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Background
The RNA structure prediction problem

RNA is a highly versatile molecule of life: it has several key roles in the essential cel-
lular processes of gene expression and regulation, carries cellular signals, and serves as 
a multi-purpose catalyst. It is a linear polymeric molecule constituted of elementary 
nucleotide units with bases adenine (A), cytosine (C), guanine (G) and uracil (U), bound 
to a sugar-phosphate backbone. RNA molecules, which are natively single-stranded, fold 
upon themselves to create biologically active 3D conformations, following mostly (but 
not completely) similar Watson-Crick base pairing rules as DNA: adenine pairs with 
uracil (A-U) and guanine with cytosine (G-C), but often also with uracil (the G-U wobble 
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pair). To understand, and eventually control, this critical function-forming process, it is 
important to be able to predict how a given nucleotide sequence (the primary structure) 
folds upon itself to create a base-pairing secondary structure and eventually the geomet-
ric 3D tertiary structure. Because predicting the final tertiary structure is extraordinarily 
difficult, much research has focused on trying to resolve the intermediate problem of 
secondary structure formation.

In simple cases, RNA secondary structures exhibit a clean hierarchical arrangement 
composed of blocks of matching base-pairs (stem segments) interspersed with intervals 
of unpaired bases (loops), analogous to a well-parenthesised string in a formal language. 
In fact, one standard representation for these basic structures is the dot-bracket nota-
tion, where the bases are enumerated from the 5’-sugar end of the backbone towards 
the 3’-sugar end: each base initiating a pair is denoted by an opening parenthesis, the 
matching closing base by a closing parenthesis, and the unpaired bases by dots. The sit-
uation is, however, significantly complicated by base-pairs that break this hierarchical 
arrangement, so called pseudoknot connections. Theoretically, an optimal non-pseudo-
knotted secondary structure for a given sequence can be found efficiently by a dynamic 
programming approach, whereas the problem becomes NP-complete when pseudoknots 
are allowed [1].

Related work

Most secondary structure prediction approaches propose some scoring function and 
strive to find appropriate structures with respect to this function. In the common case 
where the score is based on an energy model, the goal is either to determine a minimum 
free energy (MFE) structure in the given model, or sample structures according to a cor-
responding Boltzmann probability distribution.

Energy‑based algorithmic methods

These methods find a thermodynamically minimum free energy structure for a given 
sequence and an energy model. Zuker [2, 3] proposed a basic dynamic programming 
approach to find an MFE structure by aggregating locally optimal structural elements 
with respect to a proposed energy model. Later on, Turner [4, 5] presented a more com-
prehensive “nearest neighbour” energy model, which became the core for many other 
methods originating from the Zuker algorithm, such as UNAFold [6], RNAStructure 
[7] and Vienna RNAfold [8], the latter tuning the energy parameters somewhat. Lyngsø 
and Pedersen [1] showed that finding MFE structures in a given energy model becomes 
NP-complete when pseudoknots are allowed. Hence, algorithmic methods based on 
dynamic programming cannot cover pseudoknots without compromising their effi-
ciency. Some methods such as IPknot [9] and ProbKnot [10] use heuristics to predict 
also pseudoknotted structures.

Energy‑based learning methods

The MFE structure for a sequence, given an energy model, is not necessarily the desired 
target structure. Energy models are not perfect because the thermodynamic param-
eters are calculated experimentally from many yet not sufficient number of samples. 
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The ContraFold method [11] tries to learn new parameter sets and find the structure 
with respect to them, although the optimization is still with a dynamic programming 
algorithm.

