A Continuous-Time Hopfield Net Simulation of Discrete Neural Networks

Jiří Šima
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 182 07 Prague 8, Czech Republic, sima@cs.cas.cz

Pekka Orponen
Department of Mathematics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland, orponen@math.jyu.fi

Abstract

We investigate the computational power of continuous-time symmetric Hopfield nets. As is well known, such networks have very constrained, Liapunov-function controlled dynamics. Nevertheless, we show that they are universal and efficient computational devices, in the sense that any convergent fully parallel computation by a network of \(n \) discrete-time binary neurons, with in general asymmetric interconnections, can be simulated by a symmetric continuous-time Hopfield net containing only \(14n + 6 \) units using the saturated-linear sigmoid activation function. In terms of standard discrete computation models this result implies that any polynomially space-bounded Turing machine can be simulated by a polynomially size-increasing sequence of continuous-time Hopfield nets.

1 Introduction

In this paper, we study the computational power of the continuous-time symmetric recurrent neural network model popularized by John Hopfield in 1984 [6]. The dynamics of these networks were actually already analyzed earlier by Cohen and Grossberg in a more general setting [3], but because of the affinity to the very influential discrete-time binary-state version of the model [5], this additive special case of the Cohen-Grossberg equations has become known as the "continuous-time Hopfield network model". Part of the appeal of Hopfield's continuous-time model stems from its efficient implementations in analog electrical [6] and optical [19] hardware. Besides associative memory, proposed uses of continuous-time Hopfield nets include, e.g., fast approximate solution of combinatorial optimization problems such as the traveling salesman problem [7].

As is well known [3, 6], the dynamics of any network adhering to this model is governed by a Liapunov function defined on its state space. At first sight, this would appear to severely limit the capabilities of such networks for general computation, because the Liapunov property implies that a network always converges from any initial state towards some stable final state. E.g. one can easily create an oscillator out of two asymmetrically connected neurons, but even this simple device cannot be simulated by any symmetric continuous-time network.

The existence of a Liapunov function is a characteristic of networks whose interconnection weight matrix is symmetric, as required for both continuous-and discrete-time Hopfield nets. More general asymmetric networks usually do not behave in the simple manner guaranteed by this property. E.g. one can easily create an oscillator out of two asymmetrically connected neurons, but even this simple device cannot be simulated by any symmetric continuous-time network.

Nevertheless, we shall show that infinite oscillations are the only feature of general-purpose (digital) computation that cannot be reproduced in symmetric continuous-time networks. More precisely, we show that any converging fully parallel computation by a network of \(n \) discrete-time binary neurons, with in general asymmetric interconnections, can be simulated by a symmetric continuous-time Hopfield net containing \(14n + 6 \) units using the saturated-linear sigmoid activation function.

Observe, namely, that any converging computation by a discrete-time deterministic network of \(n \)
binary neurons must terminate within 2^n steps. A basic technique used in our proof is the construction of an $(n + 2)$-bit symmetric continuous-time clock network (a simulated binary counter) that, using $3n + 6$ units, produces a sequence of 2^n well-controlled oscillations (generated by the second least significant counter bit) before it converges. This sequence of clock pulses is used to drive the rest of the network where each discrete neuron is simulated by a symmetrically interconnected subnetwork of 9 continuous-time units.

The clock network is already by itself of some interest from a dynamical systems perspective, because it provides an explicit example of a Liapunov-type continuous-time system whose convergence time grows exponentially in the system dimension. More precisely, we shall show in Section 4 that the convergence time for an $(n + 1)$-bit clock network, which consists of $r = 5n + 1$ units, is $\Omega(2^n/\varepsilon) = \Omega(2^{r/5}/\varepsilon)$, where ε is a parameter controlling the convergence rate of the system. In terms of bit representations this bounds translates to a convergence time of $2^\Omega(g(M))$ for a network with an encoding size of M bits, where $g(M)$ is an arbitrary continuous function such that $g(M) = o(M)$, $g(M) = \Omega(M^{2/3})$, and $M/g(M)$ is increasing.

This result can be compared to a general convergence time upper bound of $2^\Omega(\sqrt{N})$ for discrete Hopfield networks with N-bit representations [17]. Thus, the continuous-time implementation actually yields better bounds than the discrete-time one, assuming that the time interval between two subsequent discrete updates corresponds to a continuous time unit. This result suggests that continuous-time analog models of computation may be worth investigating more for their efficiency gains than for their (theoretical) capability for arbitrary-precision real number computation [2, 15, 16].

