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Abstract

We consider the problem of static transmission-power assint for lifetime
maximization of a wireless sensor network with stationanges operating in a
data-gathering scenario. Using a graph-theoretic appraae propose two dis-
tributed algorithms, MLS and B&\N, that construct spanning trees with mini-
mum maximum (minmax) edge cost. MLS is based on computafioniimax-
cost paths from a reference node, while 8 performs a binary search over
the range of power levels and exploits the wireless broadachsantage. We also
present a simple distributed method for pruning a graphst®élative Neighbor-
hood Graph, which reduces the worst-case message comptéxiLS under
natural assumptions on the path-loss. In our network sitiouis. both MLS and
B SPAN significantly outperform the recently proposed DistriloLikdin-Max Tree
algorithm in terms of number of messages required.

1 Introduction

Consider a group of sensors newly deployed in an environnentany applications,
it is desirable to have the network to self-configure, iehave the nodes after wakeup
contact their neighbors in order to decide where to forwheddollected data, at what
intervals, transmission power levels, etc. One importaat gf this self-configuration
process is to initialize data-gathering and transmissrotogols so that the operational
time of the network, for given initial battery levels, is niamized [1, 5].

We address this lifetime maximization problem in the sgttivhere it is the task
for a network of stationary nodes to provide a roughly umifpfow-intensity stream
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of data to a designated sink node. Possible applicatiorasigsninclude monitoring
some environmental parameters (temperature, humidigmatal concentrations) in a
given region or, say, a forest-fire alarm network, where mbgie data traffic consists
of regular “status ok” messages.

More specifically, we consider the problem of determinimggmission power lev-
els for the nodes so that, under the assumption of uniforfficttaad per node, all the
nodes maintain connectivity to the sink for a maximum amadniime. In this paper,
we only consider the case of static power assignmentswieegssume that once the
transmission power levels have been set, they stay the sameghout the operating
life of the network. We also assume that transmission caste b dominant effect on
the lifetime on the nodes, which may operate a sleep-scimgdetheme [4].

Under these assumptions of stationary nodes, uniformaraffid and static power
assignments, the goal of maximizing the lifetime of a netwienn fact equivalent to
finding the lowest possible transmission power levels ferrtbdes that suffice to make
all of the network connected to the sink. In graph-theotetins, the problem becomes
to find a spanning subgraph of tlieansmission graph with the minimum possible
maximum edge cost, where the transmission graph contdinsadgs of the network
and edges between nodes within maximum transmission rap@ugh the problem
can in principle be solved by a distributed algorithm findMimimum Spanning Tree
(MST), the construction of an MST is more involved than thetributed search for
a spanning subgraph with minimum maximum (minmax) edge. &t present two
simple and efficient distributed algorithms for the lifeirmaximization problem that
are able to exploit different properties of the problem dretéfore also typically differ
in the number of control messages and running time required.

Our Maximum Lifetime Spanner (MLS) algorithm is based on ppraach similar
to the distributed MST algorithm of Gupta and Srimani [13%, vthe construction of
paths with minmax edge cost by breadth-first search. Howagewe do not consider
the construction of an MST, we obtain a significantly simgliggorithm. The solution
of the problem via computation of minmax-cost paths is athgeous, as the process
can be efficiently distributed and the set of candidate edgade reduced drastically
prior to the execution of the algorithm. For this purpose utikze an algebraic formu-
lation of relative neighborhood graphs (RNG) [22] and pn¢sedistributed method
for obtaining the RNG of a given transmission graph.

Our Binary Search for Min-Max Power Spanner (B\®!) algorithm is a distributed
algorithm based on a “binary search over transmission péevets” idea. Lloyd et
al. [15] proposed a simple and efficient binary search baskdien, assuming that
complete information on network connectivity and edge €dstcentrally available.
Our proposed B&AN algorithm is particularly suitable for implementation ifraless
networks because it utilizes broadcast messages and dhefploits the wireless
broadcast advantage. As the number of available transmipsiwer levels is expected
to be rather small in practice, the search terminates in até&rations, which generally
yields a low number of control messages required.

We have implemented both algorithms down to the level of d&omal agent in the
ns2 [17] simulator, and they show quite competitive perfornmaimccomparison with
the Distributed Min-Max Tree (DMMT) algorithm that was rextly proposed by Guo,
Yang, and Leung [11].



The rest of the paper is organized as follows. The followegji®n overviews some
of the related work on lifetime maximization. Section 3 giveprecise formulation of
the version of the problem we consider. In Section 4, we psepgeneric method
for the initialization of nodes upon wakeup that does nouass prior neighborhood
information. Section 5 describes the MLS algorithm and @nésa distributed method
for RNG computation. Section 6 presents thePBS algorithm, and in Section 7 we
evaluate MLS and B&aN in terms of the number of required control messages, and
compare them with the performance of DMMT. For our experitabcomparison we
use thens2 network simulator. Section 8 concludes the paper.

2 Related work

The problem of minimizing the maximum transmission powequieed to establish
connectivity has been considered previously in the liteeatOne of the earliest papers
on the topic is the work of Ramanathan and Rosales-Hain {#8;h addresses the
problem in the setting of maximizing the lifetime of a singkession broadcast. Ra-
manathan and Rosales-Hain propose a centralized algofithfinding the minmax
transmission power level that maintains network connégtias well as two simple
distributed heuristics that aim at achieving the same. ridisiributed heuristics, how-
ever, are suboptimal and do not necessarily guarantee ctivityein all cases.

