A Continuous-Time Hopfield Net Simulation of

Discrete Neural Networks

Ji#{ Sima*
Institute of Computer Science, Academy of Sciences of the Czech Republic,

v~

Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic, sima@cs.cas.cz

Pekka Orponen'
Department of Mathematics, University of Jyvéaskyla,
P.O. Box 35, FIN-40351 Jyvaskyla, Finland, orponen@moath.jyu.fi

Abstract

We investigate the computational power of con-
tinuous-time symmetric Hopfield nets. As is
well known, such networks have very constrained,
Liapunov-function controlled dynamics. Neverthe-
less, we show that they are universal and efficient
computational devices, in the sense that any conver-
gent fully parallel computation by a network of n
discrete-time binary neurons, with in general asym-
metric interconnections, can be simulated by a sym-
metric continuous-time Hopfield net containing only
14n + 6 units using the saturated-linear sigmoid ac-
tivation function. In terms of standard discrete com-
putation models this result implies that any polyno-
mially space-bounded Turing machine can be simu-
lated by a polynomially size-increasing sequence of
continuous-time Hopfield nets.

1 Introduction

In this paper, we study the computational power of
the continuous-time symmetric recurrent neural net-
work model popularized by John Hopfield in 1984 [6].
The dynamics of these networks were actually al-
ready analyzed earlier by Cohen and Grossberg in a
more general setting [3], but because of the affinity
to the very influential discrete-time binary-state ver-
sion of the model [5], this additive special case of the
Cohen-Grossberg equations has become known as
the “continuous-time Hopfield network model”. Part
of the appeal of Hopfield’s continuous-time model
stems from its efficient implementations in analog

*Research supported by GA CR Grant No. 201/98/0717
and GA AS CR Grant B2030007.

TResearch supported by Academy of Finland Grant
No. 37115/96.

electrical [6] and optical [19] hardware. Besides as-
sociative memory, proposed uses of continuous-time
Hopfield nets include, e.g., fast approximate solution
of combinatorial optimization problems such as the
traveling salesman problem [7].

As is well known [3, 6], the dynamics of any net-
work adhering to this model is governed by a Lia-
punov function defined on its state space. At first
sight, this would appear to severely limit the capa-
bilities of such networks for general computation, be-
cause the Liapunov property implies that a network
always converges from any initial state towards some
stable final state. Thus e.g. nondamping oscillations,
which seem to be an essential prerequisite of general
computation, cannot be created in such networks.

The existence of a Liapunov function is a char-
acteristic of networks whose interconnection weight
matrix is symmetric, as required for both continuous-
and discrete-time Hopfield nets. More general asym-
metric networks usually do not behave in the simple
manner guaranteed by this property. E.g. one can
easily create an oscillator out of two asymmetrically
connected neurons, but even this simple device can-
not be simulated by any symmetric continuous-time
network.

Nevertheless, we shall show that infinite oscilla-
tions are the only feature of general-purpose (digi-
tal) computation that cannot be reproduced in sym-
metric continuous-time networks. More precisely, we
show that any converging fully parallel computation
by a network of n discrete-time binary neurons, with
in general asymmetric interconnections, can be sim-
ulated by a symmetric continuous-time Hopfield net
containing 14n + 6 units using the saturated-linear
sigmoid activation function.

Observe, namely, that any converging computa-
tion by a discrete-time deterministic network of n

binary neurons must terminate within 2" steps. A
basic technique used in our proof is the construc-
tion of an (n + 2)-bit symmetric continuous-time
clock network (a simulated binary counter) that, us-
ing 5n + 6 units, produces a sequence of 2" well-
controlled oscillations (generated by the second least
significant counter bit) before it converges. This
sequence of clock pulses is used to drive the rest
of the network where each discrete neuron is simu-
lated by a symmetrically interconnected subnetwork
of 9 continuous-time units.

The clock network is already by itself of some
interest from a dynamical systems perspective, be-
cause it provides an explicit example of a Liapunov-
type continuous-time system whose convergence time
grows exponentially in the system dimension. More
precisely, we shall show in Section 4 that the conver-
gence time for an (n + 1)-bit clock network, which
consists of r = 5n + 1 units, is Q(2"/e) = Q(27/°%/e),
where € is a parameter controlling the convergence
rate of the system. In terms of bit representa-
tions this bounds translates to a convergence time
of 22(6(M)) for a network with an encoding size of
M bits, where g(M) is an arbitrary continuous func-
tion such that g(M) = o(M), g(M) = Q(M?/?), and
M/g(M) is increasing.

