
Metrika manuscript No.
(will be inserted by the editor)

Computation of the multivariate Oja median

T. Ronkainen, H. Oja, P. Orponen

University of Jyväskylä, Department of Mathematics and Statistics, Finland

Received: date / Revised version: date

Abstract The multivariate Oja (1983) median is an affine equivariant multivari-
ate location estimate with high efficiency. This estimate has a bounded influence
function but zero breakdown. The computation of the estimate appears to be highly
intensive. We consider different, exact and stochastic, algorithms for the calcula-
tion of the value of the estimate. In the stochastic algorithms, the gradient of the
objective function, the rank function, is estimated by sampling observation hyper-
planes. The estimated rank function with its estimated accuracy then yields a con-
fidence region for the true Oja sample median, and the confidence region shrinks to
the sample median with the increasing number of the sampled hyperplanes. Reg-
ular grids and and the grid given by the data points are used inthe construction.
Computation times of different algorithms are discussed and compared. For a

�
-

variate data set with� observations our exact and stochastic algorithm have rough
complexity estimates of� ���� ��� � � and� �	� �
�� � �, respectively, where� is
the radius of confidence�� -ball.

Key words Multivariate median – multivariate rank – stochastic approximation

1 Introduction

Let � � �� � � � � � � � � � be a data set of� �
-variate observation vectors. Theob-

servation hyperplanegoing through the
�

observations�� � � � � � �� is given
by �� � �� � !" #
 � � �

� $% � � � � $& � ' � () �
To simplify the notations, let the index* � ��� � � � � � �� �,
 + �� � � � � � � ��� + � refer to a

�
-subset of observations with indices listed in* and, �* � the

2 T. Ronkainen et al.

hyperplane determined by them. Define then�� �* � and� �* � implicitly by !" #
 � � �

� $% � � � � $& � ' � �� �* � � �� �* �� �
where

� �* � � �� � �* � � � � � � �� �* ���
and�� �* � � � � �* � � � � � � �� �* � are the cofactors of the elements in the last column
of the matrix. Note also also that the intersection of

� �
 hyperplanes, �*� � � � � � ,, �*��� � is usually (not always) a univariateobservation line. Finally, the inter-
section of

�
hyperplanes, �*� � � � � � � , �*� � usually (not always) yields acrossing

point.
The volume of the

�
-variatesimplexdetermined by the

�
-set* along with� is�� �� � �
� 	 abs
�� �* � � �� �* �� � �

The multivariate Oja median[5] is the vector� � � �� � that minimizes the
objective function �� � � ave� ��� �� ��� (1)

the average of the volumes of simplices determined by the candidate� and all
possible

�
-sets of observations* . The centered rank function (which is related to

this generalization of the multivariate median) is

� �� � � �
 �� � �
� 	 ave� ��� �� �� �* �� (2)

where

�� �� � � sign��� �* � � �� �* �� �
is �
 and indicates on which side of hyperplane* the point� is located. An-
other presentation for the objective function is

 �� � � ave
� ��� �� ��� �* �� ��ave

� ��� �� �� �* ���� �. The affine equivariant centered rank vectors� $ � � �� $ � � � �
� � � � � � �
can be used in classical multivariate analysis problems, namely, in multivari-
ate multisample location (MANOVA) problems, in principal component analysis
(PCA), in multivariate multiple regression, in canonical correlation analysis, and
in testing for multinormality (See Visuri et al. [8]).

In this paper we wish to find efficient (exact and stochastic) algorithms for
the calculation of the value of the sample Oja median� � � �� �. Our plan is
as follows. First, in Section 2, an algorithm for the calculation of the exact value
of � is outlined and discussed. In Section 3, stochastic estimates are considered;
two different estimates�� of the true value� , based on a random sample from the
set of hyperplanes, are constructed. The computation timesof different algorithms
are compared. The paper is closed with some comments in Section 4. Detailed
descriptions of the algorithms are postponed to the Appendix.

Computation of the multivariate Oja median 3

2 Exact computation

We first describe a deterministic algorithm for computing the exact value of the
Oja median. This method is a generalization of the Oja bivariate median algorithm
proposed by Niinimaa and Oja [4]. It is known that the median is located among
the intersection points of the observation hyperplanes [2]. The bivariate version it-
eratively optimizes the objective function along observation lines. At each line, the
minimizer is the intersection point of the search line and some other observation
line. Then the decision is made on whether to stop (a global minimum) or to con-
tinue along the crossing line. In most cases there is only onecrossing line; however
if the crossing point is an original data point then there are� � �

alternative lines
left which to follow, and the next one is chosen among those according to some
criterion.