Kang and Poovendran [13] discuss several problems relatégirtamic lifetime
maximization, such as the issue of non-uniform energy fevéhey also emphasize
the importance of considering the minmax energy metriceratian the more often ad-
dressed minimum total energy metric for the purpose of mepiirg network lifetime.
For a distributed implementation, Kang and Poovendrarmelyistributed methods for
constructing minimum spanning trees, such as the algonth@allager, Humblet and
Spira [10]. These techniques are, however, rather involaad we complement this
work by suggesting an efficient and much simpler method fonmating the minmax
edge cost required for connectivity. For a discussion oftite different objectives,
minimizing total transmission power and minimizing maximdaransmission power,
see, e.g., [13,15].

Narayanaswamy et al. [18] propose a protocol for power obirtrwireless ad-
hoc networks with discrete power levels. Their protocobadstablishes a spanning
subgraph of the transmission graph with minmax cost. Howéve solution proposed
in [18] relies on a proactive routing protocol and requirgsgicant control overhead
that renders it unsuitable for sensor networks.

The problem of minimizing théotal, as opposed to minmax, network transmis-
sion power required for connectivity has been studied eitety (cf., e.g., [15] and
the references therein). Rodoplu and Meng [20] presentaldiged algorithm for this
problem that is based on the conceptabéy regions: each node is aware of its own ge-
ographic location and the location of its neighbors. Based path-loss model, nodes
can locally determine which neighbor they should forwarl tthessage to in order to
minimize the total energy consumption. The algorithm pimgabin [20] is optimal but
requires extensive assumptions, such as the availabflitycation information and a
specific path-loss model.



Wattenhofer et al. [23] propose a distributed algorithntlfiersame problem. Their
algorithm, which relies on a geometric cone-based forwaydicheme, requires that
nodes can measure exactly the direction of incoming radinstnissions (angle of
arrival). It also makes further assumptions on geometaperties of the underlying
graph model.

In a recent work, Guo, Yang, and Leung [11] proposed a digtith algorithm
DMMT (Distributed Min-Max Tree) for the construction of ntidast trees with min-
imum maximum transmission cost, following Prim’s algonitior constructing mini-
mum spanning trees. Since their technique can easily beetlafso for the purpose
of sensor network lifetime maximization, and seems to beptioposal in the litera-
ture closest to our approach, we conducted an experimemtgdarison of the runtime
behavior of the algorithms DMMT and our proposed MLS andeBi$algorithms.

3 The lifetime maximization problem

We consider a wireless sensor network composed of stayiomates with distinct
identifiers, operating in a data-gathering scenario. Eaderns able to vary its trans-
mission power, using a possibly large set of power levelse dhergy budget that is
consumed during the operation of the network is finite antlily the same for all
nodes. We consider a scenario where the energy consumeddlgsgi transmission
dominates over energy consumed by computation or sensisgukther assume that
traffic is generated uniformly over the nodes and that dgtgegyation techniques can
be applied. When traffic is generated uniformly and aggeshan its path towards the
sink, upstream nodes forward the same amount of traffic anstogam nodes, thus
yielding a close to uniform load within the network.

In order to maintain connectivity to a neighlbgra nodev has to spend some en-
ergy that depends ors transmission power level. Each node has the same maximum
transmission powep™ that must not be exceeded. We assume that the transmission
costs are symmetric, so thatifcan reactu at a certain power, thetmcan also reach
v at the same power; this is the case for example if the costegept signal attenua-
tion resulting from a deterministic path-loss model thalyatepends on the pairwise
distance of nodes. We consider the notion of lifetime thgards all nodes as equally
important, so that the objective is to maximize the time spiter which the first node
runs out of energy [6].

The transmission structure of the network is modeled asaid graple = (V,E)
with an associated edge cost funct®nE — [0, p™® that gives the minimum power
necessary to use the link:can reachu if the transmission power(v) satisfiesr(v) >
o(v,u). As we assume transmission costs to be symmaedia,v) = d(v,u). The
vertices inV represent the nodes of the network, @hdontains an edge for each
link that is usable at maximum power. A transmission poweigasnentt : V —

[0, P™® induces a grapls(1) = (V,E(T)) whose edges represent the radio links that
are supported by the given assignmenso thate (1) = {(v,u) | (v,u) € E andt(v) >
d(v,u)}. For simplicity, we assume that the transmission gi@apt"®) with T"®(v) =
pM®for all vis a connected graph.

We consider the problem of finding a static transmission p@ssignment, such



that the lifetime of the network is maximized while the netlvoemains connected.
Any power assignment that connects the network induces a spanning subgraph with
some maximum edge cost= maxy,cg(r) 0(V, U); we aim to find a power assignment
that minimizesa. Although this condition generally does not uniquely detiee T,
choosingr (v) = a for all nodess does not decrease the lifetime. The power assignment
T is considered to be fixed after it has been once determinédgdiire initial network
setup. Note that this problem is considerably differentrfrine case of computing a
dynamic assignment of power levels, which is a computalipnaore complex prob-

lem [9].

Definition 1. Given a transmission gragh(V,E), and an edge cost functian: E —
[0, p™®], a graphG’' = (V,E’) with E' C E is ana-spanner if G’ is connected and
d(v,u) < a for each edgév,u) € E'.

In other words, amr-spanner is a connected spanning subgraph for the traiemiss
graph where no edge has cost greater tharfror any network gpm®-spanner exists
exactly when the network can be connected by the nodes geatifuall power.

For a given transmission graj, an a-spannelG’ is optimal if no a’-spanners
exist fora’ < a. An optimala-spanner has a maximum edge cosand there are no
spanners with only edges of cost strictly less thathus, we also call such a spanner
aminmax spanner. Network lifetime can now be maximized by determining a méxm
spanneG* = (V,E*) and choosing the power assignme(t) = maxy,cg+ 6(V, U).

4  Algorithm initialization and termination

In Sections 5 and 6 we describe two algorithms for computinmgmax spanners. Both
algorithms require prior knowledge of the network topolaogiych as network size and
neighbor lists. Also, for both algorithms, after termimatithe nodes in the network
should be notified so that they can set their transmissioreptavel accordingly.