This result can be compared to a general conver-
gence time upper bound of 20(YN) for discrete Hop-
field networks with N-bit representations [17]. Thus,
the continuous-time implementation actually yields
better bounds than the discrete-time one, assum-
ing that the time interval between two subsequent
discrete updates corresponds to a continuous time
unit. This result suggests that continuous-time ana-
log models of computation may be worth investigat-
ing more for their efficiency gains than for their (the-
oretical) capability for arbitrary-precision real num-
ber computation [2, 15, 16].

The predecessors of the present work are: a sim-
ilar, but considerably simpler, construction used
in [12] to prove the computational equivalence of-
symmetric and convergent asymmetric discrete-time
binary networks!, and the simulation of discrete-time
networks by asymmetric continuous-time networks
in [14]. The original idea for the discrete-time clock
network used in [12], and on which our current con-
struction is based, stems from [4]. A general sur-
vey of topics in continuous-time computation is pre-
sented in [13].

1Qur present construction can actually also be used to im-
prove the discrete-time simulation in [12], which requires a
symmetric network of Q(n2) units to simulate a convergent
asymmetric network of size n. Using the technique presented
in Section 3, the simulation overhead can be reduced to 6n +2
units in the discrete case [17].

As pointed out in [12], polynomial-size increas-
ing sequences of discrete networks are computation-
ally equivalent to (nonuniform) polynomially space-
bounded Turing machines (more precisely, they com-
pute the complexity class PSPACE/poly [1, p. 100]).
By the result in the present paper, we now know that
continuous-time symmetric networks are at least as
powerful, i.e. given any polynomially space-bounded
Turing machine, we can construct a polynomial-size
sequence of continuous-time Hopfield nets for simu-
lating it. This is to our knowledge the first result
concerning the computational power of symmetric
continuous-time networks, and it is somewhat sur-
prising that they turn out to be computationally uni-
versal in this complexity-limited sense.

A related line of study concerns the computational
power of finite discrete-time analog-state neural net-
works. Here it is known that the computational
power of asymmetric networks using the saturated-
linear sigmoid activation function increases with the
Kolmogorov complexity of the weight parameters [2].
(With integer weights such networks are equiva-
lent to finite automata [8, 9, 18], while with ratio-
nal weights arbitrary Turing machines can be sim-
ulated [9, 16]. With arbitrary real weights the net-
works can even have “super-Turing” computational
capabilities [15].) On the other hand, it is known
that any amount of analog noise reduces the com-
putational power of this model to that of finite au-
tomata [11].

Section 3 below presents an outline of our con-
struction, and Section 4 contains a convergence time
analysis of the resulting continuous-time networks.
In Section 5 we give a numerical simulation example
witnessing the validity of the construction. The for-
mal verification, which has the form of a tedious case
analysis, is deferred to the full version of the paper.

2 Preliminaries

Let us first briefly specify the model of a finite dis-
crete recurrent neural network. Such a network con-
sists of n simple computational units or neurons, in-
dexed as 1,...,n, that are connected into a gener-
ally cyclic oriented graph or architecture, in which
each edge (4, 7) leading from neuron 4 to j is labeled
with an integer weight w(i,j) = wj;. The absence
of a connection within the architecture indicates a
zero weight between the respective neurons, and vice
versa.

We consider here only the fully parallel dynamics
of such networks, in which the evolution of the net-

work state y® = (49, ... 4y € {0,1}" is deter-

mined for discrete time instants ¢ = 0,1,..., as fol-
lows. At the beginning of a computation the network
is placed in an initial state y(®) which may include an
external input. At discrete time ¢ > 0, each neuron
j =1,...,n collects its binary inputs from the states
(outputs) ygt) € {0,1} of incident neurons i. Then its

integer excitation EJ(-t) =3 wj,-yzgt) (j=1,...,n)
is computed as the respective weighted sum of in-
puts. The sum includes an integer bias wjo local to
neuron j, modeled as a weight from a formal con-
stant unit input y((]t) =1, t > 0. At the next instant
t+1, an activation function, which in this case is the

hard limiter or threshold function s, is applied to §J(t)

for all neurons j = 1,...,n in order to determine the
new network state y**1) by the following rule:
i =s(g) j=1,..0m (1)
where for ¢
1 or £>0
8(5)_{0 for £ <0. (2)

Similarly, a finite continuous-time analog neural
network is composed of m analog units which oper-
ate (in our case) with the saturated-linear sigmoid
activation function

1 for £€>1
o(§)=4¢ & for 0<¢<1 3)
0 for £€<0.