There are several obstacles to a straightforward extensionof the bivariate
method. As the dimension increases, numerical problems make navigation among
the hyperplane intersections less reliable. This leads us to make some changes in
the algorithm design. In order to overcome the numerical difficulties, our algorithm
is designed to use double bookkeeping for geometrical objects, using both numer-
ical and combinatorial presentations of the objects involved. In the combinatorial
presentation, each object carries with it a construction recipe in the form of an inte-
ger index set. For example, if the hyperplane in� � spanned by observations� �, �
and� � intersects the line through� � and� �, the intersection point then has index
presentation��
� � � �� � �� � 	 ��. This kind of design is needed to count and con-
struct observation lines. However, details of this kind of combinatorial geometry
are not the focus of the paper and thus are skipped.

The exact median algorithm (see Appendix A.1) starts by choosing an obser-
vation point close to the centre (the mean vector) of the datacloud. Then a set of� �
 hyperplanes going through the chosen point are picked up randomly and
their intersection is ensured to be a line. The most time consuming part of the al-
gorithm is to minimize the objective function (1) on the line. Our approach to this
problem will be described later. When the minimum point is found, the next task
is to choose another line and repeat the process until no improvement is achieved.
The point with the minimum value is always located at the intersection of the line
and an observation hyperplane.

In the bivariate case there are only two different types of crossing points.
The point is either an intersection of two or� �
 observation lines. In the
latter case the crossing point is an original observation. Three-dimensional
data adds one more possibility: for instance a point with index presentation���� � � � � �� � � � � � � �� is contained in� �
 different observation lines, namely���� � � �� and ���� � � �� � � �� � � � � � � ��, where� �� �� and� �� � . Two other
cases are of course an original data point, and an intersection of 3 hyperplanes
without common data points as in the 2-dimensional case. Each additional dimen-
sion introduces one ore more such new cases, each having a different number of
lines to explore.

At the each turning point we count the number of crossing linealternatives. The
algorithm described in Appendix stops if the number of linesexceeds our prede-

4 T. Ronkainen et al.

fined limit. This is not absolutely necessary, because we caninstead take a random
sample from the collection of possible lines, and not give upunless this sample
does not have a line with a lower objective function value. After the construction
of the crossing lines we discard all lines already followed.The gradient (2) of the
objective function may be used to find the next line with the direction of steepest
descent, or with the smallest angle with the gradient. Theoretically it is enough to
check this line only; in practice, however, the sum of��� � terms involved in the def-
inition of the gradient is very sensitive to rounding errors. The cumulation of these
small errors may cause the gradient vector to point in a slightly wrong direction.
The careful stopping criterion of the algorithm reflects this difficulty. We decided
to increase the stability of the algorithm by searching along all intersecting lines
before trusting the answer.

Also the objective function (1) minimization along a line turns out to be sur-
prisingly difficult. In high dimensions, the observation hyperplanes are typically
very dense and split the observation lines to extremely short segments. Although
the objective function is convex and thus theoretically easy to minimize on a line,
numerically the function contains a small amount of additive noise due to round-
ing errors. These errors arise from a vast number of infinitesimally small changes
(but sometimes erroneously rounded to wrong direction due to lack of precision) at
the end of each segment. We failed to apply traditional optimization methods, and
use instead the following somewhat slower but numerically more robust algorithm
(see Appendix A.2).

Let � denote a
�
-variate box containing all data points. A good choice for� is

a slightly enlarged box limited by the componentwise minimaand maxima of the
data values. The enlargement is usually not important unless the number of data
points is quite small. In that case rounding errors may drop some critical points
outside the box when performing comparisons with exact limits.

We begin by computing all crossing points of the search line� and the ob-
servation hyperplanes. If the crossing point of the line andhyperplane, is not
contained in� , it can not be the minimum. When calculating the value of the rank
function in� , the sum over terms corresponding to these type of hyperplanes is
constant and have to be computed only once. All other hyperplanes are reordered
so that two consecutive hyperplane crossing points in� do not have a third point
between them.

