our tool
LCT-D only stores the changed pointers from one concrete state to another.
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Evaluation

In this chapter we present results from verifying a set of programs with our tool
LCT-D, which implements the DASH algorithm. We selected the programs used for
the experiments from the set of benchmarks for the 2013 Competition on Software
Verification (SV-COMP). We excluded programs that allocate memory from the heap
(e.g. with malloc()). Although adding support for this in LCT-D would be easy, heap
allocated memory is often used together with pointer arithmetic (e.g. array accesses),
which our tool does not support. We also excluded programs that use structs due to
struct member accesses compiling down to the getelementptr instruction, which
we do not support. Finally, as our tool does not support procedure calls, we had to
exclude some programs where all procedures could not be inlined.

One further limitation we encountered was that some of the benchmarks were
such that all executions were infinite. These could be handled by implementing a
bound on the depth of the test executions. However, the method by which we map
test executions back to the abstraction (described in Section 4.5) requires that the
region of the last state in the execution is known. This is not necessarily the case when
an execution is stopped before termination. Instead of extending LCT-D to support
bounding the execution depth we chose to modify the benchmarks. For programs
that consist of some initialization followed by an infinite loop with no code after, it is
safe (i.e. reachability of error states is not altered) to replace the loop with one where
a non-deterministic choice to continue is made. So in programs that have a top-level
while(1) loop we would replace the loop with while(lct_get_bool()).

The programs and the version of LCT-D used in the following experiments can be
downloaded from: http://users.ics.aalto.fi/osaariki/lctd-msc/

5.1 Experiment Setup

We ran all experiments on an Intel Core i5-2500 CPU @ 3.30 GHz with 8 GB of
memory. Both the client and server ran on the same computer and as such their
communication was over the TCP loopback interface.

The SV-COMP benchmarks have varying conventions for indicating inputs and
errors. We took the following steps to prepare the benchmark programs for verifica-
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tion:

• We identified the inputs variables and modified the program to initialize them
with the lct_get_*() functions from our tool’s runtime library. Some inputs
were already marked with a call to __VERIFIER_nondet_int() or similar, while
others were simply uninitialized variables.

• We replaced errors marked in the program with calls to the assert macro from
the C standard library.

• To handle programs with multiple functions we added the inline keyword and
always_inline attribute to all functions apart from main.

We then compiled the prepared programs into LLVM IR, producing .bc files.
Next we ran an optimization pass with the switches -always-inline, -mem2reg and
-lowerswitch. Then we instrumented the programs with our instrumentation pass,
which is implemented as a transformation pass that can be loaded into the LLVM opt
tool. This transformation produces a .bc file containing the instrumented program as
well as the .bgd file for initializing the abstraction on the server. Finally we compiled
the instrumented .bc files into executables.

To run each test we started the server with the .bgd file of the program to verify.
Once the server had started up we repeatedly ran the instrumented executable until
the server reported the program to be safe or unsafe. The server then reported the
following statistics:

• Result: Whether the program was SAFE or UNSAFE.

• Time: The time from the first client connection to either an error being re-
ported or refinement of the abstraction removing all counterexamples.

• Test runs: The number of tests run including the initial arbitrary execution.

• Solve runs: The number of times DASH tried to extend a frontier.

• SMT solver calls: The number of calls made to the SMT solver. Each solve
run makes one call if the target region’s constraint is unsatisfiable and if not a
second call is made for extending the frontier.

• Unsat targets: The number of unsatisfiable constraints encountered in target
regions.

We report the results of one verification run for each program as the time used
did not vary significantly. However, in our tests we used a fixed random seed for
generating the new inputs encountered during test runs. The random inputs generated
affect which parts of the program are explored first and therefore have an effect on
the time and iterations required for the verification task. In a comparative benchmark
between verification tools this effect should be explored, but as we only wish to show
the viability of our tool we chose not to. Thus the results we report only represent
one data point from a distribution of possible results.



CHAPTER 5. EVALUATION 51

5.2 Results

The results for the programs can be seen in Table 5.1. We will now go over some
points of note in the results.

Looking at the ratio of test runs to solve runs, we can see that most programs require
many more solve runs. For example, let us look at the “Byte add safe” programs
number 1 and 2, which emulate a byte-wise carry adder and the specification for
which is that the calculated addition matches C semantics. For these the only test run
is the initial execution. After this no tests are generated and instead the abstraction is
refined until the programs have been verified.

