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ABSTRACT

We establish a fundamental result in the theory of com-
putation by continuous-time dynamical systems, by show-
ing that systems corresponding to so called continuous-time
symmetric Hopfield nets are capable of general computation.
More precisely, we prove that any function computed by a
discrete-time asymmetric recurrent network of n threshold
gates can also be computed by a continuous-time symmetric-
ally-coupled Hopfield system of dimension 18n + 7. More-
over, if the threshold logic network has maximum weight
Wmax and converges in discrete time ¢t*, then the correspond-
ing Hopfield system can be designed to operate in continu-
ous time O(t*/e), for any value 0 < & < 0.0025 such that
Wmax2®" < €21/¢.

The result appears at first sight counterintuitive, because
the dynamics of any symmetric Hopfield system is constrain-
ed by a Liapunov, or energy function defined on its state
space. In particular, such a system always converges from
any initial state towards some stable equilibrium state, and
hence cannot exhibit nondamping oscillations, i.e. strictly
speaking cannot simulate even a single alternating bit. How-
ever, we show that if one only considers terminating compu-
tations, then the Liapunov constraint can be overcome, and
one can in fact embed arbitrarily complicated computations
in the dynamics of Liapunov systems with only a modest
cost in the system’s dimensionality.

In terms of standard discrete computation models, our
result implies that any polynomially space-bounded Turing
machine can be simulated by a family of polynomial-size
continuous-time symmetric Hopfield nets.

1. INTRODUCTION

In recent years, a number of studies have sought to un-
derstand the computational characteristics of “natural” dy-
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namical systems. The results achieved include, e.g. univer-
sal computation results for several types of ODE’s [1, 4],
PDE’s [20], and discrete iterations [15, 18, 27]. One much
studied class of systems are those that are defined by various
neural network models [7, 9, 25]. This interest is motivated
partly by the quest to understand the fundamental limits
and possibilities of practical neurocomputing, and partly by
the realization that despite their formal simplicity, neural
networks are computationally quite powerful, and thus may
serve as a useful reference model for investigating more com-
plicated systems. In general, the computational capabilities
of discrete-time systems are by now fairly well understood,
but in the area of continuous-time systems much work re-
mains to be done (for surveys of this area, see e.g. [19, 23]).

In this paper, we prove a fundamental result concerning
the computational power of a class of dynamical systems
popularized by John Hopfield in 1984 [11], and known as
the “continuous-time symmetric Hopfield nets”. (The dy-
namics of this model were actually already analyzed earlier
by Cohen and Grossberg in a more general setting [6], but
because of the affinity to the very influential discrete-time
binary-state version of the model [10], this additive special
case of the Cohen-Grossberg equations has become asso-
ciated to Hopfield’s name.) As practical neural networks,
proposed uses of Hopfield-type systems include associative
memory [11] and fast approximate solution of combinatorial
optimization problems [12], and designs exist for implement-
ing them in analog electrical [11] and optical [28] hardware.

It is well known [6, 11] that the dynamics of any Hopfield-
type system with a symmetric interconnection matrix is gov-
erned by a Liapunov, or energy function. This is a bounded
function defined on the state space of a system, whose values
are properly decreasing along any nonconstant trajectory of
the system’s dynamics. At first sight, the existence of a
Liapunov function would appear to severely limit the capa-
bilities of a dynamical system for general computation, be-
cause it implies that any trajectory will eventually converge
towards some stable equilibrium state. Thus e.g. nondamp-
ing oscillations, which seem to be an essential prerequisite
of general computation, cannot be created.

Nevertheless, we shall show that infinite oscillations are
the only feature of general-purpose digital computation that
cannot be reproduced in continuous-time symmetric Hop-
field systems. More precisely, we prove that any converging
discrete-time computation described by a recurrent network
of n threshold gates (with in general asymmetric intercon-
nections) can be embedded in a continuous-time Hopfield



system of 18n + 7 variables with a symmetric interconnec-
tion weight matrix, and using a saturated-linear “activa-
tion function”. An experimental validation of this result
appeared previously in the extended abstract [30].

A key observation is that any terminating computation
by a discrete-time deterministic system with state space
{0,1}" must converge within 2" steps. A basic technique
used in our proof is then the construction of a symmetric
continuous-time clock subsystem—a simulated (n + 2)-bit
binary counter—that, using 8n + 7 variables, produces a se-
quence of 2" well-controlled oscillations (generated by the
simulated second least significant counter bit) before it con-
verges. This sequence of clock pulses is used to drive the rest
of the system where each discrete threshold gate is simulated
by a symmetrically coupled subsystem of 10 continuous-time
variables. The continuous-time clock is already by itself of
some interest from a dynamical systems perspective, because
it provides to our knowledge the first known example of a
continuous-time Liapunov system whose convergence time
grows exponentially in the system dimension [31].

A similar, but considerably simpler, construction was used
in the discrete-time setting in [21] to prove the computa-
tional equivalence of symmetrically and asymmetrically in-
terconnected convergent threshold logic networks. The orig-
inal idea for the discrete-time clock network used in [21]
stems from [8]. Another related work [22] concerns the sim-
ulation of discrete-time threshold logic networks by continu-
ous-time non-Liapunov Hopfield-type systems with asym-
metric interconnection matrices.