In Section 4.1 we present a method of collecting the necgssdghborhood in-
formation, and in Section 4.2 we describe a method of natifyhe nodes in the net-
work of the termination of the algorithm. Both methods enypdtandard distributed-
algorithm techniques upon which we expand by integratirgdbmputation of the
edge-cost functiod.

4.1 Setup stage

The setup stage as described in Algorithm 1 first finds a spgrinée of the trans-
mission graph by a process of beaconing at maximum tranemipswerp™®*, Each
node, once it has joined the spanning tree under constnystiarts sending a sequence
of beacon messages using random delays between consenesgages. These bea-
cons enable nodes to discover their neighbors, estimatoti®f their incident edges
in the transmission graph and determine whether they afentekes in the spanning
tree. The repeated transmission of beacons is necessagguoe the probability of
undiscovered edges due to packet collisions.



Algorithm 1: Setup stage

nodev with variablesbeacon_count, beacon_delay, expecting_reply, father,
neighbor_list, node_count, timer,;

at start
node_count < 0; expecting_reply « 0;
enter statelDLE;

in state IDLE [/l wait for incoming beacons
if beacoifu, f') is received with strengtH®®’ then
father — u; & « (ghreshygecv) pmax. I estimate cost

neighbor_list «<— neighbor_listU (u, d);
broadcast beacgw father) at powerp™®;
timer < beacon event after randt@acon_delay);

enter stateBEACON;
end

in state BEACON I/l send beacons with random delay
if beacoriu, f') is received with strengtd®“" then
& «— (ghhreshygrecv) pmax. /I estimate cost
neighbor_list < neighbor_listU (u, d);
if f'=vthen
expecting_reply « expecting_reply U {u};
end
if reply(u, count) is received with strengtsi®¥ then
expecting_reply <« expecting_reply \ {u};
if expecting_reply = 0 andbeacon_count = beacon_repetitions then
unicast replyv, node_count + count+ 1) at power
pM& to father;
enter state SETUPFINISHED; /I end of stage
else
node_count < node_count + count;
end
end
if timer triggers beacon evettien
broadcast beacow father) at powerp™2
if beacon_count < beacon_repetitions then
beacon_count < beacon_count+1;
timer « beacon event after randf@acon_delay);
else ifexpecting_reply = 0 then
unicast replyv,node_count + 1) at powerp™®to
father;
enter stateSETUPFINISHED; /I end of stage
end
end




When the beaconing sequence has terminated, a reply messagesmitted along
the attained spanning tree edges to the reference nodmgtrthe leaf nodes. This
reply message contains a count of the number of children df eade, so that the
reference node eventually obtains a count of the total numh@odes in the network.
More specifically, in a beacon message be&edn the parametev denotes the iden-
tity of the beaconing node arfdis its father in the spanning tree being constructed; in
a reply message regly cound the parametev is again the identity of the sender, and
count represents the number of nodes in the subtree rootedvdhen the reference
node has received reply messages from all its children,dtnthat the setup stage
has terminated.

The setup stage is initiated as if the reference node havegta beacon message.
Upon receiving a beacon message from a nofla the first time, each nodesends
the message beadatu) and schedules a number of retransmissions using random
delays. After transmitting the beacon for the first timetarts listening for messages
from neighboring nodes and records their presence in a beidIst together with a
flag indicating whether the neighbor is a child node in thengjpgg tree. Note that the
neighboru is a child ofv if uincludes the information that it previously received the
beacon fronv in the message.

For each received beacamglso estimates a lower bound on the transmission power
that is required to reach the neighboring node. More speadifiove consider a mes-
sage that a nodereceives from node, received with signal strengdf®, arrived suc-
cessfully ifs eV > ghresh yhereshreshis the threshold signal strength required for a suc-
cessful transmission (disregarding interference). Insimulations, the signal strength
sV is computed by the propagation model under consideratisssusing that the
received signal strength depends linearly on the sendingpg®®’ = X, p>"4 and
the receiverv knows the sending power usedcan estimate the attenuation coeffi-
cientX,y = s/ psend Assuming thai,, = Xuv, nodev can estimate the minimum
transmission powep™" it needs to use to transmit toby solvinggesh= X, , p™".
Combining these, we have

hreshiysend
min __ St p

p = T geow

wherepsedis the power that was used hyfor sending (in Algorithm 1 we usp®e"d=
p™®). If the assumption does not hold or if the measured recesigaial strength
shows random variations, then beacon messages with vargingmission power can
be used for the same purpose, similar to the techniques pedgdo [14]. Recall that
the edge costd(v,u) represent the minimum power required foto send tau, so by
estimatingp™" nodev can estimate the edge cost&s, u) = p™", or if the maximum
power was used for sending$®"d= pM™™ andd(v,u) = (shrestygecv) pmax

Whenv has sent a certain number of beacon messages, it decidekehsegtup
stage has locally terminated. In the case thdiscovers itself to be a leaf node of the
constructed spanning tree, it sends a reply message tahies f&porting a node count
of one. Ifvis not a leaf node, it waits until it receives replies fromilichildren before
it sends a reply to its father that contains the sum of itsdcbdunts incremented by
one, indicating the termination within the subtree rootied &/hen the reference node
has received replies from all its child nodes the setup dtagdgerminated.



For measuring the strength of arriving radio signals, onewdize for example
Received Signal Strength Indication (RSSI) [21] or, alédrrely, methods similar to
the ones proposed in [14]. To obtain the correct neighbatlwimrmation for all the
nodes, in most cases the number of retransmissions for gmbenessages can be
fairly small. Assuming, here and in future analysis of mgsseomplexity, that the
average number of retransmissions of a packet is boundedrbg sonstant as the
network grows, the message complexity of the beaconingss&@(N), whereN is
the number of nodes in the network.