We can see two examples where a buggy version of a program is very fast to detect.
In “Byte add unsafe” DASH needs only one solve run to find two values for which
the emulated byte adder overflows and calculates a wrong result. A more extreme
example is “Mutex lock int unsafe” where the faulty behavior does not depend on
input and is found on the first arbitrary execution. On the other hand, not all of our
unsafe programs were fast to falsify: in the “Stateful check” program the bug is found
on one specific path and the program has many input dependent branches. As such
DASH requires multiple iterations to discover the correct path.

Comparing the “Modulus” program to the “Jain” programs illustrates how different
kinds of operations used can affect the verification time. The “Modulus” program
implements an algorithm for calculating the remainder of a division without using the
C remainder operator and uses bitwise ands and shifts to do so. The “Jain” programs,
on the other hand, use additions and constant multiplications. The suitable predicates
constructed for the bitwise operators are more difficult for an SMT solver to solve,
which can be seen in that the verification uses equally many solver calls for both
programs but takes approximately four times as long for the “Modulus” program.

The “Locks N” programs consist of an infinite loop, in which a random subset of N
locks are first acquired and then the same locks are released in reverse order. As each
lock is released, it is checked that the lock was actually previously acquired. Because the
branches related to handling each lock are interleaved with each other, the verification
time could potentially be multiplied whenever a new lock is introduced. However,
looking at the running times from 5 to 15 locks we can see that a combinatorial
explosion is avoided.

We also illustrate the effectiveness of the refinement for unsatisfiable constraints of
target regions described in Section 3.4. For this we used the program in Figure 5.2. The
assertion on line 28 is never violated because the variable lock is initialized to 1 and
never changed. The assertion is preceded by five input dependent if-else constructs,
which are irrelevant to the verification task at hand. We compared verifying this
program with DSE, plain DASH and a version of DASH with support for the additional
refinement method. The results are shown in Table 5.3. We can see that DSE and
plain DASH achieve similar running times. However, the version with the check for
unsatisfiable target regions is some 35 times faster than plain DASH. Comparing the
iterations used we can see that plain DASH has encountered a combinatorial explosion
due to the diamond structures in the program, while the modified version has not.
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Name Result Time (s) Test
runs

Solve
runs

SMT solver
calls

Unsat
targets

Alias of return 1 SAFE 0.039 1 1 2 0
Alias of return 1.1 SAFE 0.039 1 1 2 0
Alias of return 2 SAFE 0.107 2 4 6 2
Alias of return 2.1 SAFE 0.036 1 1 2 0
Byte add safe 1 SAFE 5.906 1 78 126 30
Byte add safe 2 SAFE 5.863 1 79 127 31
Byte add unsafe UNSAFE 0.051 2 1 2 0
GCD 1 SAFE 1.039 3 20 34 6
GCD 2 SAFE 0.522 1 11 18 4
GCD 3 SAFE 1.699 2 18 30 6
GCD 4 SAFE 2.286 1 32 55 9
Jain 1 SAFE 0.421 1 9 15 3
Jain 2 SAFE 0.448 1 9 15 3
Jain 4 SAFE 0.656 1 9 15 3
Jain 5 SAFE 0.417 1 9 15 3
Jain 6 SAFE 0.541 1 9 15 3
Jain 7 SAFE 0.525 1 9 15 3
Modulus SAFE 2.024 2 9 15 3
Mutex lock int safe SAFE 0.102 1 3 5 1
Mutex lock int unsafe UNSAFE 0.009 1 0 0 0
Num conversion SAFE 0.611 1 13 21 5
oomInt SAFE 0.148 1 4 7 1
Parity SAFE 1.162 1 18 29 7
Size of parameters SAFE 0.037 1 1 2 0
Stateful check UNSAFE 0.856 4 17 38 2
Locks 5 SAFE 3.874 6 87 148 26
Locks 6 SAFE 4.838 7 107 182 32
Locks 7 SAFE 8.629 9 174 287 61
Locks 8 SAFE 6.746 9 147 250 44
Locks 9 SAFE 12.452 11 226 373 79
Locks 10 SAFE 8.831 11 187 318 56
Locks 11 SAFE 17.475 13 278 459 97
Locks 12 SAFE 20.002 14 304 502 106
Locks 13 SAFE 12.270 14 247 420 74
Locks 14 SAFE 13.328 15 267 454 80
Locks 15 SAFE 14.666 16 287 488 86