It is quite easy to see [16, 21] that families of polyno-
mial-size threshold networks are computationally equivalent
to (nonuniform) polynomially space-bounded Turing ma-
chines (more precisely, they compute the complexity class
PSPACE/poly [2, p. 105]). By the result in the present pa-
per, we now know that continuous-time symmetric Hopfield
systems are also at least as powerful, i.e. given any polyno-
mially space-bounded Turing machine, we can construct a
family of polynomial-size continuous-time symmetric Hop-
field nets for simulating it. It remains an open question
whether this is also an upper bound on the power of such
systems.

A related line of study concerns the computational capa-
bilities of finite discrete-time analog-state neural networks
[25]. Here it is known that the computational power of
asymmetric networks using the saturated-linear activation
function increases with the Kolmogorov complexity of the
weight parameters [3]. With integer weights such networks
coincide with threshold logic networks, and so are equivalent
to finite automata [13, 14, 33], while with rational weights
arbitrary Turing machines can be simulated [14, 27]. With
arbitrary real weights the networks can even have “super-
Turing” computational capabilities [26]. To some extent
similar results also apply to discrete-time symmetric analog
networks that are computationally equivalent to their asym-
metric counterparts when an external clock pulse sequence
is provided [32]. On the other hand, it is known that any
amount of analog noise reduces the computational power of
discrete-time analog systems to that of finite automata [5,
17).

The present paper is organized as follows. After a brief re-
view of the basic definitions in Section 2, our main construc-
tion of the symmetric continuous-time Hopfield system sim-
ulating a given discrete-time threshold logic network is out-

lined in Section 3 where its dynamics is also informally ex-
plained. The formal verification of this construction, which
has the form of a rather tedious case analysis, is given in Sec-
tion 4. In Section 5 a numerical simulation example witness-
ing the validity of the construction is presented. Section 6
concludes with some open problems.

2. PRELIMINARIES

A threshold logic network (TLN) consists of n weighted
threshold gates, indexed as 1,... ,n, that are located in the
nodes of a generally cyclic directed graph. Each edge (¢, )
in this graph, leading from gate ¢ to gate j, is labeled with
an integer interconnection weight w(i,j) = wj; € Z. The
absence of an edge in the graph indicates a zero weight be-
tween the respective gates, and vice versa.

An instantaneous state of a TLN is described by a vec-
tor y = (y1,-.. ,Yn) € {0,1}" composed of binary outputs
(states) y; from particular threshold gates j =1,... ,n. The
state evolution in time is defined as follows. (We only con-
sider so called “fully parallel]” dynamics of networks here.)
Initially the TLN is placed in some initial state y*), which
may include an external input. Given a state y® of the net-

work at a discrete time instant ¢t = 0,1,..., its state y+%
at next time t 4+ 1 is computed componentwise as
t+1 t .
y‘g )=H<€‘§))7 J=17"'7n7 (1)
where
n
¢ ¢
&9 =" wiy” (2
i=0

is the integer ezcitation of gate j at time ¢, and H is the
Heaviside activation function:

mo-{§ iz ®

The excitation value (2) of each gate j includes an integer
local bias term wjo € Z, which is formally modeled as a
connection weight from a constant unit-output gate y(()t) =1.
We denote by
Wmax = _ Max |wjil (4)
Jj=1,...,n;i=0,...,n

the mazimum weight size in the network.

A Hopfield system of dimension m is defined by a set of
m symmetrically coupled ordinary differential equations in
real variables y1,...,ym € [0,1]:

%(t) =) +o&#), p=L....m, (5

where
&(t) = v(a,p)ya(t) (6)

q=0

is the real-valued excitation for site p = 1,... ,m, the real
values v(q,p) = v(p,q) for all 1 < p,q < m are the weights
forming a symmetrical coupling matrix, v(0,p) is the real
bias associated with each 1 < p < m, and o is some nonlin-
ear “sigmoidal” activation function. We fix the activation
function o to be the saturated linear map:

1 for £>1
c§)=¢ & for0<é<l (7)
0 for £<0.



A convenient way of representing such a system of type
(5), which we shall adopt, is to interpret each of the variables
yp as the real-valued state (output) of a computational unit p
evolving in continuous time, and to represent the symmetric
coupling weight v(p, q) as the weight on an undirected edge
connecting unit p to unit q. Such a continuous-time Hopfield
net can be used for computation analogously to a TLN, with
the initial system state y(0) € [0,1]™ encoding the initial
conditions, including any possible external input.

The dynamics of a continuous-time symmetric Hopfield
system of type (5) is controlled by the following Liapunov
or energy function, introduced in [6, 11]:

E(y) = —% D> v(a:p)yays — Y v(0,P)up

p=1g¢=1 p=1

+3 / 7 o (y)dy. (8)

The characteristic properties of function E(y) are that it is
bounded on the system’s state space [0,1]™, and that it is
properly decreasing (i.e. dE/dt < 0) along any nonconstant
trajectory of the system’s dynamics. It then follows that
the system (5) always converges, from any initial condition,
towards some stable equilibrium state with dy,/dt = 0 for
alp=1,... ,m.