Deep learning methods

CDPFold [12] uses a convolutional neural network to predict a scoring matrix that is 
then fed to a dynamic programming algorithm to extract the dot-bracket structure. It 
can only predict non-pseudoknotted structures due to being limited to the dot-bracket 
notation, and also is not time-efficient for sequences longer than a few hundred bases 
because of the dynamic programming post-processing. Recently, E2Efold [13] proposed 
a deep neural network that outputs scores for all possible pairings in an RNA sequence 
and a differentiable post-processing network that converts the scores into a secondary 
structure. The score network of E2Efold had an architecture based on transformers [14] 
and convolutional layers. The post-processing tool was designed by convex relaxation of 
a discrete optimization problem to a continuous one. SPOT-RNA [15] is a deep learning 
model based on convolutional layers and custom 2D-BLSTM layers. This model consid-
ers also triplets (bases connected to two others) and non-canonical pairings. However 
it is limited to sequences shorter than 500 nucleotides (nt) due to the complexity of the 
model and memory limit. MXFold2 [16] is the most recent model which contains one-
dimensional and two-dimensional convolutions and recurrent BiLSTM layers. The out-
put has four different scores for each pair including helix stacking, helix opening, helix 
closing and unpaired region. The model that we propose in this paper is conceptually 
much simpler than the previous models, yet it results in very competitive performance.

Related problems

Learning-based methods dominate in related structure prediction problems. For exam-
ple EternaBrain [17] uses CNN and [18] uses reinforcement learning to address the RNA 
sequence design (inverse folding) problem. As another example, the recently proposed 
AlphaFold [19] set the new state of the art in predicting structures for proteins. The 
algorithm contains multiple deep learning components such as variational autoencod-
ers, attention mechanism and convolutional networks.

Problem definition

The problem of predicting the secondary structure of an RNA can be formu-
lated as follows. Given a sequence of bases q = (q1, q2, . . . , qL) , where each base 
qi can take one of the four values A, U, C, G, the task is to predict a set of pairings 
{(qi, qj)} that define the secondary structure. For example, given a sequence CGU 
GUC AGG UCC GGA AGG AAG CAG CAC UAA C, one needs to predict the pairings 
(q2, q27), (q3, q26), (q4, q25), (q5, q24), (q10, q19), (q11, q18), (q12, q17) which define the 
structure shown in Fig. 1.

There are a set of constraints that need to be satisfied:

• There are six possible types of pairings: (A, U), (U, A), (U, G), (G, U), (G, C), (C, G) 
(Watson-Crick and wobble pairing types).
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• Each base can be either pairs with a single other base or unpaired. If base i is paired 
with base j, base j is paired with base i.

• The minimum distance for pairing is 3, that is |i − j| ≥ 3.

Materials and methods
Representing RNA sequences and secondary structure targets as tensors

The key component of our approach is the way we encode RNA sequences. We repre-
sent an RNA sequence q of length L as an L× L× 8 tensor X which can be viewed as a 
two-dimensional L× L map with eight channels (see the input tensor Fig. 1). An eight-
dimensional vector of features in location (i, j) of X is a one-hot representation of eight 
possible relations between bases qi and qj in positions i and j:

• Six channels indicate that base qi can pair with base qj , that is pair ( qi, qj ) is one of the 
six possible combinations of bases (A, U), (U, A), (U, G), (G, U), (G, C), (C, G).

• One channel is used to indicate that i = j , i.e. this channel is set to ones only for 
the positions on the main diagonal of map X. The purpose of this channel is to ease 
detecting unpaired bases which we encode with non-zero elements on the diagonal 
of the target matrix.

• One channel indicates that a pairing between bases i and j is not possible due to a 
non-valid combination of bases, too short distance between two bases, or any other 
constraint.

Fig. 1 General illustration of our solution. We represent an RNA sequence as two-dimensional map with 
8 channels with one-hot encoding (each color in the input tensor represents a one-hot vector of size 8. 
The gray box shows what each color means. for example, dark green is a potential GC pairing which is 
[0,0,0,0,0,0,1,0]). We process the map with a convolutional network which produces a score matrix for all 
possible pairings. Finally, we convert the score matrix into the RNA secondary structure
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We formulate the target for the model output as a binary L× L matrix T in which the ij-
th element tij = 1 if bases i and j are paired and tij = 0 otherwise. tii = 1 means that base 
i is unpaired (see the target matrix Fig. 1).