Table 5.1.: DASH test results
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1#include <lct.h>
2#include <assert.h>
3int main() {
4int lock = 1;
5int x = 0;
6int y = 0;
7int *p = &y;
8if (lct_get_bool ())
9x = x + 1;
10else
11*p = *p + 1;
12if (lct_get_bool ())
13x = x + 1;
14else
15*p = *p + 1;
16if (lct_get_bool ())
17x = x + 1;
18else
19*p = *p + 1;
20if (lct_get_bool ())
21x = x + 1;
22else
23*p = *p + 1;
24if (lct_get_bool ())
25x = x + 1;
26else
27*p = *p + 1;
28assert(lock == 1);
29}

Figure 5.2.: A program with diamond structures

Algorithm Time (s) Iterations Solver
calls

Unsat
targets

DSE 6.883 32 31 -
DASH, plain 5.044 132 128 -
DASH, target unsat check 0.144 6 6 2

Table 5.3.: Results for verifying the program in Figure 5.2 with different algorithms
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Conclusions

Combining automated test generation with counterexample guided abstraction re-
finement is a promising approach to software verification. In this work we have
presented LCT-D, which implements the DASH algorithm [4] for C programs on
LLVM. As all of our instrumentation operates on the LLVM internal representation,
with minor modifications LCT-D can be used for any programming language that
compiles down to our supported set of instructions. Our case study, while limited,
shows the viability of our implementation. LCT-D is open source and is available for
download at: http://users.ics.aalto.fi/osaariki/lctd-msc/

As our tool targets the LLVM internal representation, we have in Section 3.2.2
presented a strategy for constructing splitting predicates for LLVM instructions in the
presence of pointers. One limitation in LCT-D is that currently storing pointers to
memory is not handled. We have left support for this for further work.

Section 4.5 describes how our tool evaluates splitting predicates for concrete states
using only concrete values of pointers and the execution path taken. In contrast, the
YOGI tool from Microsoft stores the complete concrete state along the execution path.
Due to the storage requirements of storing concrete states YOGI stores sets of values,
called delta states, that contain only the values that change between states [32]. LCT-D
also stores delta states, but because only concrete values of pointers are stored our
tool potentially uses less storage. One drawback with our approach is that the region
of the final state of an execution must be known. Currently this is ensured in LCT-D
as the test executions are not bounded and therefore can not terminate in a region that
has been split.

In the future we plan to extend our tool to support a wider range of programs. This
includes adding support for C structures, extending the algorithm to handle pointer
arithmetic for array support and implementing an interprocedural version of DASH.

Once LCT-D has sufficient support to allow verification of real-world programs,
exploring optimizations for the implementation and algorithm will become of interest.
Some potential optimizations have already been evaluated in the YOGI tool. We
are also interested in extending our tool to support multiple concurrent clients,
which would allow test execution and constraint solving to be distributed to multiple
machines. For dynamic symbolic execution LCT scales well to at least 20 clients [25],
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but whether we can achieve similar results for DASH remains to be seen.
An issue we encountered in DASH during implementation was that the predicates

in regions could grow very large from continual splitting along the same abstract
error trace. This problem disappeared once we implemented the more powerful
refinement operation described in Section 3.4. However, as we attempt to verify
larger programs we may encounter this problem again. One approach to alleviate this
problem may be to employ interpolation, which can produce smaller predicates than
weakest preconditions [20, 32].

Another direction for future work is extending our tool to support verification
of multithreaded programs. We have previously extended LCT to support testing
multithreaded programs by combining dynamic symbolic execution with the dy-
namic partial order reduction algorithm [35]. Our research group also has made
advancements in testing multithreaded software by applying Petri net unfoldings to
achieve better partial order reductions [24]. We would be interested to see if some
of these techniques could be combined with the counterexample guided abstraction
refinement approach of DASH.



Bibliography

[1] V. S. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A
low-level virtual instruction set architecture. In Proceedings of the 36th An-
nual International Symposium on Microarchitecture (MICRO), pages 205–216.
ACM/IEEE, 2003. ISBN 0-7695-2043-X.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In Ferrante and Mager [11], pages 1–11. ISBN 0-89791-252-7.

[3] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In M. B. Dwyer, editor, Proceedings of the 8th International SPIN
Workshop on Model Checking of Software (SPIN), volume 2057 of Lecture Notes in
Computer Science, pages 103–122. Springer, 2001. ISBN 3-540-42124-6.

[4] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs from
tests. In B. G. Ryder and A. Zeller, editors, Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), pages 3–14.
ACM, 2008. ISBN 978-1-60558-050-0.