3. THESIMULATION

We shall now show how to simulate the computations of a
given TLN A on a somewhat bigger Hopfield system . In
our simulation, the binary states of the gates in A/ will be
represented by excitations (6) of the corresponding analog
units in H that are either above the upper saturation thresh-
old of 1 or below the lower saturation threshold of 0 for the
activation function o. For brevity, we shall simply say that
a unit p is saturated at 0 or 1 at time ¢ if its excitation sat-
isfies &,(t) < 0 or &,(t) > 1, respectively. Correspondingly,
we say that p is unsaturated when 0 < &,(t) < 1 (see (7)).
Note that we use the ezcitations of continuous-time units in
H rather than their actual states to represent binary values.
The following theorem summarizes the result:

THEOREM 1. Any computation by a threshold logic net-
work N of n gates with (asymmetric) weights of mazimum
siz€ Wmax, converging within t* discrete update steps, can
be stmulated by a continuous-time symmetric Hopfield sys-
tem H of dimension m = 18n + 7, within continuous time
O(t* /e) for any positive real 0 < & < 0.0025 such that
Wmax2®" < €21/°.

PROOF. (Sketch.) Since the TLN N defines a determinis-
tic dynamical system over the state space {0,1}", any con-
verging computation by A/ must terminate within ¢t* < 27
discrete steps. To obtain the simulating Hopfield system H
we first construct, in a manner presented in Figures 1, 2, an
(8n + T7)-variable Hopfield clock subsystem C = Cp41 that
simulates a discrete (n + 2)-bit binary counter. When the
system C is initialized in the zero initial state, its interface
unit z1 will exhibit a sequence of 2" well-controlled oscil-
lations before C converges. Corresponding to each of the
gates j = 1,...,7n in N, we further construct a 10-variable
Hopfield gate subsystem G; as shown in Figure 3. Each
“clock pulse” from interface unit z; of C is then exploited to

(12u+39)n

Figure 1: A 2-bit continuous-time counter C;.

“drive” a simulation of one parallel discrete update iteration
by the gate systems G; (j = 1,...,n). We shall now first
discuss this construction intuitively while its correctness will
formally be verified later in Section 4.

The construction of the counter system Cnp41 of “order
(n+1)” will be described by induction on n, starting with
the corresponding 2-bit counter network C1 presented in Fig-
ure 1. (The edges in this graph drawn without an originating
unit correspond to the bias terms.) Assume that initially
all the variables, i.e. states of the units indicated in this
network are zero. Now because of the positive bias term
v(0,c0) = € > 0, the state of the least significant counter
unit ¢o of “order 0” has a positive initial excitation. Thus,
the feedback coupling v(co, co) = 1+¢ causes the state value
of ¢o to gradually grow towards 1. Eventually co saturates at
1, at which point we say that the unit co becomes active or
fires. (Recall that we associate the simulated discrete behav-
ior to the excitations of the units rather than their outputs.
The external state of ¢y of course evolves continuously, and
exhibits no abrupt “firing” transitions.) Thus, ¢o simulates
the counting from 0 to 1 as required. This trick of gradual
transition from Q to 1, formally described in Lemma 3 below,
is used repeatedly throughout our construction of C.

The remaining six units in C; are of “order 1”. They func-
tion similarly to the corresponding units of higher orders, so
we will describe only the inductive construction for general
order £ > 1. The eventual interconnection of the clock net-
work C to the gate subnetworks G; (j = 1,...,n) is taken
into account in the weight v(a1,z1) = W +4, which includes
a large positive parameter

W:g<nu+28(n+i|wjo|))>0, )

j=1
where
n n
u=28 max |- Sowu, Y. wi ] >0, (10)
i=1;w;;<0 i=1;w;; >0

and wj; are the weights of the original TLN N to be simu-
lated. This large weight is needed because the interface unit
x1 transfers the pulses generated by the clock C to all of the
gate subnetworks G;, and its operation within C must not
be affected by feedback effects from the G;.
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Figure 2: Inductive construction of Cy.

For the induction step depicted in Figure 2, assume that
an “order (k — 1)” counter network Cr—1 (1 < k < n+
1) has been constructed, containing the k counter units
co,---,Ck—1, together with auxiliary units as, xs,be,dy, z¢
((=1,...,k—1),and for k> 2 also z,b;, ({=2,... ,k—1)
for a total of my = 8% — 9 units. Then the next counter unit
cx, is connected to all the my units p € Cr—1 via unit weights
which, together with its bias, make ¢ to fire shortly after
all these units are active, i.e. when the simulated count-
ing from 0 to 2% _ 1 has been accomplished. In addition,
unit ¢, is connected to a sequence of seven auxiliary units
Qk, Ty, b), Tk, bk, dk, 2k, which are being, one by one, acti-
vated after ¢, fires (Lemma 3).

The purpose of the auxiliary units ay, b}, bx, dx is only to
slow down the continuous-time state flow. The units z}, zx,
on the other hand, are used to reset all the lower-order units
in Cr—1 back to values near 0 after ¢y fires (Lemma 2.2b).
Units in Cr_; that saturate at 0 are then called passive. To
achieve this effect, x}, is connected to z1 via a large negative
weight v(x}, £1) = —Ske; — (12u+39)n, and zy, is linked with
each p € Cr—1 \ {z1} via negative weight v(zx,p) = —Skp.
The value

Sip= |+ Y

a€Ci_1;v(q,p)>0

v(g,p)| , pE€Cr1 (11)

is chosen so that it exceeds the mutual positive influence of
units in Cx—1 U {cx}, and term —(12u + 39)n balances the
total positive influence on x; originating from units A in the
gate subnetworks (see below). The value of parameter