The task is now to scan through all crossing points in� and choose the point
with the lowest objective function value. We set the first crossing point as a me-
dian candidate. Evaluation of the objective function is done by summing together
one term for each hyperplane and the constant part which was calculated during
hyperplane preprocessing. After that every other intersection point in� is handled
in the previously given order and the lowest objective function value is recorded.
However, evaluation of the objective function is much easier now, since it is nec-
essary only to update the sign of the term corresponding to the hyperplane which
intersects� at the current point.

The space requirement of the algorithm is� ��� � which is needed to store
the representations of��� � hyperplanes. Its time complexity cannot be determined
so easily. Each minimization along a line has a complexity of� ��� ��� � � � �

Computation of the multivariate Oja median 5

0.01

0.1

1

10

100

1000

10000

100000

10 100 1000

se
co

nd
s

points

Running times on Pentium III/933 Mhz/1024 Mb RAM

2D
3D
4D
5D
6D
7D

1 test run

Fig. 1 Performance of the exact algorithm A.1

� ���� ��� � �
, due to the hyperplane sorting involved. This is repeated atleast�

times, which yields a lower bound of complexity	 ��
� � ��� � �
. Simulation

experiments suggest that usually
� �� �

iterations are enough., but the worst case
behavior of the algorithm may depend on the distribution of data in a complicated
way. (The algorithm and its analysis are similar to the simplex method for linear
programming, which is known to be exponential in the worst case, but linear-time
on the average under some distributional assumptions [1, pp. 124–128].) Figure 1
presents running times for several multivariate i.i.d. normally distributed test cases.

3 Stochastic approximation

As can be seen from the computation time diagrams in Figure 1,the exact algo-
rithm becomes rapidly infeasible as the number of observations

�
, and in particular

the dimensionality
�

of the observation vectors grow. For instance, within a time
limit of 1000 seconds (�28 minutes), our implementation of the exact algorithm
was able to process 2-variate data sets containing more than4000 observation vec-
tors, but for 4-variate data the maximum size of a data set haddropped to about 70
points.

Considerably more efficient computations are possible if the exactness require-
ment of the algorithm is relaxed somewhat, and a stochastic approximation ap-
proach is adopted. The basic idea then is tosample the collection of observation
hyperplanes, and use these samples to direct the construction of increasingly pre-
cise estimates for the location of the Oja median. We presenttwo algorithms based

6 T. Ronkainen et al.

on this general idea: in the first method the median estimatesare located at the
nodes of a regular, increasingly densegrid, whereas in the second method the
search for increasingly good median estimates is supportedon the initially given
observation vectors.

3.1 Confidence regions for sample Oja median

Assume that we have a random sample of� � hyperplanes with indices*� � � � � � *��
and we wish to test the null hypothesis, � � � � �, that is,� is the true sample
Oja median. A natural test statistic can then be based on the estimated sample rank
function at�,

�� �� � � ave�
��� �� �� �*� �� �
The limiting null distribution of�� � �� �� � is a

�
-variate normal distribution with

zero mean vector and covariance matrix� � ave
� �� �* ��� �* �� where the sum

is over all possible���� hyperplane indices* . A natural estimate of� is �� �
ave� �� �*� ��� �*� �� which is consistent under the null hypothesis. An approximate
((�
 � � � percent confidence region for� is then given by�� � � � ��� �� � �� �� �� �� � + 	
 �� �� � (3)

If � � � , this confidence region shrinks to a unique point, the Oja median.
The problem is, however, the explicit calculation of the confidence region. For
approximations, values of the test statistic� �� � � � � ��� �� � �� �� �� �� �
are calculated at the nodes of an increasingly dense grid.

3.2 Approximation supported on a regular grid

Given a set of
�
-variate observation vectors� � � � � � � �� , our grid-based hyperplane

sampling algorithm (Algorithm A.3 in the appendix) is initialized with a regular
�
-

dimensional grid�� , with 	� gridpoints spaced uniformly at distance�. The grid
spacing� is determined as 1/4 of the�� diameter of the data set, and the grid is
centered so that all observation vectors are contained within its extrema.