Hence, the states of analog units are real numbers
within the interval [0, 1], and the weights (including
biases), denoted by v(p, q) (for units p, ¢) are reals as
well. The computational dynamics of a continuous-
time network is defined for every real ¢ > 0 by the
following system of differential equations, with the
initial network state y(0) providing the initial con-
ditions:

Wty = g0 +o(g0) = (4)
= —y(t)+o (Z v(p, Q)yq(t))
q=0
p=1,...,m.

A Hopfield (symmetric) network has as an archi-
tecture an undirected graph, and weights that sat-
isfy v(p,q) = v(q,p) for every p, g. By a Liapunov
function argument [3, 6], it can be shown that a
Hopfield network converges from any initial state
v(0) to some stable state satisfying dy,/dt = 0 for
all p = 1,...,m. The set of stable states of the
continuous-time system (4) coincides with that of the
discrete system (1).

3 Constructing the
Continuous-Time Network

Given a convergent discrete asymmetric neural net-
work with n neurons, we shall construct a compu-
tationally equivalent analog Hopfield network with
m = 14n + 6 continuous-time units. The analog
network will be composed of an (n + 2)-bit binary
counter (clock) subnetwork consisting of 5n+6 units,
each starting at the zero initial state, and n other
subnetworks, each containing 9 analog units for the
purpose of simulating one discrete neuron.

The initial construction for a 2-bit counter is pre-
sented in Figure 1, where the symmetric connec-
tions between units are labeled with the respective
weights, and the biases are indicated by the edges
drawn without an originating unit.

The counter bit ¢y of order 0 starts its excitation
with a bias v(0,c9) = &€ > 0 which is a small (e.g.
€ < 0.1) optional parameter that also determines
the time overhead of the simulation. Because of its
feedback weight v(cp,co) = 1+¢ the state of ¢ grad-
ually grows towards saturation at value 1, at which
time (more precisely, when the state of ¢o is “suf-
ficiently close” to 1) we say that the unit is active
or fires. This trick of gradual transition from 0 to
1 is used repeatedly throughout the analog network
construction. The operation of the remaining units
in Figure 1, which are of order 1, is the same as that
of the units of a higher order £ > 1 whose induc-
tive description and explanation follows (although
the definition of weights is slightly different).

Thus, suppose that the counter has been con-
structed up to the first £ < n + 2 counter bits
co,---,Cx—1, and denote by Pj the set of all its
my = 5k — 4 units, including the auxiliary ones la-
beled ag, x¢,be, z¢, for £ = 1,...,k — 1. Then, the
counter unit ¢ with a feedback weight v(cg,cr) =
1 + ¢, is connected to all my units p € Py via
weights v(p,cr) = 1 which, together with its bias

v(0,¢;) = —my + €, make ¢, to fire shortly after all
these units are active (including the first & counter
bits ¢g,...,cxr—1 which means that counting from 0

to 2% — 1 has been accomplished). Further, the unit
¢, is connected to a sequence of 4 auxiliary units
ak, Tk, br, 2 (all having feedbacks 1 +) which are
being, one by one, activated after ¢y, fires. This is im-
plemented by the following weights: v(c,ax) = my,
v(ag,xr) = Vi (specified below), v(zg,bp) = 1,
v(b, zk) = Vi — my, and biases v(0,ax) = —my + ¢,
’U(Oamk) = U(07bk) =-1 +¢, v(Oazk) =mg — Vi +e&.
The purpose of the units ag, by is to slow down
the continuous-time state flow in order to synchro-
nize the computation. The unit x; resets all the

—1+4¢

—1+¢

Figure 1: A continuous-time 2-bit counter network

units in P, to their initial zero states. For this
purpose, zj is further connected to each p € Py
via a sufficiently large negative weight v(zg,p) <
0 such that —v(zg,p) > 1+ qupkw(q’pbov(q,p)
exceeds their mutual positive influence (including
the weight v(cg,p) = 1). This also determines
the above-mentioned large positive weight parame-
ter Vi = 1— 3 p v(zk,p) that makes the state
of z, (similarly for z;) independent of the outputs
from p € Pj. Finally, the unit z; balances the in-
fluence of zj on P, so that the first k counter bits
can again count from 0 to 2¥ — 1 but now with
cr being active. This is achieved by the weight
v(zk,p) = —v(xg,p) — 1 for each p € Py in which
—1 compensates v(cg,p) = 1. This completes the
induction step.