The advantage of the proposed representation is that it makes it equally easy to predict 
local and long-distance pairings. Local pairings are represented by non-zero elements 
in maps X and Y that are close to the main diagonal (see the target matrix in Fig.  1). 
Long-distance pairings correspond to locations in X and Y that are farther away from the 
main diagonal. Both types of structures can be easily detected by processing the input X 
with a convolutional neural network (CNN). CNN is also a powerful tool for detecting 
stem segments: blocks of consecutive bases paired with another block of bases. In our 
matrix representation, such pairings are represented by a sequence of non-zero elements 
in matrix Y which are either parallel or orthogonal to the main diagonal. These patterns 
can be easily detected with a CNN. Due to weight sharing, CNNs can process sequences 
of varying length and the processing is equivariant to translations of the input sequence. 
These are useful properties for our application.

Prediction model

We represent each sequence as a 3-dimensional tensor (input tensor in Fig. 1) which is 
the input of our prediction model. The output of the network is a 2-dimensional matrix 
(Target matrix in Fig. 1) in which each element at (i, j) position shows the score for hav-
ing (i, j) pairing in the predicted structure. Then, we extract the structure using our post-
processing method.

The prediction model takes an L× L× 8 tensor X as input and produces an output 
Y of shape L× L . The model starts with two convolution blocks followed by M resid-
ual blocks with skip connections and N residual blocks with shared weights (see Fig. 2). 
Each conv k × k block is a convolutional layer with a k × k kernel followed by batch-nor-
malization and LeakyRelu activation function. To keep the size after each convolutional 
block unchanged, we have applied the required padding. We repeat the residual block 
(left dashed block) M times in series. Output of block 1 will be the input of block 2 and 
finally output of block M goes to the first shared residual block (right dashed block). We 
have M residual block (with different weights) and only one shared residual block which 
we repeat N times (with the same weights) like a recurrent model. Output of the shared 

Fig. 2 The architecture of the prediction model. “conv” denotes a convolutional layer followed by batch 
normalization and LeakyRelu nonlinearity. The readout layer is another conv block followed by a convolution 
layer both with kernel size 1. The loss is computed after each residual block with skip connections. The left 
dashed block, a residual block, is repeated N times with different weights, whereas the right one, a shared 
residual block, is used M times with the same weights
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residual block would be the input of itself in the next iteration. Readout has a conv1× 1 
block and then a single convolution layer with kernel size 1. All the conv blocks have 32 
output channels except the last conv1× 1 in the readout block which has 1.

We encourage the network to arrive at the correct solution as fast as possible by 
computing the loss after each shared residual block. The model output Yn after the n-
th shared residual block is computed using a readout module which is a convolutional 
block followed by a convolution layer with one output channel. The loss function penal-
izes the difference between Yn and the target matrix T. We use the mean-squared error 
as the loss:

where y(n)ij  is the ij-th element of Yn and V is a set of all pairs except for pairs with a 
non-valid combination of bases, too short distance between the bases or any other 
constraints. The mean-squared error was chosen because it produced the best results 
among other alternatives that we tried. The final loss is the average of the N intermediate 
loss values l = 1

N

∑N
n=1 ln.

Post‑processing

The output of the model is an L× L matrix which needs to be converted into a set of 
pairings that represent the secondary structure of an RNA sequence. We have used 
two alternative approaches for post-processing. Both of the approaches return a single 
structure extracted from the output score matrix. Also sub-optimal structures can be 
extracted with a different post-processing approach, although we have not tested it as 
our focus in this paper is on single structure prediction. Another possibility for post-
processing would be dynamic-programming based methods (essentially Zuker’s algo-
rithm using output score values in place of energy values) but these get very complicated 
if one wishes to consider pseudoknots.