4.2 Notification stage

The notification stage consists of a simple network-widedoast by which the refer-
ence node informs all other nodes about the terminationesdiporithm for computing
aminmax spanner. As each node transmits at most one messaygttie notification
stage (subject to retransmissions due to collisions), tinelxer of required messages is
at mostN. The implementation of this stage depends on the algoritrmdmputing
the minmax spanner, as described later in this paper.

From the adjacency list and by listening to notification nages all nodes can infer
locally their power level assignment. More specificallycleaode sets its transmission
powert(v) to the value that suffices to maintain the most expensive &g neigh-
bors in the optimabr-spanner, i.e.7(v) = maxyy e 0(V,u), whereE' is the set of
edges in the minmax spanner.

5 Adistributed algorithm for minmax spanners

In the following, we describe a distributed algorithm fortaibing a minmax spanner
that relies on neighborhood information gathered durirgggtup stage described in
the previous section. Assumii® 7™#) is connected, the Maximum Lifetime Spanner
(MLS) algorithm computes a spanning tree with minmax edge by establishing
paths from the reference node to any other node in the netwarSection 5.3, we
present a modified beaconing method that computes a subgfr&ih™*) by pruning
edges non-relevant to the search of a minmax spanner. Bynitive algorithm on the
subgraph obtained, we are able to reduce the message campigrificantly.

Our Algorithm 2 for finding a minmax spanner is based on disted breadth-first
search similar to the asynchronous Bellman-Ford algor[tténSec. 15.4]. However,
we use the properties of the minmax edge cost function tocesthie complexity of
the search. First, a given reference node sends to each néighbors a message
that contains the cost of the connecting edge. Upon firsiviecethe request, each
node makes note of the node from which the message was rd@gideetransmits the
request to its neighbors, updating the maximum edge @asticated in the request
accordingly. Each node also remembers the besgnt to each neighbor. If a node that
has already received and forwarded a request receives astdfyat indicates a better
route from the reference node, it retransmits the lattenestjto its neighbors if this
leads to obtaining a route with a lower to those neighbors. In a typical data-gathering
scenario, the natural choice for the reference node is tteesitak.



Algorithm 2 : Distributed algorithm for finding a minmax spanner [MLS]

nodev with local variablesr, a[-], father, status|']

at start
a « oo; father «+ undefined;

for ue N(v) do

a[u] < oo; status [u] < ready;
end
enter statelDLE;

in state IDLE or SEARCH
if (a’) with a’ < a is received from some nodethen
if father is definedthen send NAKa) to father;
father «— vu;
for win N(v) \ {u} do
if max(a’,d(v,w)) < a[w] then
send(max(a’, d(v,w))) tow;
alw] <« maxa’, d(v,w));
status [w] < wait;
end
end

enter stateSEARCH
end

if (a’) with a’ > a is received from some nodethen
send NAK@') to u;
end

in state SEARCH I/l wait for incoming acknowledgements

if status [w]=ready for allw € N(v) \ {father} then
send ACK@) to father;

enter statelDLE
end

if ACK(a’) or NAK(a') is received fromu anda[u] = a’ then
status [u] < ready;
end
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Figure 1: Sample execution of Algorithm 2 from reference exd¢gl messages listed
assource—destination:message. The three graphs show the initial state, intermediate
state, and final state of the algorithm with messages listhdden states in the order

of their transmission.

Moreover, the nodes collect acknowledgements from thégimmrs. When a node
receives the request, it forwards it to its neighbors, anitbvfar each neighbor to either
accept (ACK) or reject (NAK) it. When acknowledgements hbaeen received from
each neighbor, the node sends an ACK to the node from whieledived the request.
A NAK is sent if the node receiving the request already knoiws better path, or if a
node learns of a better path while waiting for the acknowégdgnts from its neighbors.
In this way, an ACK response means that the responding nasladwepted the other
node as its father in the tree being constructed, while a NigKifes refusal. It can
happen that a node will first respond with an ACK but later seNAK; however, when
the reference node has received acknowledgements fromigbklyors, the algorithm
has finished. A sample run of Algorithm 2 is given in Fig. 1.

In Algorithm 2, a is the current estimate of the minmax cost of a path from the
reference node to each nodeand father is the node from whichhas received the
last accepted message. Initially, father is undefinedagreoe for eachv. The min-
max spanner is defined by the father variables of each nodeth# algorithm has

terminated.

To justify the algorithm, we firstly observe that it alwaysngnates. LetA =
{6(u,v) | (u,v) € E} be the set of distinct edge costs in the graph. Obviouslyauten
can learn of a new route with bettermore thanA| times. Secondly, at the end each
node has a correaty: if from some noder there would exist a path with maximum
edge costp < ay to the reference node, then on the path there is some edgstof co
at mostap where exactly one endpoint would have a maximum edge costadst
higher thanag. This cannot happen, since the endpoint with cost at rmgsthould
send a message along that edge. Thirdly, it cannot happea tiwale would remain in
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the search state, since its neighbors will respond to thaagieither by an immediate
NAK if the cost was too large, a delayed ACK once the neighlasmeceived responses
from its children, or a delayed NAK in case the neighbor I&erns of a path with a
lower maximum edge cost.

To consider the communication complexity of the algoritloimserve that the num-
ber of distinct edge costs is bounded|/y < |E|. In this regard the minmax edge cost
spanner problem is different from finding minimum cost reut®here the number of
routes with different total cost between two nodes can b@eeptial in the number
of nodes [16, Sec. 15.4]. When a node learns of a bettérwill send a message to
its neighbors, who will eventually answer with an ACK or a NABince the requests
sent by a node to its neighbor are in order of decreagingt most|A| requests are
sent along each of thE| directed edges, and there are a totaDfA| |[E|) messages
of constant size (we consider node ids, node counts and geveds to be of constant
size).