Vi =1 —v(2h, 1) — Z v(zk,p) (12)
peCr1\{z1}

is determined so that the state of xj is independent of the
states of p € Cx—1. Note that the interface unit x1 € Cx—_1
is first suppressed separately by z}, (Lemma 4) while the

remaining units in Cr—1 \ {z1} are active. Only after z1
becomes passive, the other units are reseted by x;. Finally,
unit zj balances the negative influence of x},, x on Cj_1 so
that the first k counter bits can again count from 0 to 2% —1
but now with ¢, being active. This is achieved by exact
weights v(zx, £1) = —v(z}, z1)—1 and v(2k, p) = —v(xk,p)—
1 for p € Cr—1 \ {z1} in which the —1 compensates for
v(ck,p) = 1. Clearly, units p € Cr_1 cannot reversely af-
fect 2 since their maximal contribution }° ¢ — v(p,2x) =

=k —v(Th, T1) =32 e C, _ \fay} V(ThsP) = Vi—mp—1to the
excitation of z; cannot overcome its bias. This completes
the induction step of the counter network construction.

In the construction of a subnetwork G; (j =1,...,n) for
simulating threshold gate j (Figure 3), we apply a device
used previously in the context of discrete (acyclic) thresh-
old circuit simulation [24]: by arranging the absolute values
of weights and biases in a symmetric network in a decreasing
sequence, we can force a signal to propagate (Lemma 2.2b)
only in the direction of decreasing weights, i.e. from top
to bottom in Figure 3. However, to make recurrent com-
putation possible, the “bottom” units ¢;,w; in G; are fur-
ther connected to the “top” units a;, 8j—but only via small
weights that need additional strong support from the clock
C in order to transmit a signal. To each discrete compu-
tational step of the simulated TLN A then corresponds a
two-phase continuous-time state dynamics of the networks
G;, controlled by one oscillation of the clock interface unit
z1 € C. In particular, the next simulated state of A is com-
puted in the first phase, and this replaces the old state in
the second phase.

In the first phase, the interface unit x; is passive, first
reseting and locking the units from set A = {a;,8;; 7 =
1,...,n} in their state values near 0, but then allowing the
states of units in set B = {¢;,x;; 7 = 1,...,n} to evolve
(Lemma 4). The simulated state y}t) € {0, 1} of a threshold
gate j at discrete time instant ¢ is doubly represented by the
states of two continuous-time units 7;, o; € G; that are both

saturated at value y](t). Thus, the units 7;, g; are either both

passive due to their negative biases, if yj(t) = 0, or they are

supporting each other in the active state via their positive
interconnection weight, if y;t) = 1. (Consequently, also in
setting up the initial state of H, units 7;, o; € G; such that

yj(o) = 1 in N are the only ones that are initialized to 1;
all the other units in # are initialized to 0.) In this phase,
the value corresponding to the new state yj(.t"'l) of threshold
gate j is computed in unit ¢; € G;, based on its connections
to the units m; € G; that represent the simulated states yl(t)
of N at the previous time instant, via symmetric weights
v(mi, ;) = 28wj;, where wj; are the weights of N. (In
fact, these weights are appropriately adjusted so that ¢; is
not influenced by %, w; while the original function of j is
preserved [24].) Similarly, unit x; computes the negation

of yj(.t"'l) from units g; € G; via the opposite weights. Note
that the parameter u defined in (10) ensures that the state
evolution of ¢;,x; cannot reversely affect the dynamics of
units 7, 0;. Also units ¢;, x; € G; are never simultaneously
active, since either they are both passive, or each of them
represents the negation of a binary state stored in the other.
This implies that the parameter W introduced in (9) and
included in the weight v(a1,z1) is sufficient for activating
x1 regardless of the total negative influence from units in B.



Figure 3: A continuous-time gate-simulation net G;.

Further, units ¢;,x; store the new state yj(-H'l) into both
1; and w; in such a way that either ¢; ensures activating
1j,w; through positive weights if y](t+1) =1 or x; arranges
their reseting by means of negative weights when yj(-t'H) =0.
Then, the gate network G; becomes temporarily stable until
unit z1 is activated.

In the second phase, active unit x1 locks the units in B
before releasing the units in A (Lemma 4). Unit «; then

receives value y](t+1) from unit v;, as the support from z;
balances the negative bias of a; so that the small positive
weight from ¢; can have an influence on «;. Similarly, unit
B; computes the negation of the state y(t'H)

J
by unit w;. State y](-t“) and its negation are further propa-

gated in G; from oy, B; to (j,7n;, respectively, and these units
then update the simulated state of threshold gate j stored
in 7j, pj by its new value y](-H'l). After that, G; is temporar-
ily stabilized until 1 becomes passive again, and computing
the new discrete state y§t+2) is initiated. Recall that units
oj,B; € G; are never simultaneously active, which implies
that the term —(12u + 39)n in v(z},z1) (k > 1) suffices
to suppress the total positive influence from A on z1. This
completes the construction of the gate networks G;.