In the first approach that we call Blossom post-processing, we extract a secondary 
structure in which each base is either paired to a single other base or unpaired (this 
condition holds for all RNA structures in the training datasets that we considered) by 
the technique of maximum weighted matching in graphs. The model output Y = YN is 
interpreted as a weighted adjacency matrix of a weighted graph in which the nodes cor-
respond to bases and the weights of the edges reflect the chance that there is a pairing 
between the corresponding bases according to the model.1 Our goal is to find a set of 
edges without common nodes and with the option of including self-loops (an unpaired 
base is considered to be paired with itself ) such that the sum of the weights is maxim-
ised. We solve this problem using the classical Blossom algorithm [20].

We used available implementations of the Blossom algorithm that do not support 
self-loops. To overcome this limitation, we created a graph which contains two copies 
of the original weighted graph with the self-loops excluded and with additional connec-
tions between each pair of nodes that represent the same node in the original graph. The 

ln =
1

|V |

∑

ij∈V

(y
(n)
ij − tij)

2

1 To reduce the computational cost, we retain only k = 3 edges of maximum weight for each node.
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weights of the additional connections are the weights of the corresponding self-loops, 
multiplied by two. The node-matching edges eventually chosen by the algorithm are 
taken to correspond to the pairings in the structure. To make the modeling more clear, 
there is a simple example in Additional file 1.

This post-processing algorithm guarantees that each base is either paired with a sin-
gle other base or unpaired. A challenge with this method is, however, that it is com-
putationally quite expensive, especially for long sequences. It has time complexity 
O(|E||V |2) , where |V | = L is the number of nodes in the graph and |E| is the number 
of edges. If one considers only k largest-weight edges for each node, the complexity is 
reduced to O(kL× L2) = O(kL3) . We tried the post-processing with different values for 
k = 1, . . . , L , and observed that values of k > 3 no longer improve the output quality, 
despite the increased runtime.

In the second approach, we connect base i to base j if the corresponding value yij of 
the model output is the largest one in the i-th row of Y. This algorithm runs in time 
O(L2) but it often produces invalid structures, because it does not guarantee symmetric 
pairings. The method, nevertheless, yields similar results in terms of precision and recall 
as Blossom post-processing (see Table 2), and so we use it when we tune the hyperpa-
rameters of the model. We call this algorithm Argmax post-processing. The default post-
processing method is Argmax unless we indicate that Blossom has been used.

Results
Learning-based RNA structure prediction methods can be evaluated in two different 
aspects, sequence-wise cross-validation and family-wise cross-validation. In the former, 
the test set has same families as the training set but the sequences are not redundant; 
however structural similarities between train and test may occur. In the latter, the test 
set comes with samples from new/different families than the training set; structural sim-
ilarities may still occur but are less likely. Our focus in this paper is on sequence-wise 
cross-validation.

Datasets

There are three commonly used datasets for RNA structure prediction. 

1 RNAStralign [21] contains 37149 structures from eight RNA families (16S, 5S, 
Group I Intron, RNaseP, SRP, telomerase, tmRNA, tRNA) with sequence lengths 
varying between 30 and 1851 nucleotides (nt). For sequences with multiple second-
ary structures, we randomly kept only one target secondary structure and therefore 
retained only 30451 samples. There are no redundant sequences but there are redun-
dant structures. As there are many sequences in one particular RNA family, struc-
tural similarities exist in this dataset. We split the dataset into 80% training (RSA-tr), 
10% validation (RSA-vl), and 10% test (RSA-ts) sets (exactly as suggested in [13]) so 
that each RNA family had approximately the same representative fraction in each set 
as in the full dataset. Using the exact same splits from [13] not only leads to not hav-
ing any redundancies for the sequences but also makes the comparison fair. Figure 3 
shows the frequency of different lengths in this dataset in which the proportions are 
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the same for all train, test, and validation sets. We use this dataset for sequence-wise 
cross-validation evaluation.

2 ArchiveII [22] contains 2975 samples with sequence lengths between 28 and 2968 nt 
from 10 RNA families (two additions to the RNAStrAlign families, 23S and Group II 
Intron). We only tested our trained model RSA-tr with this dataset without any fine-
tuning to evaluate it on a completely different sample set and compare with other 
methods. Same as before, we use the exact same test set suggested in [13] that has no 
redundancy for the sequences.