We then choose some confidence level
 � �
, say(��	, sample an initial set of� � � � � observation hyperplanes, and compute the values of the teststatistic

� �� �
at each gridpoint� � �� . With an ideal choice of� � and the sampled hyperplanes,
only a single gridpoint�� would then remain in the
((�
 � � � percent confidence
region (3) of� . Usually this is not the case, but nevertheless we can eliminate a
number of gridpoints from�� as falling outside the confidence region. This results
in a reduced grid� �� � ��. (The choice of a good value for the sample batch size
parameter� � depends on the characteristics of the data. We have simply picked

Computation of the multivariate Oja median 7

a value� � � �(for our simulations. However the average running time of the
algorithm seems to be quite insensitive to the choice of� �, as long as it is neither
very small nor big.)

We now add another set of� � hyperplanes to our sample (consequently� �� �� � � � �), update the values of the test statistic
� �� � at the remaining gridpoints� � � �� (Algorithm A.4), eliminate the gridpoints falling outsidethe decreased

confidence region (3) etc. This process is iterated until only one point�� remains
active in the grid. If some added sample of� � hyperplanes causes the number of
active gridpoints to go to zero, then this sample is withdrawn and a new sample is
generated instead.

When only one gridpoint�� remains, the grid is refined by halving the spacing
from � to ��� in the neighborhood of�� , and omitting that part of the old grid that
is at�� distance greater than� from �� . The new	�-node grid��� is centered at�� , and initial test function estimates at those nodes of��� that were not contained
in �� are obtained by linear interpolation (see Algorithm A.3). The hyperplane
sampling and grid reduction process described above is thenresumed with the
grid ��� . When grid��� is reduced to a single point, it is again refined in the
neighborhood of this point to a grid���� etc. The procedure is repeated until the
grid spacing becomes denser than some predefined parameter� � (. At this point
we know the location of the Oja median of our data set with�� precision�, to
within confidence
 � �

.

0.01

0.1

1

10

100

1000

10000

100000

10 100 1000

se
co

nd
s

points

Running times on Pentium III/933 Mhz/1024 Mb RAM

2D
3D
4D
5D
2D
3D
4D
5D

Fig. 2 Performance of the grid-based approximate algorithm A.3

8 T. Ronkainen et al.

As can be seen from Figure 2, the computation time of this stochastic approxi-
mate algorithm is practically independent of the number� of the observation vec-
tors. The only factors affecting the computation time, in addition to the confidence
parameter

�
, are the dimensionality

�
of the data and the precision� required in

the stopping criterion.
A rough estimate of the time complexity of the method can be obtained by

noting that if� � hyperplane samples are needed to achieve a confidence region
with �� radius less than�, i.e. to reduce a grid�� to a single point, then ap-
proximately�� � samples are needed to reduce the radius further to below���. In
other words, between any two grid refinements the number of requisite hyperplane
samples grows roughly by a factor of four.

The grid spacing decreases below� after � ����
�� � sampling stages. At
each stage� � (, the number of hyperplanes involved in the calculations is� �� $� � �, where� � is the number of hyperplanes required for the first refinement.
The number of active gridpoints at which the test function needs to be evaluated
equals	� at the beginning of each stage. Altogether this yields an estimate of� �	�� ��� � ���� � � � � �	� �
�� � � for the total asymptotic complexity of the al-
gorithm. Figure 2 provides experimental support for this estimate. (The parameter
values used in the simulations were

� � (�(, � � (�
.)
3.3 Approximation supported on data points

An undesirable consequence of supporting the median algorithm on a rigid grid
structure, as above, is the induced exponential dependenceof the algorithm’s run-
ning time on the dimensionality of the problem. An alternative idea is then to use
in place of the grid the observation vectors themselves. This approach replaces the
algorithm’s exponential dependence on dimensionality by asimple linear depen-
dence on the number of data points, and results in huge reductions in computation
time for high-dimensional data. However, the precision of the final estimate is now
determined by the density of the given set of observation vectors. We now describe
a computation method based on this idea (Algorithm A.5 in theappendix).

The first phase of Algorithm A.5 proceeds exactly as in the grid-based Algo-
rithm A.3, except that instead of the grid�� , the support set� used to obtain
the approximation initially consists of the given observation vectors� � � � � � � �� .
Also, rather than refining the support set� to a predetermined precision, Algo-
rithm A.5 aims to thin out� by hyperplane sampling until a set of exactly

� �

vectors remain in the confidence region (3). The

�
-simplex spanned by these

� �

highest-confidence observation vectors then provides an estimate for the location
of the median. (If desired, a point estimate can be obtained by linear interpolation
of the rank function estimate over the simplex.) As in the univariate case, the pre-
cision of the estimate is thus determined by the density of the data cloud around
the median.