The construction of the 9-unit symmetric analog
subnetwork for simulating one neuron j from the dis-
crete network is depicted in Figure 2. The output yj(.t)
of the binary-state neuron at discrete time instant
t > 0 is represented by the state of analog unit p;,
whose state is momentarily stabilized by the support
from unit 7; that doubles this state.

The new output y](-tﬂ) of j at discrete time ¢ + 1
is computed in a unit 7; that is connected to the
appropriate units g; from the other subnetworks, as
required by the original discrete network, via slightly
adjusted weights v(g;,7;) = 8w(4,j) (including the
bias v(0,7;) = 8w(0,j) + 4).

The parameter w is chosen as the max-
imum value of E?:M(gjmbov(gj,ﬁ) and
_Z?II;U(Qj,Ti)<0U(Qj7Ti) for all j = 1,...,n,
in order to keep the unit g; from being affected
by the units 7;. Further, the unit x; receives the

state y](-tH) from 7; while the unit w; computes
its negation. In reverse, x;,w; cannot influence 7;
since the respective weights 2, —3 are too small in
comparison with bias v(0,7;) = 8w;o + 4 (recall that

the original asymmetric weights wj; are integers). In
the meantime, the remaining units «;, 3;,7;,0; are
passive (have states close to 0), and the underlying
subnetwork is temporarily stable.

The update of the simulated discrete state in the
continuous-time network, i.e. replacing the old state
yj(.t) in g; (and 7;) by the new state yj(.tﬂ) from 75, is
controlled by pulses from the clock. This process is
initiated by the activity of counter bit ¢;, and con-
cluded by the subsequent activity of b; which com-
pensates for the influence of ¢; on a;, 3;. The size of
the parameter W = (3u+6)n in Figure 1 ensures that
the states of the counter units ¢, b; are not affected
by the weights originating in the o; or 8; units ac-
tive in the n subnetworks. Note that the units ¢; and
b1 in the above-described (n + 2)-bit counter fire 2™
times, which is sufficient to simulate any convergent
computation on a discrete neural network of size n.

Thus, for yj(.tﬂ) = 1 the unit x; gets activated
and this, together with the support from ¢, induces
the unit a; to fire. The signal from «; is further
propagated following the non-increasing sequence of
weights and biases via the synchronizing unit ~; up
to g;,; making them active as required.

In the opposite case when y](-tﬂ) =0, unit w; gets

activated and this, together with the support from
c1, induces the unit 8; to fire. Further, the unit
B; sends the signal to d;, and this inhibits g;,7; by
means of sufficiently negative weights so that they
are passive, as required.

In the meantime, b; locks the channels via a;, 3;.

Finally, the new discrete state y](-tH) is computed by

7; and the subnetwork is stable until b; fires again.

—3u—T+e

—3u —5+4+¢

1+4+e
3u +5

—u—2+c¢€

w+5

1+e 1+e

—u—-T+e —1+4e¢

Figure 2: A continuous-time simulation of a discrete neuron

4 Convergence Time Analysis

The (n + 1)-bit continuous-time clock network from
Section 3, which consists of 7 = 5n + 1 units, can
be exploited to achieve a lower bound on the con-
vergence time of continuous-time networks. For this
purpose, the duration of a gradual state transition
from 0 to 1 of the unit ¢y will be estimated. During
its state growth the influence of the remaining units
on ¢g is balanced, and may be neglected in order to
simplify our analysis. Thus, the state evolution of ¢y
in continuous time, denoted by y(t), can be described
by the following differential equation with the initial
condition y(0) = 0:

dy

L) = -y +o+ Q+ep®) 6)

whose solution can explicitly be expressed as follows:

et —1 for 0<t<t;
vo={ | L Si5E

where 1 = (1/e)In(2/(1 + €)) and
y(t1) =(1—¢€)/(1+¢). Hence, for a small ¢ < 1
the respective state transition takes time at least
t1 = Q(1/e) which, together with the fact that
the unit ¢o fires 2™ times before the (n + 1)-bit
clock converges, provides the desired lower bounds
Q(2"/e) = Q(27/5 /) on the convergence time.