represented

4. FORMAL VERIFICATION

Now the correct state evolution of the Hopfield system
H described above needs to be verified. This is achieved
by a sequence of lemmas analyzing the behavior of the sys-
tem of differential equations (5). Due to lack of space, the
proofs are only sketched here; a full presentation can be
found in [29]. Lemma 1 first upper bounds the maximum
sum of absolute values of weights incident on any unit in
H. Lemma 2 then describes explicitly the continuous-time

state evolution for saturated units. An analysis of how the
decreasing defects, or deviations from limit values in the
states of saturated units, affect the excitation of any unit in
the continuous-time Hopfield net reveals that its units actu-
ally approximate the discrete update rule (1) after a certain
transient time, provided that the incident saturated units
remain saturated. The proof of Lemma 2 follows from the
dynamics equations (5) and Lemma 1. Furthermore, the
transfer of the activity in the clock C from a unit to a subse-
quent one, when all the incident units are saturated, will be
analyzed explicitly and its duration time will be calculated
in Lemma 3. (But note that the dynamics of unit ¢ at time
t = 0 slightly differs from this analysis.) The result is also
generalized for the case when some of the incident units may
unsaturate. Finally, Lemma 4 will verify that the clock in-
terface unit x1 € C correctly synchronizes the simulation in
the gate networks G;, i.e. locking the gates in A or B always
precedes unlocking the gates in B or A, respectively.

LEMMA 1. For any unit p € H in the Hopfield system
constructed above, the sum of absolute values of its incident
weights (excluding its local bias) is upper bounded by =, =

Yoy lv(a, p)| < e2V/5.

PROOF. (Sketch.) The maximum value of Z, among p €
‘H is reached by unit z,+1 of the highest order n+ 1 (except
for n = 1 when =,, = 2" (W +(12u+39)n+8)+W —T+¢
dominates), that is 2., ., =2Vh41 —16n +2 4+ ¢ < 2Vi41.
Parameter Vi, 41 = 7! (Vo 4 5) — 5 with Vo = 2W + (12u+
39)n + 48 is computed by induction on n in which recursive
formulas v(z},,z1) = 2v(z)_1, 1), v(xk,p) = 20(Tk—1,P)
for p € Cx—2 \ {z1} (k > 2), and Figures 1, 2 are employed.
Hence, 2, < 127" (1071,2111max + 2nWmax + 30+ 2) < g2l/e
by assumption on ¢ in Theorem 1. []

LEMMA 2.
1. Let p € H be a unit saturated at b € {0,1} with a defect

bp(t) = |yn(t) — 0], (13)

for the duration of a continuous time interval T = [to,tf]
for some to > 0. Then the state dynamics of p converging
towards value b can be explicitly solved as

yp(t) = |b— dpe (710 (14)

for t € T, where 6, = dp(to) is p’s initial defect.

2a. Let Q C H be a subset of units saturated for the dura-
tion of time interval T = [to,tf]. Then the dynamics of the
excitation &p(t) for any unit p € H can be described as

&) = vO0p)+ Y.

qEQ;Eq(t) 21

+ ) v(g, P)ya(t) + Apge” T (15)
9¢Q

v(q,p)

for t € T, where
DD
4€Q;84(t0)<0

is the initial total weighted defect of @ affecting £,(to).
2b. In addition, let t; > to +t1 where

v(q,p)dp (16)

v(g,p)0 — D

9€Q; Eq(tg)>1

In2
t1 = —, 17
1= (17)
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Figure 4: Activity transfer from p to r in the clock network C.

and assume that the respective weights in ‘H satisfy either

v(O0,p)+ Y. v(ap)
qEQ; Eq(t0)>1
+ Y wep) < - (9)
a¢Q;v(a,p)>0

or

v0,p)+ Y. v(ap)
qEQ; Eq(t0)>1
+ Z v(g,p) > l+e. (19)

q¢Q;v(g,p)<0

Then p s saturated at either 0 or 1, respectively, for the
duration of time interval [to + t1,ts].

LEMMA 3.
1. Consider a situation as depicted in Figure 4, where a
clock unit p € C with fractional part of bias &' € {e,&/3}
and feedback weight v(p,p) = 1 + € is supposed to activate
and transfer a signal to the subsequent unit r € C with bias
fraction € and v(r,r) = 1 + € via weight v(p,r) > 1. Let all
the units incident on p,r excluding p,r be saturated for the
duration of some sufficiently large time interval T = [to,tf]
(e.g. t§ > to + t2 where t2 is defined in (25)), starting at a
time to > 0 when &p(to) = 0. Assume that the initial defects

op+Ag<e (20)

for @ = H \ {p} are bounded. Further assume that the re-
spective weights satisfy

vO0,p)+ Y. wvigp) = ¢ (21)
q€Q;€q(to) 21
v(0,r)+ Y. wigr) = e—v(pr). (22)

q€Q;8q(t0)21

Then p is unsaturated with the state dynamics

e <e€(‘_t°) — 1) & + Apge 1)

t) = 2
un(t) e(l+e) l+e (23)
ezactly for the duration of time interval (to,to +t}), where
In(1+ 5
t = n(1+25) — ) (24)

(note ti = t1 for & = e and t, = 2t1 for €' = ¢/3), while
r is saturated at 0. In addition, p is saturated at 1 for the
duration of time interval [to + t1,ts], while r unsaturates
from 0 at time to + t2 where

(p,7)dp(to + 1) (1+ 5)° = Aso
1)

v
ta=1In >t1.  (25)

2. Consider a situation as depicted in Figure 5, where a
clock unit p € C with bias v(0,p) = —1 + £ and feedback
weight v(p,p) = 1+¢€ is supposed to receive a signal from the
preceding unit o € C, activate itself, and further transfer the
signal to the subsequent unit r € C with v(0,7) = —1+¢/3
and v(r,r) =1+ ¢, via unit weight v(p,r) = 1, while a set
R C H of units (define By, = {q € B; &q(to) > 1} in Fig-
ure §), incident on p (with no connections to r) may unsat-
urate after p unsaturates from 0. Let all the units incident
on p,r, excluding p,r, and R, be saturated for the duration
of a sufficiently large time interval T = [to,tf] (e.g. at least
until r unsaturates from 0) starting at a time to > 0 when
En(to) = 0. Assume that the initial defects

o < e27Ve (26)
Ao < e27'/f (27)
for @ =H\ (RU{p}) and also
(1+¢€)dp + Z v(q,p)dq

qER; €4 (t0)<0

-

qER;§q(t0)21

v(g,p)dq < 27/ (28)

outside Q', are bounded. Further assume that the respective
weights satisfy

v(0,p)+ Y.