The predecessors of the present work are: a similar, but considerably simpler, construction used in [12] to prove the computational equivalence of symmetric and convergent asymmetric discrete-time binary networks1, and the simulation of discrete-time networks by asymmetric continuous-time networks in [14]. The original idea for the discrete-time clock network used in [12], and on which our current construction is based, stems from [4]. A general survey of topics in continuous-time computation is presented in [13].

1Our present construction can actually also be used to improve the discrete-time simulation in [12], which requires a symmetric network of $\Omega(n^2)$ units to simulate a convergent asymmetric network of size n. Using the technique presented in Section 3, the simulation overhead can be reduced to $6n + 2$ units in the discrete case [17].

As pointed out in [12], polynomial-size increasing sequences of discrete networks are computationally equivalent to (nonuniform) polynomially space-bounded Turing machines (more precisely, they compute the complexity class PSPACE/poly [1, p. 100]). By the result in the present paper, we now know that continuous-time symmetric networks are at least as powerful, i.e., given any polynomially space-bounded Turing machine, we can construct a polynomial-size sequence of continuous-time Hopfield nets for simulating it. This is to our knowledge the first result concerning the computational power of symmetric continuous-time networks, and it is somewhat surprising that they turn out to be computationally universal in this complexity-limited sense.

A related line of study concerns the computational power of finite discrete-time analog-state neural networks. Here it is known that the computational power of asymmetric networks using the saturated-linear sigmoid activation function increases with the Kolmogorov complexity of the weight parameters [2]. (With integer weights such networks are equivalent to finite automata [8, 9, 18], while with rational weights arbitrary Turing machines can be simulated [9, 16]. With arbitrary real weights the networks can even have “super-Turing” computational capabilities [13].) On the other hand, it is known that any amount of analog noise reduces the computational power of this model to that of finite automata [11].

Section 3 below presents an outline of our construction, and Section 4 contains a convergence time analysis of the resulting continuous-time networks. In Section 5 we give a numerical simulation example witnessing the validity of the construction. The formal verification, which has the form of a tedious case analysis, is deferred to the full version of the paper.

2 Preliminaries

Let us first briefly specify the model of a finite discrete recurrent neural network. Such a network consists of n simple computational units or neurons, indexed as $1, \ldots, n$, that are connected into a generally cyclic oriented graph or architecture, in which each edge (i, j) leading from neuron i to j is labeled with an integer weight $w(i, j) = w_{ji}$. The absence of a connection within the architecture indicates a zero weight between the respective neurons, and vice versa.

We consider here only the fully parallel dynamics of such networks, in which the evolution of the network state $y^{(t)} = (y_1^{(t)}, \ldots, y_n^{(t)}) \in \{0, 1\}^n$ is deter-
minded for discrete time instants $t = 0, 1, \ldots$, as follows. At the beginning of a computation the network is placed in an initial state $y^{(0)}$ which may include an external input. At discrete time $t \geq 0$, each neuron $j = 1, \ldots, n$ collects its binary inputs from the states (outputs) $y_j^{(t)} \in \{0, 1\}$ of incident neurons i. Then its integer excitation $\xi_j^{(t)} = \sum_{\ell=0}^n w_j y_\ell^{(t)}$ is computed as the respective weighted sum of inputs. The sum includes an integer bias w_ℓ local to neuron j, modeled as a weight from a formal constant unit input $y_\ell^{(t)} = 1$, $t \geq 0$. At the next instant $t + 1$, an activation function, which in this case is the hard limiter or threshold function s, is applied to $\xi_j^{(t)}$ for all neurons $j = 1, \ldots, n$ in order to determine the new network state $y^{(t+1)}$ by the following rule:

$$y_j^{(t+1)} = s(\xi_j^{(t)}) \quad j = 1, \ldots, n \quad (1)$$

where

$$s(\xi) = \begin{cases}
1 & \text{for } \xi \geq 0 \\
0 & \text{for } \xi < 0
\end{cases} \quad (2)$$

Similarly, a finite continuous-time analog neural network is composed of m analog units which operate (in our case) with the saturated-linear sigmoid activation function

$$\sigma(\xi) = \begin{cases}
1 & \text{for } \xi > 1 \\
\xi & \text{for } 0 \leq \xi \leq 1 \\
0 & \text{for } \xi < 0
\end{cases} \quad (3)$$