Let us then express this bound in terms of the size
M in bits of the network representation. First, con-
sider the integer part of the weight parameter rep-
resentation excluding fractions €. By induction, the

maximum integer weight parameter in the clock is
of order 2°("). This corresponds to O(r) bits per
weight that is repeated O(r?) times, and thus yields
at most O(r®) bits in the representation. In addi-
tion, the biases and feedbacks of the r units include
the fraction e, and taking this into account requires
O(rlog(1/¢)) additional bits, say at least xrlog(1/e)
bits for some constant x > 0.

By choosing e = 2-7("/(57) in which f is a contin-
uous increasing function whose inverse is defined as
f~Y(u) = p/g(pn), where g is an arbitrary function
such that g(u) = Qu*/?) (implying f(r) = Q(r%))
and g(u) = o(u), we get M = O(f(r)), espe-
cially M > f(r) from M > krlog(l/e). Finally,
the convergence time Q(27/%/¢) can be translated to
Q(2f()/(wr)r/5) — 2F(1)/7) which can be rewritten
as 22(M/F7HM) = 99(s(M)) gince f(r) = (M) from
M =0O(f(r)) and f~Y(M) > r from M > f(r).

This can be compared to a general convergence
time upper bound of 20(VM for discrete Hopfield
networks with N-bit representations [17]. The
continuous-time implementation actually yields bet-
ter bounds 22(9(M)) for any g(M) = Q(M?/3) up to
g(M) = o(M) than the discrete-time one, assuming
that the time interval between two subsequent dis-
crete updates corresponds to a continuous time unit.

5 A Simulation Example
A computer program HNGEN has been created to

automate the construction from Section 3. The input
for HNGEN is a text file containing the asymmetric

weights and biases of the discrete neural network,
as well as its initial state. The program generates
the corresponding system (4) of differential equa-
tions, together with the respective initial conditions
in the form of a FORTRAN subroutine which de-
scribes the continuous-time dynamics of the analog
Hopfield net that simulates the given discrete net-
work. This FORTRAN procedure is then presented
to a powerful numerical solver UFO [10] that pro-
vides the user with a numerical solution for the re-
spective system (4), i.e. it draws the graphs of the
state evolution in time for selected analog units.

L

=l Zo A

-] i

01

r

k=1 Fa aa =3 =a f=l=] 133 aa AR-1=]
02

[

o Z0 - oo fale) A 120 R L= 100
03

[

o 20 40 aa 540 RE=tal 120 440 180

Figure 3: Simulation of a 3-neuron cycle network

By using the program HNGEN, the construction
from Section 3 has been successfully tested on sev-
eral examples. Consider e.g. a simple discrete asym-
metric neural network which is an oriented cycle of
3 neurons with all the weights 1 and biases —1. Now,
for the initial state including exactly one active neu-
ron, the signal is propagated through the cycle in
a circle. Implementing this system on the HNGEN
generator results in a continuous-time Hopfield net-
work with 48 units. Figure 3 shows the numerical
state evolution of the 3 analog units g1, g2, 03 whose
states correspond to the states of the original dis-
crete neurons, together with the counter bit ¢;, for
a period of eight (22) simulated discrete steps. (The
parameter value € = 0.1 was used in this simulation.)

6 Conclusions and
Open Problems

We have proved that an arbitrary convergent
discrete-time binary network can be simulated by
a symmetric continuous-time network with only a
linear increase in the network size. The existence
of a Liapunov function for symmetric networks pre-
cludes the existence of undamping oscillations in the
continuous-time system, but nevertheless our con-
struction relies heavily on the finite sequence of clock
pulses generated by the continuous-time counter sub-
network.

From the point of view of understanding analog
computation in general this technique is somewhat
unsatisfying, since we are still basically discretizing
the continuous-time computation. It would be most
interesting to develop some theoretical tools (e.g.
complexity measures, reductions, universal computa-
tion) for “naturally” continuous-time computations
that exclude the use of discretizing oscillations.