3 bpRNA [15] contains 12119 samples shorter than 500 nt from several RNA families 
created from rfam 12.2. We compare our model with SPOT-RNA and MXFold2 with 
training on TR0 (with 10814 samples) and testing on TS0 (with 1305 samples) as 
the exact same split as [15] in which the similarity CD-HIT-EST>0.8 are removed. 
Another version of this dataset, bpRNA-new, is introduced in [16] which has 1500 
RNA families from rfam 14.2 which are not in the bpRNA. This is the only dataset 
that we use for family-wise cross validation (training on TR0 and testing on bpRNA-
new).

We evaluated the trained models using average precision, recall and F1-score, where 
precision reflects “how correct are our predicted pairings”, recall shows “how many of 
the target pairings our model could predict”, and F1-score is a harmonic average of 
the first two.

We trained the following variants of the proposed model. 

1. CNNFold has M = 2 residual blocks and N = 2 shared residual blocks trained for 30 
epochs on the whole trainset (RSA-tr).

2. CNNFold-600 has M = 2 residual blocks and N = 2 shared residual blocks but 
trained for 400 epochs on the samples shorter than 600 nt from RSA-tr.

3. CNNFold-600-big has M = 10 residual blocks and N = 2 shared residual blocks 
trained for 45 epochs on samples shorter than 600 nt in RSA-tr. Due to the memory 
limit, we cannot use this model for long sequences.

Fig. 3 RNAStrAlign dataset lengths density for train, test, and validation sets. We use density instead of 
absolute number of samples because of different set sizes
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We trained three different models using the Adam optimizer with learning rate 0.005. 
To avoid problems caused by the limited size of the GPU memory, we used mini-
batches with varying sizes. We used only one sequence in a mini-batch for sequences 
longer than 1000 nt, while we used up to 16 samples in mini-batches containing 
shorter sequences. CNNFold and CNNFold-600-big have 95k and 317k parameters 
respectively while E2Efold and SPOT-RNA have 719k (almost 2 times more) and 
1746k (almost 4 times more) parameters respectively.

While tuning the model, we found that CNNFold works slightly worse on short 
sequences ( L ≤ 600 ) than CNNFold-600. CNNFold-600-big outperforms the other 
two models on short sequences. These results are presented in Table 1. Eventually, we 
use CNNFold-600-big to process sequences with L ≤ 600 and CNNFold to process 
sequences with L > 600 . We call this ensemble of the two models CNNFold-mix.

The results on the RNAStrAlign dataset (train and test on this dataset) indicate that 
our model achieves significant improvements compared to the present state of the 
art on this dataset (see Table 2). For example, the fraction of undetected pairings is 
only 0.093 for our model, which is less than two-fifths of the value 0.127 achieved by 
MXFold2. Our model achieves an impressive F1-score of 0.936 which is substantially 
higher than 0.868 of the previously best method on RNAStrAlign dataset. We can-
not compare the results with SPOT-RNA on this dataset since the training module 
is not provided. We will do the comparison with this method on other datasets. Fig-
ure 4 shows one randomly picked sample from 5S family. There are two other exam-
ples in the supplementary materials (see Additional files 2 and 3). Not only all the 

Table 1 Results for our model trained on different parts of the RNAStrAlign training set (trained on 
RSA-tr and tested on RSA-vl)

Bold values are the best result in each column

F1, all data F1, L ≤ 600 Weighted 
F1, all 
data

CNNFold-600-big – 0.970 –

CNNFold-600 0.900 0.948 0.812

CNNFold 0.916 0.928 0.842

CNNFold-mix 0.936 0.970 0.863

Fig. 4 Visualization for E00001 from 5sRNA family. a Is the target secondary structure and b is our prediction 
produced by CNNFold-mix with 93.4% accuracy. Structure diagrams are generated by the Forna [23] tool
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predictions are visually close to their target structures, but they are also valid struc-
tures due to our Blossom post-processing method.