Thus, batches of� � hyperplanes are sampled and the support set� reduced as
in Algorithm A.3 until its size decreases below some threshold value �� � + � .
Then the algorithm switches to sampling a single hyperplaneat a time and reducing
the remaining set� with that until a size of�� � � � �
 is reached.

Computation of the multivariate Oja median 9

0

2

4

6

8

10

12

14

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

se
co

nd
s

points

Average running times on Pentium III/933 Mhz/1024 Mb RAM

2D
3D
4D
5D
6D
7D
8D
9D

10D

Fig. 3 Performance of the data-point based approximate algorithmA.5

As can be seen from Figure 3.3, this algorithm is overwhelmingly faster than
the grid-based method for high-dimensional data. For instance even 10-variate data
sets with 10000 observation vectors were handled faster than sets of 5-variate data
using the grid-based method. A limitation induced by using the observation vec-
tors as gridpoints, on the other hand, is that while Algorithm A.3 yields a reliable
estimate of the location of the median up to a given precision, in some patho-
logical cases the true median may actually be located arbitrarily far away from
the

�
-simplex provided by Algorithm A.5. (Consider, for instance data distributed

uniformly on a spherical surface of dimension
� � �

.)

4 Final comments

We introduced different (exact and stochastic) algorithmsfor the calculation of
the value of the sample Oja median� . The problem then naturally is, what are
the losses (in bias and efficiency) and the gains (in computing time) when using
stochastic estimates? In the paper we considered only the computation times of the
algorithms. Note that stochastic estimate

�� is an estimate of the true population
value� also and in the comparisons the bias

� � �� � � � � � �� � �� � � �� �	 � � �� � � �

as well as the covariance matrix

Cov
� �� � �

Cov
�� � �� �� �	
 � �

Cov
� �� �� �	

10 T. Ronkainen et al.

should be considered. As ’an estimate of an estimate is an estimate’, the two dif-
ferent stochastic versions should be compared in simple simulation studies.

In practice, also an estimate of the accuracy (covariance matrix) of the true Oja
median is called for. For this purpose, it is possible to estimate simultaneously the
value of the Oja median and the values of the bootstrap samplemedians. These
bootstrap sample medians may then be used in the usual way to construct the co-
variance matrix estimate. See also Nadar et al. [3] for the estimation of the limiting
covariance matrix.

The computing time of the stochastic algorithm appears to besensitive to the
choice of the hyperplane sample batch size� � (see the strange computing times
in Figure 2). It is possible that sometimes the values of� �� , �� � and ��� �� � are
saved just before the number of active gridpoints is reducedto one. Then with
high probability no active gridpoints are left after a new batch. The problem may
be circumvented by a runtime adjustment of the batch size� � . Some additional
robustness would be achieved if, in the sampling process, sampling probabilities
depending on the ’size’ of the hyperplane were utilized. Therank function esti-
mate is then the regular Horwitz-Thompson estimate with theeasily calculable
covariance matrix estimate.

We have also experimented with a parallel version of the exact algorithm.We
used simultaneous processes to compute several minimization tasks A.2 at the
same time. One process is needed to coordinate progress by distributing tasks to
other processes. This is an almost idle job when compared to the heavy calculations
and can be executed without noticeable performance loss in one of the processors
that participates in the computation. Speedup is good up to

�
processors but after

that additional processors do not bring much benefit. This isa consequence of the
fact that at each step there are usually only

�
observation line through the current

crossing point and extra processors can only explore older lines hoping to find
some random shortcut.

The approximate algorithms can also gain benefit from distributed computing,
but we have not yet implemented it. Algorithm A.4 is the core of the both algo-
rithms. Because update formulas for rank and covariance estimates are additive,
each of the� processes can sample its own set of�� ��� � hyperplanes. After col-
lecting together changes in�� , �� and� �, grid nodes can be divided evenly among
the processes, each updating about�� ��� test values

� �� $ �.
A Appendix: Description of algorithms

A.1 Compute the exact Oja median.