Another challenge for further research is to prove
upper bounds on the power of continuous-time net-
works. Note that in the case of discrete-time
analog-state networks a single fixed-size network
with rational-number parameters can be computa-
tionally universal, i.e. able to simulate a univer-
sal Turing machine on arbitrary inputs [16]. Can
e.g. this strong universality result be generalized for
continuous-time networks? Also, we have estab-
lished an exponential lower bound on the conver-
gence time of symmetric continuous-time networks:
can a matching upper bound be proved, or the lower
bound be increased?

References

[1] Balcazar, J. L., Diaz, J., Gabarrd, J. Struc-
tural Complezity I. Springer-Verlag, Berlin Hei-
delberg, 1988.

[2] Balcézar, J. L., Gavalda, R., Siegelmann, H. T.
Computational power of neural networks: A
characterization in terms of Kolmogorov com-
plexity. In IEEE Transactions of Information
Theory, 43, 1175-1183, 1997.

[3] Cohen, M. A., Grossberg, S. Absolute stability
of global pattern formation and parallel memory
storage by competitive neural networks. IEEE

Transactions on Systems, Man, and Cybernet-
ics, 13, 815-826, 1983.

[4] Goles, E., Martinez, S. Exponential transient
classes of symmetric neural networks for syn-

[11]

[12]

[13]

[15]

chronous and sequential updating. Complez
Systems, 3, 589-597, 1989.

Hopfield, J. J. Neural networks and physi-
cal systems with emergent collective computa-
tional abilities. In Proceedings of the National
Academy of Sciences, vol. 79, 2554-2558, 1982.

Hopfield, J. J. Neurons with graded response
have collective computational properties like
those of two-state neurons. In Proceedings of the
National Academy of Sciences, vol. 81, 3088—
3092, 1984.

Hopfield, J. J., Tank, D. W. “Neural” computa-
tion of decisions in optimization problems. Bio-
logical Cybernetics, 52, 141-152, 1985.

Horne, B. G., Hush, D. R. Bounds on the com-
plexity of recurrent neural network implementa-
tions of finite state machines. Neural Networks,
9, 243-252, 1996.

Indyk, P. Optimal simulation of automata by
neural nets. In Proceedings of the 12th Annual
Symposium on Theoretical Aspects of Computer
Science, vol. 900 of LNCS, 337-348, Springer-
Verlag, Berlin, 1995.

Luksan, L., Tuma, M., Siska, M., Ramesové, N.
Interactive system for Universal Functional Op-
timization (UFO) version 1998. Technical report
V-766, Institute of Computer Science, Academy
of Sciences of the Czech Republic, Prague, 1998.

Maass, W., Orponen, P. On the effect of ana-
log noise in discrete-time analog computations.
Neural Computation, 10, 1071-1095, 1998.

Orponen, P. The computational power of dis-
crete Hopfield nets with hidden units. Neural
Computation, 8, 403-415, 1996.

Orponen, P. A survey of continuous-time com-
putation theory. In D.-Z. Du and K.-I. Ko, edi-
tors, Advances in Algorithms, Languages, and
Complexity, 209-224, Kluwer Academic Pub-
lishers, Dordrecht, 1997.

Orponen, P. The computational power of con-
tinuous time neural networks. In Proceedings
of the SOFSEM Seminar on Current Trends
in Theory and Practice of Informatics, Milovy,
Czech Republic, vol. 1338 of LNCS, 86-103,
Springer-Verlag, Berlin, 1997.

Siegelmann, H. T., Sontag, E. D. Analog com-
putation via neural networks. Theoretical Com-
puter Science, 131, 331-360, 1994.

[16]

[17]

Siegelmann, H. T., Sontag, E. D. Computa-
tional power of neural networks. Journal of
Computer System Science, 50, 132-150, 1995.

Sima, J., Orponen, P., Antti-Poika, T. Some
afterthoughts on Hopfield Networks. In Pro-
ceedings of the SOFSEM Seminar on Current
Trends in Theory and Practice of Informatics,
Milovy, Czech Republic, vol. 1725 of LNCS,
459-469, Springer-Verlag, Berlin, 1999.

Sima, J., Wiedermann, J. Theory of neuromata.
Journal of the ACM, 45, 155-178, 1998.

Stoll, H. M., Lee, L.-S. A continuous-time opti-
cal neural network. In Proceedings of the IEEE
International Conference on Neural Networks,
San Diego, vol. II, 373-384, 1988.