5.1 Notification stage

To notify the remaining nodes about the termination of thgoathm, the reference
node initiates a network-wide broadcast using the edgéweafdmputed spanning tree.
Each node receiving this broadcast message can then decrease &siismion power
7(v) to the minimum power required to reach its father and thehtmgng nodes that
have chosenm to be their father.

5.2 Relative neighborhood graphs

Algorithm 2 requires nodes to exchange messages with glhbers. In a dense sensor
network where the number of nodes within transmission ranggbe large, it is bene-
ficial to limit the number of nodes that need to be contactdileamaintaining network
connectivity at the same minmax transmission cost. Forpghipose, we useelative
neighborhood graphs [22]. Relative neighborhood graphs and related structuase
been used for topology control [2, 3], mostly in a geometantext, where nodes are
placed in a plane and(v,u) depends only on the Euclidean distance betweandyv.
However, we only assume that path loss is symmetric,d@,u) = d(u,v). We will
find, though, that when the nodes are placed in the Euclidieae pour algorithm runs
much faster.

Definition 2. Given a graphG = (V,E) and an edge cost functiod, the relative
neighborhood graph d& is the graph with vertex s&t and edge sef(v,u) | (v,u) €
E,fws.t. (vw),(w,u) € E,d(v,w) < 5(v,u),d(w,u) < d(v,u)}.

Thus, the relative neighborhood graph is obtained from tiggral graph by delet-
ing each edgév, u) if there is a patlv—w—u of two cheaper edges. Such a generalization
of the concept of RNG has been already successfully appliether problems, such
as searching and broadcasting in peer-to-peer networks [8]

Claim. For anya, the RNG ofG contains ara-spanner ifG does.
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Proof. Consider ara-spanner in the original graph. Order tkedges removed from
the original graph in constructing the relative neighbarthgraph in decreasing order
of cost ase, e, ... ,6. Let Eg denote the edge set of the original graph, andtjet
Ei_1\{&} for 0<i <k Now for 0<i <k, sinceEj_1 admits ana-spanner and
the endpoints 0§ are connected by a path of two cheaper edgeslso admits an
a-spanner, so the RN@/, Ex) admits ana-spanner.

5.3 Distributed algorithms for RNGs

In this section, we describe a modification to the beaconiathod proposed in Sec-
tion 4.1 to obtain a distributed method for constructing RiN®/e again do not assume
that a node initially knows about the cost of the edges todtghbors, but we assume
that a node can estimate the strength of arriving radio gfi@ construct the RNG,
each node again starts beaconing at maximum power aftaviregan initial wakeup
message originating from the reference node. However,ditiad to its distinct node
identifier, a node also includes the identifiers of neightipriodes and the associated
0 the node has learned so far in the beacon message.

After having learned about the neighbors of their neighbitrs nodes prune un-
necessary edges from the transmission graph. If a mddarns that for some third
nodew it holds thatd(v,w) < &(v,u) andd(w,u) < d(v,u), thenv can determine that
the edge€v, u) is notin the RNG, as per Definition 5.2. Thus, the nodes caneptioeir
neighborhood so that only the RNG remain€d(V|) messages, the size of each of
which is proportional to the number of neighbors the beampniode has. Thus, the
total amount of data transmitted during the RNG construcdO(|E|). Note that a
natural point for including the pruning of non-RNG edgesiAtgorithm 1 is the state
when the node sends the reply message to its father nodeydhesetup stage.

Pruning the transmission graph down to the RNG before rgnAlgorithm 2 can
give very considerable savings in complexity. Beaconing datermining the RNG
requires sendin@®@(N) messages witlO(E) bits in total, and then determining the
minmax spanner requiré3(|A| |[E’|) messages of constant size, whEfds the set of
edges in the RNG. With an arbitrary path loss function, the@oan still contain
O(|V|?) edges. However, when the nodes are in a plane and path lasénisraasing
function of distance, the RNG is a subgraph of the Delaunaggulation of the origi-
nal graph and contains on®(|V|) edges [22]. In this special case, then, the algorithm
would require sending a total &¥(|A||V|) messages of constant size.

6 Distributed binary search for minmax spanners

Previously, we described a distributed algorithm for cotimgua minmax spanner that
did not require any assumptions on the edge-cost funétibesides being symmetric.
In practice, however, the range 8fmost likely corresponds to a small set of possible
transmission power levels. Furthermore, it is beneficialise broadcast messages
to further reduce the total number of control messages reduiln this section, we
propose a distributed algorithm for determining a minmaarsyer, given a graph with
edge costs and the set of available transmission powersl@vel {p1, pz, ..., Pp(},
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wherepy < pz < ... < pjp| = p™®, so now the transmission power level assignment
is of the typer : V — P. The algorithm utilizes broadcast messages to reduce tihle to
number of messages sent during the execution of the algarith

As also the MLS algorithm presented in Section 5, the Binaggréh for Min-
Max Power Spanner (B\N) algorithm relies on the availability of a reference node
for coordination, which initiates Algorithm 1 and thus abta count of the number
of nodes in the network. Thereafter, it performs a binarydeaver the range of
transmission power levels to find the minmax power requioe@dnnectivity and uses
this value to establish a minmax spanner.

At each iteration of the algorithm, the reference nodeatd the computation of a
rooted tree spanning the nodes that can be reached fromfénenee node using paths
with maximum edge cost at mast The construction of the tree is achieved by flooding
request messages over edges with cost at mobkt the second phase of the iteration,
the reference node then checks whether this tree spansdskrio the network by
comparing the number of nodes reached with the total nunfirerdes in the network.
The counting of nodes reached using edges with cost at mastperformed by a
convergecast of reply messages back to the reference nad@lgdrithm 3, N(v)
denotes the set of neighbors of nodén the given transmission grapB(t™m®) =
G(V,E),i.e.,,N(v) ={ueV|(vu) € E}.