Hence, the states of analog units are real numbers within the interval $[0, 1]$, and the weights (including biases), denoted by $v(p, q)$ (for units p, q) are reals as well. The computational dynamics of a continuous-time network is defined for every real $t > 0$ by the following system of differential equations, with the initial network state $y(0)$ providing the initial conditions:

$$\frac{dy_p}{dt}(t) = -y_p(t) + \sigma(\xi_p(t)) = -y_p(t) + \sigma\left(\sum_{q=0}^n v(p,q)y_q(t)\right) \quad (4)$$

$$p = 1, \ldots, m.$$

A Hopfield (symmetric) network has as an architecture an undirected graph, and weights that satisfy $v(p, q) = v(q, p)$ for every p, q. By a Lyapunov function argument [3, 6], it can be shown that a Hopfield network converges from any initial state $y(0)$ to some stable state satisfying $\frac{dy_p}{dt} = 0$ for all $p = 1, \ldots, m$. The set of stable states of the continuous-time system (4) coincides with that of the discrete system (1).

3 Constructing the Continuous-Time Network

Given a convergent discrete asymmetric neural network with n neurons, we shall construct a computationally equivalent analog Hopfield network with $m = 14n + 6$ continuous-time units. The analog network will be composed of an $(n + 2)$-bit binary counter (clock) subnetwork consisting of $5n + 6$ units, each starting at the zero initial state, and n other subnetworks, each containing 9 analog units for the purpose of simulating one discrete neuron.

The initial construction for a 2-bit counter is presented in Figure 1, where the symmetric connections between units are labeled with the respective weights, and the biases are indicated by the edges drawn without an originating unit.

The counter bit c_0 of order 0 starts its excitation with a bias $v(0, c_0) = \epsilon > 0$ which is a small (e.g. $\epsilon \leq 0.1$) optional parameter that also determines the time overhead of the simulation. Because of its feedback weight $v(c_0, c_0) = 1 + \epsilon$ the state of c_0 gradually grows towards saturation at value 1, at which time (more precisely, when the state of c_0 is “sufficiently close” to 1) we say that the unit is active or fires. This trick of gradual transition from 0 to 1 is used repeatedly throughout the analog network construction. The operation of the remaining units in Figure 1, which are of order 1, is the same as that of the units of a higher order $k > 1$ whose inductive description and explanation follows (although the definition of weights is slightly different).

Thus, suppose that the counter has been constructed up to the first $k < n + 2$ counter bits c_0, \ldots, c_{k-1}, and denote by P_k the set of all its $m_k = 5k + 4$ units, including the auxiliary ones labeled $a_\ell, x_\ell, b_\ell, z_\ell$, for $\ell = 1, \ldots, k - 1$. Then, the counter unit c_k with a feedback weight $v(c_k, c_k) = 1 + \epsilon$, is connected to all m_k units $p \in P_k$ via weights $v(p, c_k) = 1$ which, to gether with its bias $v(0, c_k) = -m_k + \epsilon$, make c_k to fire shortly after all these units are active (including the first k counter bits c_0, \ldots, c_{k-1} which means that counting from 0 to $2^k - 1$ has been accomplished). Further, the unit c_k is connected to a sequence of 4 auxiliary units a_k, x_k, b_k, z_k (all having feedbacks $1 + \epsilon$) which are being, one by one, activated after c_k fires. This is implemented by the following weights: $v(c_k, a_k) = m_k$, $v(a_k, x_k) = V_k$ (specified below), $v(x_k, b_k) = 1$, $v(b_k, z_k) = V_k - m_k$, and biases $v(0, a_k) = -m_k + \epsilon$, $v(0, b_k) = -1 + \epsilon$, $v(0, z_k) = m_k - V_k + \epsilon$. The purpose of the units a_k, b_k is to slow down the continuous-time state flow in order to synchronize the computation. The unit x_k resets all the
units in P_k to their initial zero states. For this purpose, x_k is further connected to each $p \in P_k$ via a sufficiently large negative weight $v(x_k, p) < 0$ such that $-v(x_k, p) > 1 + \sum_{q \in P_k} v(q, p) > v(q, p)$ exceeds the mutual positive influence (including the weight $v(c_k, p) = 1$). This also determines the above-mentioned large positive weight parameter $V_k = 1 - \sum_{p \in P_k} v(x_k, p)$ that makes the state of x_k (similarly for z_k) independent of the outputs from $p \in P_k$. Finally, the unit x_k balances the influence of x_k on P_k so that the first k counter bits can count from 0 to $2^k - 1$ but now with c_k being active. This is achieved by the weight $v(z_k, p) = -v(x_k, p) - 1$ for each $p \in P_k$ in which -1 compensates $v(c_k, p) = 1$. This completes the induction step.