[5] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software
model checking via large-block encoding. In Proceedings of 9th International
Conference on Formal Methods in Computer-Aided Design (FMCAD), pages 25–32.
IEEE, 2009. ISBN 978-1-4244-4966-8.

[6] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In Kowalewski and Philippou [26], pages 174–177. ISBN 978-3-642-
00767-5.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. ACM Transactions on Information and
System Security, 12(2), 2008.

[8] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Transactions on Software Engineering, 30(6):
388–402, 2004.

56



BIBLIOGRAPHY 57

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Proceedings of
the 12th International Conference on Computer Aided Verification (CAV), volume
1855 of Lecture Notes in Computer Science, pages 154–169. Springer, 2000. ISBN
3-540-67770-4.

[10] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, 1975.

[11] J. Ferrante and P. Mager, editors. Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1988. ACM Press.
ISBN 0-89791-252-7.

[12] P. Godefroid and N. Klarlund. Software model checking: Searching for com-
putations in the abstract or the concrete. In J. Romijn, G. Smith, and J. van de
Pol, editors, Proceedings of the 5th International Conference on Integrated Formal
Methods (IFM), volume 3771 of Lecture Notes in Computer Science, pages 20–32.
Springer, 2005. ISBN 3-540-30492-4.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI), pages 213–223. ACM, 2005.

[14] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz
testing. In Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2008.

[15] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE: Whitebox fuzzing for
security testing. ACM Queue, 10(1):20, 2012.

[16] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In
O. Grumberg, editor, Proceedings of the 9th International Conference on Com-
puter Aided Verification (CAV), volume 1254 of Lecture Notes in Computer Science,
pages 72–83. Springer, 1997. ISBN 3-540-63166-6.

[17] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
SYNERGY: a new algorithm for property checking. In M. Young and P. T. De-
vanbu, editors, Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), pages 117–127. ACM, 2006. ISBN
1-59593-468-5.

[18] E. L. Gunter and D. Peled. Model checking, testing and verification working
together. Formal Aspects of Computing, 17(2):201–221, 2005.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
J. Launchbury and J. C. Mitchell, editors, Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
58–70. ACM, 2002. ISBN 1-58113-450-9.



BIBLIOGRAPHY 58

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions
from proofs. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 232–244. ACM, 2004. ISBN 1-58113-729-X.

[21] K. Kähkönen. Automated dynamic test generation for sequential Java programs.
Master’s thesis, Helsinki University of Technology, Department of Information
and Computer Science, 2008.

[22] K. Kähkönen. Automated test generation for software components. Techni-
cal Report TKK-ICS-R26, Helsinki University of Technology, Department of
Information and Computer Science, Espoo, Finland, December 2009.

[23] K. Kähkönen, T. Launiainen, O. Saarikivi, J. Kauttio, K. Heljanko, and
I. Niemelä. LCT: An open source concolic testing tool for Java programs.
In Proceedings of the 6th Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (BYTECODE), pages 75–80, 2011.

[24] K. Kähkönen, O. Saarikivi, and K. Heljanko. Using unfoldings in automated
testing of multithreaded programs. In M. Goedicke, T. Menzies, and M. Saeki, ed-
itors, Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 150–159. ACM, 2012. ISBN 978-1-4503-1204-2.

[25] K. Kähkönen, O. Saarikivi, and K. Heljanko. LCT: A parallel distributed testing
tool for multithreaded Java programs. In Proceedings of the 11th International
Workshop on Parallel and Distributed Methods in verifiCation (PDMC), to appear.

[26] S. Kowalewski and A. Philippou, editors. Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 5505 of Lecture Notes in Computer Science, 2009. Springer.
ISBN 978-3-642-00767-5.

[27] D. Kroening, A. Groce, and E. M. Clarke. Counterexample guided abstraction
refinement via program execution. In J. Davies, W. Schulte, and M. Barnett,
editors, Formal Methods and Software Engineering, 6th International Conference
on Formal Engineering Methods (ICFEM), Proceedings, volume 3308 of Lecture
Notes in Computer Science, pages 224–238. Springer, 2004. ISBN 3-540-23841-7.

[28] C. Lattner and V. Adve. LLVM assembly language reference manual, Apr. 2013.
Available: http://llvm.org/docs/LangRef.html.

[29] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In 2nd IEEE / ACM International Symposium
on Code Generation and Optimization (CGO), pages 75–88. IEEE Computer
Society, 2004. ISBN 0-7695-2102-9.