Our model performs very well on both short and long sequences. One indication 
of this are the results presented in Table  1. To emphasize the performance on longer 
sequences, similarly to [13], we computed a weighted average of the F1-scores where the 
weight for a sequence of length Lk is wk = Lk/

∑
k Lk . The weighted F1-score (see the 

last column of Table 2) indicates that our model works much better on long sequences 
compared to the previous methods. Even MXfold2 as the best competitor on this data-
set, does not predict long sequences that well (with 0.694 as the weighted f1 score). Fig-
ure 5 shows a more in-detail scatter plot in which each point represents a sample with its 
length and F1-score.

CNNFold-mix outpeforms other methods in predicting pseudoknotted structures on 
RNAStrAlign dataset. Out of the 3707 samples in RSA-ts, 1413 are pseudoknotted, and 
we achieved an F1-score 0.857 on this subset compared to 0.71 for E2Efold and 0.472 for 
RNAstructure. Although pseudoknotted structures are presumed to be more complex, 
CNNFold predicts them almost as well as non-pseudoknotted ones. A scatter plot of the 
pseudoknotted samples with respect to their lengths and their F1-score is presented in 

Table 2 Results on the RNAStrAlign dataset (sequence-wise CV)

Bold values are the best result in each column

“(S)” indicates the results when one-position shifts are allowed, that is for a base pair (i, j), the following predictions are also 
considered correct: (i + 1, j) , (i − 1, j) , (i, j + 1) , (i, j − 1) . The numbers for the comparison methods are from [13]. All 
trainable models have been trained on RSA-tr

Precision Recall F1 Prec (S) Recall (S) F1 (S) Weighted F1

Mfold [6] 0.450 0.398 0.420 0.463 0.409 0.433 0.366

RNAfold [8] 0.516 0.568 0.540 0.533 0.587 0.558 0.444

RNAstructure [7] 0.537 0.568 0.550 0.559 0.592 0.573 0.471

LinearFold [24] 0.620 0.606 0.609 0.635 0.622 0.624 0.509

CDPfold [12] 0.633 0.597 0.614 0.720 0.677 0.697 0.691

CONTRAfold [11] 0.608 0.663 0.633 0.624 0.681 0.650 0.542

E2Efold [13] 0.866 0.788 0.821 0.880 0.798 0.833 0.720

MXfold2 [16] 0.864 0.873 0.868 0.876 0.884 0.879 0.694

CNNFold + Argmax 0.955 0.861 0.900 0.955 0.872 0.902 0.812

CNNFold-mix + Argmax 0.956 0.912 0.932 0.958 0.915 0.934 0.863

CNNFold‑mix +Blossom 0.975 0.907 0.936 0.978 0.909 0.938 0.872

Fig. 5 Scatter plot of the per-sequence F1-scores against the sequence lengths. Each point represents a 
sample and the model is CNNFold-mix. Colours indicate sequences from eight RNA families from RNAStrAlign
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fig Additional file 4. CNNFold-mix predicts 1412 out of 1413 pseudoknotted structures 
as pseudoknotted, compared to 1312 for E2Efold.

As another popular benchmark, we evaluated our model performance on the popular 
ArchiveII dataset [22] (summarised in Table 3). Since MXfold2 does not consider pseu-
doknots, it is trained on a subset of RSA-tr with excluding pseudoknots and samples 
longer than 600 nt. To have a fair comparison, we retrained our model, CNNFold600-
big, on the same subset.

The SPOT-RNA group [15] did not report results on the ArchiveII dataset and train-
ing their model is not straightforward due to lack of access to their training module and 
the 500 nt length limit. We trained our model on TR0 and compare it with SPOT-RNA 
and MXFold2 on TS0. Table 4 shows the comparison on the bpRNA dataset. All three 
methods have close F1-scores while CNNFold and SPOT-RNA have better precision and 
MXFold2 has higher recall. Having 1500 different RNA families make this dataset harder 
for our model, since it it tries to capture the patterns in families and use them in the 
prediction.