6.1 Request phase

The request messages are of the faqrm, f) wherev is the identity of the sending

node,a is the maximum allowable edge cost in this iteration, &mslthe father of node

v. In the first step, each nodeupon receiving a request from a neighlbipbroadcasts

arequest message at most once by broadcasting it to allbwgigly nodes. We assume

that all messages are sent at maximum power, although thiatngsion is not critical

to the algorithm: choosing a power corresponding twould be possible as well.
Nodev decides that sending the message is required under theifiagconditions.

Firstly, v must not have broadcast a request earlier in this iteratlbiso, and the

cost of the edgéu,v) is less or equal tar, the current edge cost under consideration,

u becomes théather of v. Note that the edge costs are assumed to be symmetric.

Secondly, there must still be adjacent nodedifferent fromu such that the edge, w)

has cost less than or equaldo

6.2 Reply phase

After sending the request,(a, u), v waits for a request from amy that meets the
condition above. In the case thateceives a requesiy( a, V') fromw, it will mark w
aschild if vV = v, and agrocessed otherwise. A neighbor markedtild corresponds to
w beingv's child in the tree of the current iteration, and the lgtretessed corresponds
at this step tav being in the tree already with a different father natle

In the case that has no child nodes, either because there are no adjacerg node
with low enough edge costs or if they all have different fathedes, it can determine
that it is a leaf node in the current tree. Subsequentlyjdgirates a reply message that
contains its id and a node count of one, which it sends to ftefanodeu. If v has
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Algorithm 3 : Distributed binary search for a minmax spanner faS]

nodev with variablesa, lower, curr, upper, child_candidates, father,
is_reference_node, N(v), node_count, status ;

at start
if is_reference_node then
lower < O; upper — |PJ;
curr «— | (lower + upper)/2]; a < Peurr;
for ue N(v) do status|u] < processed;
enter stateRESET,

in state RESET
father «— none;node_count «+ O;

if is_reference_node then

if lower+ 1 < upper then
enter stateSEND REQUEST;

else enter stateSEARCHFINISHED;
else enter statdDLE;

in state IDLE /[ wait for incoming requests
if requestu, o’, f') with a’ > &(u,v) is receivedhen
a — a’; father — u;
enter stateSEND.REQUEST;
end

in state SEND_REQUEST [/l broadcast request to neighbors
child_candidates < {w & N(v) \ {father} | d(v,w) < a};
for w e child_candidates do status[w] < wait;
if child_candidates # 0 then
broadcast request a, father);
enter statePROCESSING,;

in state PROCESSING Il process requests, wait for replies
if requestu, a’, ') is receivedhen
if ' =vthen /I uhas acknowledgedas its father
status[u] « child;
else /I u has fatheif’ different from v

status[u] «— processed;
end
if reply(u, nodes) is receivedhen
status[u] < processedyode_count < node_count + nodes;
if status[w] = processed for allv € N(v) \ {father} then
if is_reference_node then
if total_nodes = node_count then upper < curr;
else lower < curr;
curr — | (lower + upper)/2]; a < Peurr;
else /I report node count
unicast replyv, node_count + 1) to father;
enter stateRESET,
end
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1: transmit request, 0.75,—),

2: mark 1 as father,

2: transmit reque§?, 0.75,1),

4: drop request from 2,

1: mark 2 as child, 4 3: reply(4,1),
3: mark 2 as father, 5 3: reply(5,1),
3: transmit reque$s, 0.75, 2), 3 2: reply(3,3),
2: mark 3 as child, 2 1: reply(2,4)

4.5: mark 3 as father,

5: transmit reques$b,0.75,3),

4: transmit reque§t, 0.75,3),

4: drop request from 5,

5: drop request from 4,

(a) Spanning Tree (b) Request phase (c) Reply phase

Figure 2: Simple example of a single iteration of 3! as described in Algorithm 3,
initiated by reference node with id 1. (a) shows the spantriegythat results from the
father record at each node at the end of the iteration; ed@géste not contained in
the tree are shown dashed. (b) shows the request messages aesulting actions of
the nodes during the construction of the tree. (c) showsdpkes that are sent along
the attained spanning tree edges and the node countingtioperdlote that requests
reach all neighboring nodes (broadcast), while repliesant from a child to its father
(unicast). The set of transmission power levelR is {0.05,0.1,...,0.95,1.0}.

at least one childv, v waits for replies from all its child nodes before sendingalye
After receiving a reply fronw, nodev marksw asprocessed.

When v receives the last outstanding reply (all neighbors excepfather are
markedprocessed in V's neighbor table)y updates the last reply to contain the sum
of all node counts received from its child nodes incremebiedne and then forwards
the reply to its father. Thus, the reference node can deterthie number of nodes in
the network reachable by edges with cost at most the curaswliidate edge cost By
comparing this count with the count obtained during thegsstage, the reference node
is able to determine whetheris an upper or lower bound of the minmax transmission
cost and update correspondingly. See Algorithm 3 for details and Fig. 2 fdow
example of a single iteration of the algorithm.

6.3 Notification stage

After the search has terminated, the reference node &stifie notification stage and
informs all other nodes about the termination and the mininadge cost necessary to
connect all nodes. The natification stage again uses bretuessages over edges of
cost at mostr and constructs a spanning tree of the transmission grapthes\abserve
which of the incident edges are part of the spanning treeftamiget their transmission
power level to the minimum level required to reach the fativet all child nodes in the
tree.
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Table 1: Simulation parameters; the input graphs were géeeby random placement
of nodes within the area, while disconnected graphs wepadigd.

ns2 version 2.31 Node density 1 node per 13030 m
Transmission range 250m Number of nodes 50-500

Max jitter (MLS, 05s Propagation model TwoRayGround
BSPAN)

Message timeout 2s |P| 128

Beacon delay (max) Bs Beacon repetitions 10

6.4 Message complexity

In each iteration each node that has been reached by a requespt the reference
node, sends at most two messages, one request and one régyreférence node
sends a request but no reply. Therefore, the total numbeessages sent in a single
iteration is at most | — 1. The binary search over a set of power levlequires
[log(|P|)] iterations, where the logarithm is taken in base 2. Thusatferithm has
message complexi®@(log(|P|) [V|).