[30] N. G. Leveson and C. S. Turner. Investigation of the Therac-25 accidents. IEEE
Computer, 26(7):18–41, 1993.

http://llvm.org/docs/LangRef.html


BIBLIOGRAPHY 59

[31] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of
UNIX utilities. Communications of the ACM, 33(12):32–44, 1990.

[32] A. V. Nori and S. K. Rajamani. An empirical study of optimizations in YOGI.
In J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors, Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1
(ICSE), pages 355–364. ACM, 2010. ISBN 978-1-60558-719-6.

[33] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The YOGI project:
Software property checking via static analysis and testing. In Kowalewski and
Philippou [26], pages 178–181. ISBN 978-3-642-00767-5.

[34] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Ferrante and Mager [11], pages 12–27. ISBN
0-89791-252-7.

[35] O. Saarikivi, K. Kähkönen, and K. Heljanko. Improving dynamic partial
order reductions for concolic testing. In J. Brandt and K. Heljanko, editors,
Proceedings of the 12th International Conference on Application of Concurrency to
System Design (ACSD), pages 132–141. IEEE, 2012.

[36] K. Sen. Scalable automated methods for dynamic program analysis. Doctoral
thesis, University of Illinois, 2006. URL http://osl.cs.uiuc.edu/~ksen/paper/
sen-phd.pdf.

[37] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In Proceedings of the 18th International Conference on
Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Computer
Science, pages 419–423. Springer, 2006.

[38] A. Valmari. The state explosion problem. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes
are based on the Advanced Course on Petri Nets, held in Dagstuhl, September 1996,
volume 1491 of Lecture Notes in Computer Science, pages 429–528. Springer, 1996.
ISBN 3-540-65306-6.

[39] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theorem proving: better
together! In L. L. Pollock and M. Pezzè, editors, Proceedings of the ACM/SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA), pages
145–156. ACM, 2006. ISBN 1-59593-263-1.

[40] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In
J. Field and M. Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 427–440.
ACM, 2012. ISBN 978-1-4503-1083-3.

[41] M. Zhivich and R. K. Cunningham. The real cost of software errors. IEEE
Security & Privacy, 7(2):87–90, 2009.

http://osl.cs.uiuc.edu/~ksen/paper/sen-phd.pdf
http://osl.cs.uiuc.edu/~ksen/paper/sen-phd.pdf


Appendix A

BGD Grammar

〈file〉 ::= 〈global-list〉 〈block-list〉

〈global-list〉 ::= 〈global〉 〈global-list〉 | ε

〈global〉 ::= ‘global’ 〈type〉 GLOBAL_IDENTIFIER

〈block-list〉 ::= 〈block〉 | 〈block〉 〈block-list〉

〈block〉 ::= ‘block’ LOCAL_IDENTIFIER ‘{’ 〈statement-list〉 〈terminator〉 ‘}’

〈statement-list〉 ::= 〈statement〉 〈statement-list〉 | ε

〈statement〉 ::= == 〈type〉 〈variable〉 〈rvalue〉
| ‘store’ 〈value〉 〈variable〉
| ‘assertfail’
| ‘alloca’ 〈variable〉

〈variable〉 ::= LOCAL_IDENTIFIER | GLOBAL_IDENTIFIER

〈type〉 ::= INT_TYPE
| ‘ptr’

〈rvalue〉 ::= 〈value〉
| 〈bin-op〉 〈value〉 〈value〉
| ‘load’ 〈variable〉
| ‘phi’ 〈source-list〉
| ‘select’ 〈value〉 〈value〉 〈value〉
| ‘input’

〈value〉 ::= INT_LITERAL
| 〈variable〉

〈source-list〉 ::= 〈source〉 | 〈source〉 〈source-list〉
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〈source〉 ::= 〈value〉 LOCAL_IDENTIFIER

〈argument-list〉 ::= 〈value〉 〈argument-list〉 | ε

〈terminator〉 ::= ‘ret’ 〈value〉
| ‘retvoid’
| ‘br’ 〈variable〉 LOCAL_IDENTIFIER LOCAL_IDENTIFIER
| ‘goto’ LOCAL_IDENTIFIER
| ‘unreachable’

〈bin-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘<<’ | ‘>>’ | ‘|’ | ‘&’ | ‘^’ |
‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

All terminals must be separated by whitespace. The following rules we define by
regular expressions:

Rule Regular expression

GLOBAL_IDENTIFIER @[0-9]+
LOCAL_IDENTIFIER %[0-9]+
INT_TYPE i[1-9][0-9]*
INT_LITERAL [0123456789abcdef]+
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