The construction of the 9-unit symmetric analog subnetwork for simulating one neuron j from the discrete network is depicted in Figure 2. The output y_j of the binary-state neuron at discrete time instant $t \geq 0$ is represented by the state of analog unit φ_j, whose state is momentarily stabilized by the support from unit π_j that doubles this state.

The new output $y_j^{(t+1)}$ of j at discrete time $t + 1$ is computed in a unit τ_j that is connected to the appropriate units φ_i from the other subnetworks, as required by the original discrete network, via slightly adjusted weights $v(\varphi_i, \tau_j) = 8w(i, j)$ (including the bias $v(0, \tau_j) = 8w(0, j) + 4$).

The parameter w is chosen as the maximum value of $\sum_{i=1}^{n} v(\varphi_i, \tau_j) > 0$ and $-\sum_{i=1}^{n} v(\varphi_i, \tau_j) < 0$ for all $j = 1, \ldots, n$, in order to keep the unit φ_j from being affected by the units τ_i. Further, the unit χ_j receives the state $y_j^{(t+1)}$ from τ_j while the unit ω_j computes its negation. In reverse, χ_j, ω_j cannot influence τ_j since the respective weights $2, -3$ are too small in comparison with bias $v(0, \tau_j) = 8w(0, \tau_j) + 4$ (recall that the original asymmetric weights w_{ij} are integers). In the meantime, the remaining units $\alpha_j, \beta_j, \gamma_j, \delta_j$ are passive (have states close to 0), and the underlying subnetwork is temporarily stable.

The update of the simulated discrete state in the continuous-time network, i.e. replacing the old state $y_j^{(t)}$ in φ_j (and π_j) by the new state $y_j^{(t+1)}$ from τ_j, is controlled by pulses from the clock. This process is initiated by the activity of counter bit c_1, and concluded by the subsequent activity of b_1 which compensates for the influence of c_1 on α_j, β_j. The size of the parameter $W = 3(n+6)n$ in Figure 1 ensures that the states of the counter units c_1, b_1 are not affected by the weights originating in the α_j, β_j units active in the n subnetworks. Note that the units c_1 and b_1 in the above-described $(n+2)$-bit counter fire 2^n times, which is sufficient to simulate any convergent computation on a discrete neural network of size n.

Thus, for $y_j^{(t+1)} = 1$ the unit χ_j gets activated and this, together with the support from c_1, induces the unit α_j to fire. The signal from α_j is further propagated following the non-increasing sequence of weights and biases via the synchronizing unit γ_j up to φ_j, π_j making them active as required.

In the opposite case when $y_j^{(t+1)} = 0$, unit ω_j gets activated and this, together with the support from c_1, induces the unit β_j to fire. Further, the unit β_j sends the signal to δ_j, and this inhibits φ_j, π_j by means of sufficiently negative weights so that they are passive, as required.

In the meantime, b_1 locks the channels via α_j, β_j. Finally, the new discrete state $y_j^{(t+2)}$ is computed by τ_j and the subnetwork is stable until b_1 fires again.
4 Convergence Time Analysis

The \((n + 1)\)-bit continuous-time clock network from Section 3, which consists of \(r = 5n + 1\) units, can be exploited to achieve a lower bound on the convergence time of continuous-time networks. For this purpose, the duration of a gradual state transition from 0 to 1 of the unit \(c_0\) will be estimated. During its state growth the influence of the remaining units on \(c_0\) is balanced, and may be neglected in order to simplify our analysis. Thus, the state evolution of \(c_0\) in continuous time, denoted by \(y(t)\), can be described by the following differential equation with the initial condition \(y(0) = 0\):

\[
\frac{dy}{dt}(t) = -y(t) + \sigma(\varepsilon + (1 + \varepsilon)y(t))
\]

whose solution can explicitly be expressed as follows:

\[
y(t) = \begin{cases}
 e^{\varepsilon t} - 1 & \text{for } 0 \leq t \leq t_1 \\
 1 - \varepsilon e^{(1+\varepsilon)t_1-t} & \text{for } t \geq t_1
\end{cases}
\]

where \(t_1 = (1/\varepsilon)\ln(2/(1 + \varepsilon))\) and \(y(t_1) = (1 - \varepsilon)/(1 + \varepsilon)\). Hence, for a small \(\varepsilon < 1\) the respective state transition takes at least \(t_1 = \Omega(1/\varepsilon)\) which, together with the fact that the unit \(c_0\) fires \(2^n\) times before the \((n + 1)\)-bit clock converges, provides the desired lower bounds \(\Omega(2^n/\varepsilon) = \Omega(2^{n/2}/\varepsilon)\) on the convergence time.