9€Q";&q(t0)21

>

q€R;v(q,p)<0

Z v(g,r) = 0. (30)

q€Q’;€4(t0)21

v(q,p)

v(g,p) = ¢ (29)

Then p saturates at 1 in time at most to + 2t1, remaining
then saturated until time at least t¢, and r unsaturates from
0 only after p is saturated at 1.

PROOF. (Sketch.)
1. Excitation &,(t) = & 4 (14 &)yp(t) + Apoe™ ¢~ of unit
p for t € [to,to + t2] is obtained from formula (15) and as-
sumption (21), which determines its state dynamics (5) by
differential equation (dy,/dt)(t) = —yp(t)+&' +(1+€)yp(t) +
Ayge~¢7%) when p is unsaturated. The corresponding ini-
tial condition y,(to) = (=&’ —Apg)/(1+€) = &, comes from
&p(to) = 0 which also bounds the initial defect as —1 — e —
g <Apg <—¢ <0,duetol >d, > 0. Hence solution (23)
follows, which provides dynamics &,(t) = &' (e* 7' —1) /e >
0 for the excitation of unit p, ensuring that p is unsatu-
rated exactly for the duration of (to,to + t1), even though
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Figure 5: Activity transfer from p to r when units ¢ € R unsaturate.

its state y,(t) is initially decreasing for all ¢t € (to,t0 + tg)
where t; = (In(—Apg/e’))/(1 +¢) < ti. Similarly, excita-
tion & (t) = € — v(p,7) + v(D, T)Yp(t) + Arge™¢710) of 7 is
obtained from (15) and (22) which should prove to be non-
positive for all ¢ € (to,to + t1). Since v(p,r) > 1, it suffices
to show €4y, (t) — 1+ A,ge~7%) < 0 that further reduces
to

€ (E' +e(l+ a)) e~ (t=to)

+¢' (es(tfto) - 1) —e < e(d- 62) (31)

by using dynamics equation (23) in which —A,g = &'+ (1+
€)dp, and by assumption (20). For t € [to,to + t.] where
te = In((¢' + e(1 +¢€))/(e — €2)), term e°*"*0) reaches its
maximum at to + t. whereas e~ ") < 1 implying (31).
For t € [to + te,to + 1], term e(e’ 4+ (14 ¢))e” %) in (31)
achieves its maximum e(&’ — 2) at to +t. while &’ (e(¢~t0) —
1) — e < 0 reaching 0 at to + t;. Hence, r is saturated
for the duration of (to,to + t1). Furthermore, excitation
&) = 1+ (64 &)1 — e~~~y > 1 of p saturated
at 1, which can be derived from dynamics equation (14)
with initial defect d,(to +11) =1 —yp(to +11) = (e + ¢ +
Apo(14¢€/€')71¢) /(1 +¢) obtained from (23) and (24), en-
sures that p stays saturated at 1 at least for the duration of
[to + t1,t0 + t2], where t; in (25) comes from &, (to +t2) =
e — v(p,r)dp(to + t'l)ef(tzftll) + Arge 2 = 0. Finally, it
must also be checked that &,(t) =€’ +1+e+v(p,r)y.(t) —
(1+€)dp(to +t2)e™ 707" 4 (Apg — v(p,r)d,) e~ (770 > 1
for all ¢ € [to + t2,t7]. Here, v(p, r)y-(t) > 0 whereas the
respective defect terms having the least value at to + ¢ can
be lower bounded by —&’ — & when the explicit formulas are
substituted for d,(to + t2), t2, Apg, and inequalities (20),
d» <1, v(p,r) > 1, & > /3 are applied.

2. Notice that unit o saturates at 1 before p is unsatu-
rated from 0 according to case 1 of this lemma. Excitation
E(t) > e+ (14 &)yp(t) + Agr et of p from (15) for
t € 7 is lower bounded by assumption (29). According to
dynamics (5) this also provides a lower bound on its state
derivative (dy,/dt)(t) > eyy(t) + e+ A, e~ when pis
unsaturated. In the beginning of time interval 7, the state
evolution of p is determined by equation (23) before the first
g € R unsaturates, since assumption (21) coincides with (29)
due to & = ¢ and £,(to) > 1 for all ¢ € R with v(g,p) <0
(see table in Figure 5). Hence, the initial defect A,q =
Apo — ZqER;ﬁq(to)SOU(q’p)aq + ZQGR;ﬁq(to)Zl v(g,p)dq is
expressed in terms of A, = —e — (1 + €)d, from case 1
of this Lemma by using definition (16) so that assumption