Input: Data set� � �� � � � � � � � � � in �� .
Input: Maximum number of observation lines to scan at each stepmax�� � �
Output: Exact Oja median� or give up with probability going to zero as� in-

creases.
1: Precalculate observation hyperplanes, �* �, where* � �
� � � � � � � � � � � � � � �� � � �
� � � � � � �
� � � �

Computation of the multivariate Oja median 11

2: Choose random observation� � near�� .
3: Select random indices*� � � � � � *��� each containing� .
4: Set� � , �*�� � � � � � , �*��� �.
5: if �� �� � �
 then
6: Goto 3.
7: end if
8: Apply algorithm A.2 to compute�� � arg min���

 �	�.
9: Set the median candidate� � �� .

10: Initialize the collection of investigated lines
 � �� �.
11: Let �� be the number of the observation lines containing�� .
12: if �� � max�� then
13: Give up. There are too many possibilities.
14: end if
15: Construct these observation lines
 � � �� � � � � � ��� .
16: Set
 � �
 � �
 .
17: while
 � �� � do
18: Find the line of deepest descent� � arg max���

� ����� � �� ��� ���� �
where�� is the unit vector in the direction of� .

19: Apply algorithm A.2 to have�� � arg min� ��
 �	�.

20: Update
 �
 � �� � and
 � �
 � � �� �.
21: if

 � �� � � �� � then
22: Goto 9.
23: end if
24: end while
25: Return� .

A.2 Minimize

on the observation line.

Input: Precalculated observation hyperplanes, �* �.
Input: Observation line�.
Input: Enclosing box� � ��� $� � ����� �
Output: The minimum	 � arg min� ��

 �	 �.
1: Choose any point	� � � � � .
2: Initialize

� � (, � � � and� � �.

3: for all * do
4: if , �* � � � � � then
5: Add � � � � �* �.
6: else
7: � � � � �� � �� �	� �� �* �
8:

� �

� � �� ��� �	� ��� �* �.9: end if

10: end for

12 T. Ronkainen et al.

11: Sort hyperplane indices* � � according to intersection points, i.e. if� ��� � � ��� � � � � � and we have, �* ��� � �� � � � � �� � and, �� ��� ��� � � �� �� � for some� � and�� , then* � � �� � � � �� . Set�� � �� �
and denote the order by* ��� � * �� � � � � � * ��	 �.

12: Set�
 � � � � � , ���.
13: Set�
�	 � � � � , ��	 �.
14: Set the potential minimum�� �
 �.
15: Compute� � � � �� � � � �� �� � �� �� �* � and

16:

� �

� � �� � � � �� �� � �� ��� �* �.

17: Evaluate

 � �� �, i.e. set �

� � � �� �

� .

18: for all � � � � � � � � �� do
19: Set1

� � � �
� 	 �� ��%� �
 � � � �* �$��� � �
� 	 �� ��%� �
 �	 � � �* �$��� �
20: Set

� �

� �
� 	 �� ��%� �
 � � �� �* �$��� � �
� 	 �� ��%� �
 �	 � �� �* �$��� � �

21: Set�	� � � � , �* �$� �.
22: if � � 	 �

� � �

then

23: Set �� � 	 and �

� � � 	 �

� .

24: end if
25: end for
26: Return �� .

A.3 Compute an estimate of the Oja median.

Input: Data set� � �� � � � � � � � � � in �� .
Input: Number of the sampled hyperplanes between successive grid updatings� � �
.
Input: Confidence level(�
 � � �
.
Input: Radius of the confidence�� -ball � � (.
Output: Estimate�� of the Oja median� �� �, s.t.� �� �� �� �� ��� � �� �
��

.
1: Find the enclosing box of the data�� $� � �min�� �� � � � � � ��� �� � � � �min�� �� � � � � � ��� ��

and ���� � �max�� �� � � � � � ��� �� � � � �max�� �� � � � � � ��� �� �
2: Set the grid spacing� � max������ $ � �� $� $ ���� � � �
� � � � � � �.
3: Set the center of the grid�� � � ��� $� � ���� �.
1 This assignment is numerically safer than the shorter, mathematically equivalent for-

mula� � � � �� � ����%� �� �� �! "#$�% �.

Computation of the multivariate Oja median 13

4: Select the regular grid

� � ��$� � ��� $ � �� � �� $ � � � �� $ � �� $ � � � �� $ � �� � �
5: Initialize � � � (, �� � (� � �

matrix and� � � � � �� ��� � � �
-vector.

6: Save values� �� � � � � �� � � �� and� � � � � ��� ��� � �� �� �.
7: repeat
8: Update rank estimates with algorithm A.4.
9: Select� � �� � � � � �� � + 	
 �� ��.