7 Experimental evaluation

We experimentally evaluated MLS, B8N, the beaconing method of Section 4.1, and
the distributed method for RNG construction of Section SiBgthens2 [17] network
simulator. We also compared MLS and B8\ with the previously proposed DMMT
algorithm [11].

To measure the performance of the algorithms, we considerttdthe number of
control messages and the time it takes for the algorithmsighfi In our simulations,
we use thalisk graph model to represent a wireless network topology: the networks are
created by randomly scattering nodes onto a square aregivéh dimensions, and
connectivity is defined by thes2 default maximum transmission range. We used the
TwoRayGround model as the propagation model, for it pelsfentets the conditions
as outlined in Section 4, and discarded disconnected graphs

The parameter values used for the simulations are givenhiteTh We chose
a rather large number of 10 beacons per node during the sktgp ® reduce the
probability of repeated collisions of beaconing messagespuld also be possible
to increase the time interval between beaconing message®umain focus is on
analyzing MLS and BE8aN, we discarded trials where some node had an incomplete
list of neighbors or the initializing node had the wrong nadeint. RNG pruning
requires information about the neighbors to be broadcasichvmakes the beacon
packets longer and susceptible to collisions. After iflitirying a smaller number of
4 beacons per node and observing a failure rate of 1 to 2% dfitlie for the setup
stage, we settled on a value of 10 for which the setup termhsticcessfully in all
trials. To safeguard MLS and B8N against deadlocks arising from permanent node
failures, one should consider implementing a timeout sehem
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7.1 Distributed minmax tree algorithm

The Distributed Min-Max Tree (DMMT) algorithm proposed ihl]] determines for
a given seM of nodes (thanulticast group) a spanning tree with minmax edge cost.
ChoosingM =V, DMMT can be readily applied to solve the lifetime maximipat
problem as formulated in Section 3. In this paper, we focushenversion of the
algorithm that was proposed for omnidirectional antennas.

The DMMT algorithm borrows ideas from the well-known Prinallgorithm for
constructing minimum spanning trees (see for example [75Pp@-573]). Prim’s algo-
rithm grows a subtree of the original graph starting fromritial node, such that in
each step the minimum cost edge is added that connects oadalmhging to the tree
and another node not yet in the tree. After all nodes have bddad, the algorithm
terminates and the resulting tree forms a minimum spanmnégg t

The DMMT algorithm finds a minmax spanner by adding an adad#icstep to
each iteration, the so-callegtowth phase: after the attempt of finding the minimum
outgoing-edge-cost has terminated, this cost is propeddatall tree nodes in gin
request message. Each tree nodéhen forwards this message to each neighbihrat
v believes is not yet in the tree if the cost of the edge) is less or equal to the
minimum outgoing edge-cost. This operation correspondgawing the tree along
edges with cost less or equal to the current threshold cdéer A non-tree node has
been added via an edge adjacent to the tree node, the treébaodmes the father
of the non-tree node — which itself can become father of onaare non-tree nodes
added during the current growth phase — in the minmax spdaileg constructed.

However, DMMT does not necessarily always find an outgoirgedd thesearch
phase of the algorithm, as is the case for an iteration of Prim’'oathm. This is due
to the fact that nodes only learn about their neighbors bgirthe tree when these
forward request messages to them and can thus result iy costiprogress iterations
of the algorithm.

The formulation in [11] employs timers at each node in orddet the nodes dis-
tributively estimate the termination of the growth phaseouir evaluation we consid-
ered a more synchronized method initiated by the refereade to notify the nodes to
switch from the growth to the search phase. This modificatiaa considered neces-
sary in order to make DMMT more resilient against networkuf@s, such as packet
drops at the MAC level. The additional control messages wetdaken into account
for the comparisons described below.

7.2 Network simulations

We implemented the aforementioned algorithms, DMMT, ML&] 8 SPAN, as pro-
tocol agents ims2. For MLS and B®AN, the reference node starts the protocol by
initiating Algorithm 1 to obtain the weighted neighbor fisind a count of the nodes in
the network. The topology information required by DMMT isatted onto the nodes
prior to the execution of the protocol, but could also be wi#d by the methods de-
scribed in Section 4. For the following observations we fiReat 128 distinct equally
spaced power levels.

Figure 3 depicts one transmission graph of 100 nodes, its NRBIG, and the trees

17



constructed by DMMT, MLS, and BE\N. One can see that the shortest-hop distances
between pairs of nodes in the minmax spanner resulting frdnS$ Mitialized by the
RNG are generally slightly longer than in the spanner resyftom the original graph.
Running MLS on the RNG instead of the original graph gengralluces the number

of messages required, but it also removes paths with low @pnoost and a small
hopcount. The algorithms DMMT and B8N are insensitive to which input graph is
used in terms of the number of control messages required Vigl D considers only

the single least-cost outgoing edge in each iteration aneaRSelies on broadcast
messages to all neighbors.

The total message counts of DMMT, MLS, and B8 averaged over a set of
graph instances are depicted in Fig. 4. Note that the numberessages for MLS
and BSPAN also include the messages transmitted in the setup-stage pfotocols.
However, as opposed to MLS and B8\, the number of messages required for obtain-
ing this information are not included in the total messagent® of DMMT. Despite
this handicap, both outperform DMMT significantly when caripg the number of
control messages required by the protocols.