(28) can be applied to lower bound

Ay > ¢ (1+27V%) (32)

which gives

dﬂ —1/e\ _—(t—to)
dt(t)Zsyp(t)+5—5(1+2 )e . (33)

Since ey,(t) > 0, it follows that (dy,/dt)(t) > e —¢&®> > 0
for t > to + t4 where tq = In((1 + 27'/¢)/¢), provided that
p is still unsaturated. This implies that y,(t) grows at least
as fast as the straight line with equation (¢ — ¢?)(t —to —
tq) —y = 0 until p saturates at 1. Thus, p saturates at 1
certainly before to +tq +1ts < to+ 2t; where ts = 1/(e — &%)
because &p(t) > yp(t) from dynamics (5) due to its state
derivative being positive for ¢t > to+1t4. Similarly, excitation
E(t) = —14+¢/3+yp(t) + A,qr e 71 of 7 saturated at
0 is derived from (15) and (30). Let ¢, > 0 be the least
local time instant at which y,(to+ty) = 1—¢/3— A, qr et
when r is still saturated at 0 since &, (to + t,) = 0. By
using (27) and (32), excitation &,(to +t,) > e+ (1 +¢)(1 —
€/3 — Apgre ™)+ Apgre™™ of p at to + t, can be lower
bounded by 1, ensuring p is already saturated at 1 at to+¢,.
Finally, it must be checked that £,(t) > e+(1+¢)(1—(¢/3+
Apgre )e T )Y Ly (1) + (Apgr — 0r)e” (700 > 1 for
all t € [to + ty,ts] when r may unsaturate, which follows
from y,(t) > 0 and the respective defect bounds (26), (27),
and (32). O

LEMMA 4. All the units in AU B are saturated at 0 when
the state of the clock interface unit x1 € C equals 2/3.
1. The state of unit x1 unsaturated from 0 at time to > 0
after reaching value Yy, (to + t;) = 2/3 from below remains
further increasing at least until the next xj, unit (2 < k <
n+ 1) is unsaturated from 0.
2. Let unit z, (2 < k < n+ 1) cease its saturation at
0 at time to > 0 when & (to) = 0. Following this, let
unit ©1 unsaturate from 1 immediately after time instant
to+ty > to, where £z, (to+1tw) = 1, and reach its state value
Yzq (to + te) = 2/3 from above at time to + t¢ (t. < te). Let

Az, > —¢ (34)

for @1 =M\ {z}} and
Agyqp > —e27 /¢ (35)

for Q1 = H\ (As, U BU {z1,}}) where Ay, = {q € A;



&q(to) > 1}. Further assume that

0 < e27V° (36)
> wlgm)d, < e27* (37)
gEAs,
> (g wi)d, > —e27 Ve (38)
q€EB

Then the state of unit ©1 keeps decreasing after time to + t¢
at least until x1 is again unsaturated from 0 by a1.

PRrROOF. (Sketch.) It can first be easily checked that &, <
—2 for all p € AU B when y,, =2/3.
1. Obviously, ye, () is further increasing for ¢ > to + ¢ since
(dyz, /dt)(t) > 0 for yu, (to + t¢) = 2/3 according to (33).
2. Excitation &z, (to +tu) = W + (12u + 39)n + 3 + 2¢ +
U(w}c,xl)y% (to +tu) + Az, e =1 of 21 at to + t, is
derived from (15) where v(0,z1) + quQl;sq(t)21 v(g,z1) =
W + (12u + 39)n + 3 + 2¢ follows from the construction
of H (recall aj € Ay +— B & Ay). Hence, y,: (o +
tu) > —(W + (12u + 39)n + 2 + &) /v(z}, 21) due to as-
sumption (34). We already know from inequality (33) that
(dymge /dt)(t) > Y, (t) —e27'/¢. Since Y, is continuous, for
proving (dy,; /dt)(t) > 0 for t > to + tu it suffice to show
(dyq [dt)(to+tu) > —e(W+(12u+39)n+2+¢) /v(a, 1) —
€27Y/¢ > 0 at to+1, which is achieved by —v(x}, z1) < 2/¢
from Lemma 1. Thus, the state of z}, keeps increasing after
z1 unsaturates from 1. Similarly, excitation &;,(t) = W +
Lt e+(148)yor (8) +v(@h, ©1)Yay, () + g a,, v(0 1)y (B) +
> aen V(@ 21)yq(t) + Az, e~ (t=%) of g, for time ¢ > to is
obtained from (15) where v(0, x1)+zqu,1;§q(t)Zl v(g,z1) =
W + 1+ €. Hence,

dyz
2B = ear(t) + (ks 211y, (1)
+ ) (g @)ya(®) + D v(g, m1)ye(t)
qE Ay 9€EB
A g e T W 1+e (39)

of unsaturated z1 for ¢ > to + t. according to (5). De-
note by 0 < #; < t; the least local time instant such that
(dyz, /dt)(to + ty;) = 0 (ty > tu). The change in values of
particular terms in the state derivative (39) of z; will be
estimated between time instants to + t;; and o + t,. Thus,
Yor (b0 + 1) > Yoy (o) = 1 — 6z > 1 —e27Y° > 2/3 =
Yz, (to + t¢) by assumption (36) which implies

eye(to + 1) — ey, (bo + ) < —5 +&727°. (40)

Since v(x}, 1) < 0 and Yo, (t) is increasing for ¢ > to +t, it
follows

0(@hs 1) () = 0(h, 21y (b0 + 1) <O (41)

for t > to + t;. In addition, v(g,z1) > 0 for g € A¢, and all
the units in Ay, are still saturated at 1 at to +t;; which gives