Our performance highly depends on the specific RNA families (with Telomerase and 
SRP being the hardest families for our model) since our model is just learning the pre-
diction from samples in an end-to-end fashion without using the notion of energy or 
any other external features. In Fig.  5, we use different colours to show F1-scores for 
sequences from eight RNA families from the RNAStrAlign test set. Number of samples 
in each family and their lengths, in addition to average F1-scores for different RNA fami-
lies are shown in Table 5 for the RNAStrAlign and ArchiveII datasets.

Table 3 Performance on the ArchiveII dataset (sequence-wise CV)

Bold values are the best result in each column

All trainable models have been trained on a subset of RSA-tr with removing pseudoknotted structures and samples longer 
than 600 nt

Precision Recall F1

Mfold 0.428 0.383 0.401

CDPfold 0.557 0.535 0.545

RNAstructure 0.563 0.615 0.585

RNAfold 0.565 0.627 0.592

LinearFold 0.641 0.617 0.621

CONTRAfold 0.607 0.679 0.638

E2Efold 0.734 0.660 0.686

MXFold2 [16] 0.790 0.815 0.800

CNNFold‑mix 0.928 0.879 0.897

Table 4 Performance on the bpRNA dataset (sequence-wise CV)

Bold values are the best result in each column

All models have been trained on TR0 and tested on TS0. Comparison numbers are from [16] as we use the exact same splits 
for train and test

Precision Recall F1

SPOT-RNA 0.652 0.578 0.597
MXFold2 0.520 0.682 0.575

CNNFold-mix 0.640 0.566 0.582
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Although the focus of this work is sequence-wise cross validation, we have com-
pared our method with others with training on TR0 and testing on bpRNA-new. Our 
method, MXFold2, SPOT-RNA, E2Efold, and RNAfold have 0.496, 0.632, 0.592, 0.036, 
and 0.617 F1-scores respectively. E2Efold completely failed to predict on this dataset 
while MXFold2 shows the best performance in family-wise CV.

For sequence-wise cross validation, CNNFold performs better than the other meth-
ods on RNAStrAlign and ArchiveII datasets and similar to SPOT-RNA on bpRNA. It 
has less parameters than E2Efold, MXfold2 and SPOT-RNA which let us train it on 
longer sequences as well. That is why it has a good performance on long sequences 
as well (0.872 for weighted f1 score compared to 0.72 for E2Efold on RNAStrAlign). 
CNNFold predicts psuedoknotted structues in RNAStrAlign better than E2Efold 
while MXfold2 does not support psuedoknots.

CNNFold has some difficulties for family-wise cross validation (on bpRNA-new) 
since it is agnostic about the folding problem and tries to learn the sequence-struc-
ture mapping only from the samples (and not any external features line free energy). 
It cannot generalise the prediction from samples in RNAStrAlign to samples from a 
new RNA family. MXFold2 integrates free energy values in the model which helps for 
the generalization. All in all, CNNFold predicts decently if the sequence belongs to a 
family in trainset, otherwise, the prediction might be problematic.

Time analysis

It is important to analyze how our model scales with respect to sequence length. Figure  
6 shows the running time on CPU (Intel Xeon Gold 6230, 2.10Ghz) and GPU (NVIDIA 
Tesla V100 SXM2 with 32GB RAM) for CNNFold-mix with both argmax and Blossom 
post-processing. Since we could not find any GPU implementation for the Blossom 
algorithm, in the “CNNFold-mix + Blossom (GPU)” Blossom has been run on CPU. 
The CNN model on the GPU is quite fast as it does not have huge number of param-
eters and runs convolutions in parallel. The Blossom algorithm has cubic time complex-
ity and thus gets sluggish for long sequences (around 20 s for a sequence with 1400 nt).