More specifically, one can see from Fig. 4(a) that DMMT regsiibetween 2 and
6 times more messages than MLS run on the transmission graphetween 6 and
more than 30 times more messages tham&6& Therefore, DMMT does not scale
well with the size of the network. Comparing MLS with B&\, one can see from
Fig. 4(b) that B®AN outperforms MLS by a factor of.2 for 50 nodes and 4 for
200 nodes when MLS is run on the transmission graph. Whergubidistributed
algorithm for constructing the RNG, however, MLS outpenierB SAN by a factor of
1.5 for 50 nodes and.2 for 200 nodes. One should also note thaPB§ significantly
benefits from using requests, which are transmitted as besadhessages, as implicit
acknowledgements.

For a fixedP the number of messages required byraS is linear in the number of
nodes, whereas for a fixed number of nodes the message colBB#aN is linear in
log|P|. Figure 5 illustrates the effect of different numbers of povevels. As opposed
to DMMT and MLS when run on the transmission graph, MLS runtenRNG and
BSpPAN scale well with the number of nodes.

When evaluating running time, one has to consider the effieiitners on the per-
formance of the different protocols. Assuming a collisioeef network, MLS and
BSPAN would only require a timer in the setup stage of the protogbich uses bea-
con messages to establish local network topology infomnath nodev discovers that
it is a leaf node if no other node has forwarded a beacon message indicatinguthat
is the father ofu in the spanning tree constructed in the setup stage. Herireeris
required in order to wait a certain time to discover child @®¢h the tree. In order to
avoid deadlocks caused by packet collisions due to intenfar at a later stage in algo-
rithms MLS and B®AN, it was necessary to introduce retransmission timers, &hos
timeout values, however, only depend on the propagaticaydsttween neighboring
nodes.

The DMMT protocol makes extensive use of timers, whose &aha¢urally have a
strong impact on the running time. Figure 6 shows thap®&is slightly slower than
MLS, and that both significantly outperform DMMT.

As already mentioned above, running MLS on the RNG insteatth@foriginal
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Figure 3: Resulting minmax spanner for a graph with 100 naithesreference node is

indicated by a black square and the critical edge is the ldigg & the bottom left part
of the graph.
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Figure 4: Number of messages required by DMMT, MLS, aneBSversus number
of nodes in the network. Error bars represent standard tif@vsaover 200 repeti-
tions. The number of messages for MLS andPBS also includes the messages of the
setup stage; the notification stage was excluded from thitseas it is not part of the
DMMT algorithm, although required for global terminatiofor BSPAN the value of
|P| in both plots is 128. The plots show data for MLS run on thegnaission graph
TG and its RNG. Note the different scale in (a) and (b).
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Figure 5: Number of messages required byPBS versus number of nodes in the
network over a range of values ft|. Error bars represent standard deviations over
200 repetitions. The number of messages includes the nesethe setup stage but
not the notification stage.

20



10000

T T T T T T T T
DMMT & TG +--%--! MLS & RNG - -
BSPAN&TG —E2— MLS&TG - -0 -

1000 | T O

100 E o E

10 | @ oo & E

1 1 1 1 1 1 1 1 1
40 60 80 100 120 140 160 180 200

Figure 6: Total simulated running time (in seconds). Errarsbrepresent standard
deviations over 200 repetitions; note that the total rugnimes are plotted on a loga-
rithmic scale. The duration of the notification stage of MUl &8 SPAN was excluded
from the results, as it is not part of the DMMT algorithms altigh required for global
termination. For B8AN the value ofiP| is 128. The plot shows data for MLS run on
the transmission graph TG and its RNG.

graph reduces the number of messages required, but it alsaves paths with low
minmax cost and a small hopcount. Indeed, the experiments ahslightly higher
running time, as propagating ACKs and NAKs along the treegd&nger.

8 Conclusions

We have presented two efficient distributed algorithmsHerdroblem of lifetime max-
imization in a wireless sensor network with stationary reded static transmission
power assignments. The first algorithm is based on a diséibcomputation of paths
from a reference node to all other nodes which have minimurimam cost, while the
second algorithm performs a binary search over the rangeua$mission power lev-
els. Both algorithms have been formulated as network patgpevhich, unlike many
previously proposed solutions to related problems, do elgtan prior knowledge of
the network, such as network size or neighbor lists.

In our network simulations, using the2 network simulator, both the proposed al-
gorithms, MLS and B8AN, significantly outperformthe recently proposed Distréulit
Min-Max Tree algorithm in terms of the number of messagesireq. When run on
the transmission graph, B&N typically shows better performance than MLS. When
MLS is run on the RNG of the transmission graph, however, drseves a drastic
reduction in the number of control messages required. Wemissent a distributed
method for pruning a transmission graph to its RNG. This methnables us to re-
duce the number of messages required by MLS if nodes aredlace plane and
transmission costs depend only on the Euclidean distance.

Both algorithms proposed in this paper solve the lifetimeimézation problem
optimally. However, there are different cases in which ool prefer one algorithm
over the other. Depending on the radio conditions, trarsionsf broadcast messages
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might not be feasible. Furthermore, the RNG of the transomsgraph could be easily
computed if the network topology is predetermined, nodeskiine locations of their
neighbors, and the edge costs are increasing in distantteeda cases one might prefer
MLS over BSPAN. In other cases, e.g., if the number of power levels is quitells
and broadcast messages are feasibleeABiSvould be the better choice. B8N also
provides a tighter bound on the message complexity of traridtgn, as is evident from
our simulation results.

A natural extension of the present work would be to consitiertask of life-
time maximization under dynamic transmission power assguts. This is, how-
ever, a computationally much more challenging problem tharstatic one considered
here [9], so obtaining an optimal solution by an efficientritisited algorithm may be
impossible. Naturally, heuristic methods could be usedbtaio reasonable practical
solutions.
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