S wla o) (1at) —valto +£0) <e2 VT (42)
qE AL,

for t > to + t; according to assumption (37). Similarly,
v(q,z1) < 0 for ¢ € B and all the units in B are still satu-
rated at 0 at to + t;; which provides

> v(a,21) (val) — yalto + £2) <2275 (43)

for t > to +t,; by (38). Also the defect term in (39) satisfies
Ngrgr e 710 — A, gr et <27 (44)

for t > to + t}; according to (35). By summing inequalities
(40)—(44) for particular term differences in (39) we obtain
(dyz, /dt)(to+1te) = (dyz, /dt)(to+te) — (dyz, /dt) (to+1) <
—/3 + &(3 +€)27'/¢ < 0 which is further valid even for
t > to + t¢ when z; is unsaturated since bounds (40)—(44)
still apply and y, (t) is continuous. []

The correct timing of the simulation still needs to be ver-
ified to ensure a sufficiently fast decrease in the defects of
the continuous-time correlates of binary states, because the
analysis in Lemmas 3 and 4 is valid only if defect bounds
(20), (26)—(28), and (34)—(38) are satisfied. According to
Lemma 2.2b, the absolute value of the total weighted defect
affecting any unit in Hopfield net # is bounded by & after
time t;, decreasing further to €27/¢ by time 2¢;. On the
other hand, t; represents a lower bound on the time nec-
essary for activating a typical clock unit p € C (see table
in Figure 4) by Lemma 3.1. Hence, it can be shown from
the clock dynamics that the subsequent clock unit r € C
in Lemma 3.1 has always time at least ¢; for decreasing
the defect induced by its incident saturated units below &
as assumed in (20) even before unit p starts its activation.
Similarly, stronger defect bounds (26)—(28) in Lemma 3.2
are met since time 2¢; is guaranteed for incident saturated
units to decrease their defects before unit p unsaturates. It
follows that both the phases of a simulated discrete step
controlled by the clock interface unit z: take time at least,
say 4t;1. This suffices for the correct approximate simula-
tion by gate subnetworks G; according to Lemma 2.2b, and
guarantees assumptions (34)—(38) of Lemma 4 for the cor-
rect synchronization. Also the lower bound Q(t*/¢) on the
total simulation time follows immediately from the previous
time analysis and equation (17). Further, every unsaturated
unit in Hopfield net H saturates within time at most 3t;.
Moreover, during the simulation all the units in # can si-
multaneously be saturated for a period of at most t; before
the respective defects decrease below ¢ and the next unit
unsaturates. This implies the corresponding upper bound
O(t* [e) and completes the proof of the theorem.

5. ASIMULATION EXAMPLE

A computer program HNGEN has been created to au-
tomate the construction from Theorem 1. The input for
HNGEN is a text file containing the asymmetric weights
and biases of a TLN, as well as its initial state. The pro-
gram generates the corresponding continuous-time symmet-
ric Hopfield system together with its initial conditions in the
form of a FORTRAN subroutine. This FORTRAN proce-
dure is then presented to a numerical solver from the NAG
library that provides the user with a numerical solution for
the respective system (5). By using the program HNGEN,
the underlying construction has been successfully tested on
several examples. Consider e.g. the simple 3-gate cycle TLN



Figure 6: A three-gate cycle TLN.

depicted in Figure 6, initiated in a state where gate 1 has
output 1 and gates 2 and 3 output 0. Then the computa-
tion of the network consists simply of propagating the unit
signal around the cycle. Implementing this system on the
HNGEN generator results in a continuous-time symmetric
Hopfield system with 61 variables. Figure 7 shows the nu-
merical evolution of the state variables corresponding to the
clock interface unit x1 and the three units 71, w2, 73 that
represent binary states of the original discrete gates, for a
period of eight (2%) simulated discrete steps. A parame-
ter value of € = 0.3 was used in this numerical simulation,
showing that the theoretical estimate of € in Theorem 1 is
actually quite conservative.

6. CONCLUSIONSAND OPENPROBLEMS

We have proved that an arbitrary convergent discrete-time
threshold logic network can be simulated by a symmetric
continuous-time Hopfield system with only a linear increase
in the system dimension. The existence of Liapunov func-
tions for Hopfield systems precludes the use of unbounded
oscillations in such a simulation; nevertheless we are able
to base the construction on the bounded, but exponentially
long sequence of pulses generated by the continuous-time
clock subsystem.

From the point of view of understanding analog compu-
tation in general this technique is somewhat unsatisfying,
since we are still basically discretizing the continuous-time
computation. It would be most interesting to develop some
theoretical tools (e.g. complexity measures, reductions, uni-
versal computation) for “naturally” continuous-time com-
putations that exclude the use of discretizing oscillations.

Another challenge for further research is to prove upper
bounds on the power of continuous-time systems. Note that
in the case of discrete-time analog-state neural networks a
single fixed-size network with rational-number parameters
can be computationally universal, i.e. able to simulate a uni-
versal Turing machine on arbitrary inputs [27]. Can e.g. this
strong universality result be generalized for continuous-time
systems? Also, we have established an exponential lower
bound on the convergence time of symmetric continuous-
time systems [31]: can a matching upper bound be proved,
or the lower bound be increased?
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