Table 5 F1-scores obtained with CNNFold-mix for different RNA families

Model has been trained on RSA-tr and tested on RSA-ts and ArchiveII

Family RNAStrAlign ArchiveII

Lenghts #Samples F1‑score Lenghts #Samples F1‑score

All 30–1851 30451 0.932 28–2968 3975 0.897

16SrRNA 54–1851 11620 0.855 73–1995 110 0.639

5SrRNA 104–132 9385 0.992 102–135 1283 0.972

tRNA 59–95 6443 0.996 54–93 557 0.937

Grp 1 Intron 163–615 1502 0.903 210–736 98 0.722

SRP 30–553 468 0.787 28–533 928 0.798

tmRNA 102–437 572 0.830 102–437 462 0.871

RNaseP 189–486 434 0.832 120–486 454 0.824

telomerase 382–559 37 0.615 382–559 37 0.755

23SrRNA – – – 242–2968 35 0.489

Grp 2 Intron – – – 619–780 11 0.591
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Model parameters

In CNNFold and CNNFold-600, M = N = 2 but in CNNFold-600-big M = 10 and 
N = 2 . Th learning rate for all of our training is 0.005. The loss function is MSE between 
the predicted and target matrices as we represent all structures in a 2-dimensional form 
and the loss will be calculated after each shared residual block. In Blossom we keep 
k = 3 maximum scores for each base (each row in the score matrix). Maximum number 
of samples in a batch is 16 but it can be less for longer samples.

For other methods we used Mfold v2.3, CDPfold published on May 2019, RNAStructure 
v6.2, Vienna RNAfold v2.4.13, LinearFold published on July 2019, CONTRAfold v2.02, 
E2Efold published Feb 2020, MXFold2 published on Feb 2021 and SPOT-RNA published 
on Nov 2019. For all trainable methods in comparisons, we have mentioned the training set.

Discussion
We have proposed a new learning-based method CNNFold for RNA secondary struc-
ture prediction independent of any energy model. Our results show that CNNFold 
significantly outperforms state-of-the-art methods in sequence-wise cross-validation 
comparisons, MXfold2 on RNAStrAlign and ArchiveII datasets while achieving compa-
rable results as the SPOT-RNA on the bpRNA. Although the CNNFold model is less 
complex than the others (without any LSTM-like layer and with fewer parameters), it 
shows an outstanding performance thanks to the representation in which possible pair-
ings are considered instead of only the sequence. It works also on pseudoknotted struc-
tures without any changes, and predicts them quite well.

CNNFold cannot generalise to samples from completely new families (compared to 
its trainset) because it tries to learn the prediction only using samples without any ther-
modynamic consideration like free energy. Adding some expert knowledge (like the free 
energy integration in MXfold2) to our agnostic model would help for the generalisation.

We believe that the method can be improved further to achieve an even better accuracy. 
One possibility is to take into account the length of the RNA sequence. This may have 
a positive impact on accuracy as the ensemble of models trained on different sequence 

Fig. 6 Running time on CPU and GPU for different lengths. Samples are from RSA-ts. Note that we run 
Blossom on CPU in all cases
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lengths achieved the best performance in our experiments. Considering the RNA family 
might help as well, since our model performance depends on families. One can consider 
the family as an input/given, or train the model in such a way to detect the family first and 
then the structure given the predicted family.

Another way to extend this work is trying to generate sub-optimal structures as we have 
the score matrix from our network. With a different post-processing method we can gen-
erate more than one structure. As the model predicts structures that are not MFE, it might 
be interesting to check the free energy difference between the prediction and the target.

An important line of future research is to understand the limitations of the proposed 
method and other learning-based algorithms for RNA secondary structure predic-
tion. The accuracy of the model is superb but it is important to understand how well 
the model can predict structural elements which are biologically important. For exam-
ple, pseudoknots are difficult to predict, but missing any of them may have a significant 
effect on the functional properties of an RNA structure.

The ultimate goal of this line of research is to design new RNA sequences with the 
required functional properties. The results presented in this paper suggest that the pro-
posed model can be a useful building block towards achieving this goal. It remains to be 
seen how well the model generalises to completely new RNA sequences that can be pro-
posed in the design process. It may also be useful to extend the model to support multi-
ple secondary structure predictions for a given sequence. This way one can increase the 
chance of finding RNA structures with the required functional properties.
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