Let us then express this bound in terms of the size \(M\) in bits of the network representation. First, consider the integer part of the weight parameter representation excluding fractions \(\varepsilon\). By induction, the maximum integer weight parameter in the clock is of order \(2^{\Omega(r)}\). This corresponds to \(O(r)\) bits per weight that is repeated \(O(r^2)\) times, and thus yields at most \(O(r^3)\) bits in the representation. In addition, the biases and feedbacks of the \(r\) units include the fraction \(\varepsilon\), and taking this into account requires \(\Theta(r \log(1/\varepsilon))\) additional bits, say at least \(\kappa r \log(1/\varepsilon)\) bits for some constant \(\kappa > 0\).

By choosing \(\varepsilon = 2^{-f(r)/(\kappa r)}\) in which \(f\) is a continuous increasing function whose inverse is defined as \(f^{-1}(\mu) = \mu/g(\mu)\), where \(g\) is an arbitrary function such that \(g(\mu) = \Omega(\mu^{23})\) (implying \(f(r) = \Omega(r^3)\)) and \(g(\mu) = o(\mu)\), we get \(M = \Theta(f(r))\), especially \(M \geq f(r)\) from \(M \geq \kappa r \log(1/\varepsilon)\). Finally, the convergence time \(\Omega(2^{r/2}/\varepsilon)\) can be translated to \(\Omega(2^{(r/\log r)+r/2})\) which can be rewritten as \(2^{\Omega(M^{1-1}(M))} = 2^{\Omega(g(M))}\) since \(f(r) = \Omega(M)\) from \(M = \Theta(f(r))\) and \(f^{-1}(M) \geq r\) from \(M \geq f(r)\).

This can be compared to a general convergence time upper bound of \(2^{\Omega(\sqrt{N})}\) for discrete Hopfield networks with \(N\)-bit representations [17]. The continuous-time implementation actually yields better bounds \(2^{\Omega(g(M))}\) for any \(g(M) = \Omega(M^{23/2})\) up to \(g(M) = o(M)\) than the discrete-time one, assuming that the time interval between two subsequent discrete updates corresponds to a continuous time unit.

5 A Simulation Example

A computer program HNGEN has been created to automate the construction from Section 3. The input for HNGEN is a text file containing the asymmetric
weights and biases of the discrete neural network, as well as its initial state. The program generates the corresponding system (4) of differential equations, together with the respective initial conditions in the form of a FORTRAN subroutine which describes the continuous-time dynamics of the analog Hopfield net that simulates the given discrete network. This FORTRAN procedure is then presented to a powerful numerical solver UFO [10] that provides the user with a numerical solution for the respective system (4), i.e. it draws the graphs of the state evolution in time for selected analog units.

6 Conclusions and Open Problems

We have proved that an arbitrary convergent discrete-time binary network can be simulated by a symmetric continuous-time network with only a linear increase in the network size. The existence of a Liapunov function for symmetric networks precludes the existence of undamping oscillations in the continuous-time system, but nevertheless our construction relies heavily on the finite sequence of clock pulses generated by the continuous-time counter subnetwork.

From the point of view of understanding analog computation in general this technique is somewhat unsatisfying, since we are still basically discretizing the continuous-time computation. It would be most interesting to develop some theoretical tools (e.g. complexity measures, reductions, universal computation) for “naturally” continuous-time computations that exclude the use of discretizing oscillations.

Another challenge for further research is to prove upper bounds on the power of continuous-time networks. Note that in the case of discrete-time analog-state networks a single fixed-size network with rational-number parameters can be computationally universal, i.e. able to simulate a universal Turing machine on arbitrary inputs [16]. Can e.g. this strong universality result be generalized for continuous-time networks? Also, we have established an exponential lower bound on the convergence time of symmetric continuous-time networks: can a matching upper bound be proved, or the lower bound be increased?

References

[4] Goles, E., Martinez, S. Exponential transient classes of symmetric neural networks for sym-