10: until �� � +
.
11: if �� � � (then
12: Restore values� � � � �� � �� � �� � and� � � � � �� ��� � ��� ���.
13: Goto 7.
14: else if � � � then
15: Refine the grid� � � , �� � � � � and

� � � ��$� � ��� $ � �� � �� $ � � � �� $ � �� $ � � � �� $ � �� � �
16: Initialize rank estimates� �� � � �:

�� �� �� � �
�� ��� � if � � � � �

ave� �� ��� � � � � and�� � �� �� � � �� otherwise.

17: Set� � � � and goto 6.
18: end if
19: Return� � � .

A.4 Update rank estimates.

Input: Number of the hyperplanes� � to be sampled.
Input: Collection of points� � �� � � � � � � �� �, where ranks should be estimated.
Input: Current rank estimates�� �� � � � � � � � �� ��� �, covariance�� and the number

of the already sampled hyperplanes� � .
Input: Observations� � � � � � � � � � �� (these are necessary for computing� �* �).
Output: Updated�� �� � � � � � � � �� ��� �, �� and� � .
Output: Test statistic values

� �� � � � � � � � � ��� �.
1: for � � timesdo
2: Choose randomly* � ��� � � � � � �� �, �� � ��� �,
 + �� + �.
3: Set� � � � � �
.
4: for all � � � do
5: Set �� ��� � ������ �� ��� � ��� �� �� �� �* �.
6: end for
7: Set �� � �� ���� �� � ��� � �* ��� �* �.

14 T. Ronkainen et al.

8: end for
9: for all � � � do

10: Set
� ��� � � � �� �� �� �� �� �� ���.

11: end for

A.5 Find minimal simplex approximating the Oja median.

Input: Observations� � � � � � � � � � �� .
Input: Confidence level(�
 � � �
.
Input: Number of the sample hyperplanes during the first phase� � �
.
Input: How many gridpoints to pass to the second phase� � � �
.
1: Initialize � � � (, �� � (� � �

matrix and� � � � � �� ��� � � �
-vector.

2: (First phase) Set� � �� � � � � � � � � �.
3: while �� � � � do
4: Use algorithm A.4 to update rank estimates.
5: Select� � �� � � � � �� � + 	
 �� ��.
6: end while
7: If �� � � � �
, we have too small� value. Increase it and try again.
8: (Second phase) Set� � �
.
9: if ��� � � � � ��� + 	
 �� �� � � � �
 then

10: Sample one hyperplane with algorithm A.4.
11: Goto 9.
12: end if
13: Find � ��� � � � � � � ��� �� with the lowest test statistic values

� �� �.
14: Denote the simplex� � simplex�� ��� � � � � � � ��� �� �.
15: if int�� � � � �� � then
16: Sample one hyperplane with algorithm A.4.
17: Goto 9.
18: end if
19: Return� ��� � � � � � � ��� �� .
Implementation of these algorithms are available at

http://www.jyu.fi/�tojuro/

as an SPlus module written in C++.

References

1. Bertsimas, D., and Tsitsiklis, J. N.Introduction to Linear Optimization.Athena Scien-
tific, Belmont, MA, 1997.

2. Hettmansperger, T.P., Möttönen, J. and Oja, H. (1999a). The geometry of the affine in-
variant multivariate sign and rank methods.J. Nonparam. Statist., 11, 271–285.

3. Nadar, M., Hettmansperger, T.P. and Oja, H. (2001). The asymptotic variance of the Oja
median. Submitted.

Computation of the multivariate Oja median 15

4. Niinimaa, A., Oja, H., and Nyblom, J. (1992). Algorithm AS277: The Oja bivariate
median.J. Royal Statist. Society, Ser. B, 41, 611–633.

5. Oja, H. (1983). Descriptive statistics for multivariatedistributions.Stat. and Prob. Let-
ters, 1, 327–332.

6. Oja, H. (1999). Affine invariant multivariate sign and rank tests and corresponding esti-
mates: a review.Scand. J. Statist., 26, 319–343.

7. Ollila, E., Hettmansperger, T.P. and Oja, H. (2001a). Estimates of the regression coeffi-
cients based on the sign covariance matrix. Submitted.

8. Visuri, S., Ollila, E., Koivunen, V., Möttönen, J. and Oja, H. (2001). Affine equivariant
multivariate rank methods. Conditionally accepted.

