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Abstract

We prove that it is an NP-hard problem to determine the attraction radius of a stable
vector in a binary Hopfield memory network, and even that the attraction radius is hard to
approximate. Under synchronous updating, the problems are already NP-hard for two-step

attraction radii; direct (one-step) attraction radii can be computed in polynomial time.

A Hopfield memory network [6] consists of n binary valued nodes, or “neurons.” We index
the nodes by {1,...,n}, and choose {—1,+1} as their possible states (the values {0, 1} could be
chosen equally well). Associated to each pair of nodes ¢, j is an interconnection weight w;;. The
interconnections are symmetric, so that w;; = wj; for each ¢, j; moreover, w;; = 0 for each 7. In
addition, each node ¢ has an internal threshold value t;. We denote the matrix of interconnection
weights by W = (w;;), and the vector of threshold values by t = (t1,12, ..., ).

At any given moment, each node ¢ in the network has a state z;, which is either —1 or +1.

The state at the next moment is determined as a function of the states of the other nodes as
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z; = sgn(Z?zl w;j&; —t; ), where sgn is the signum function (sgn(z) = 1 for z > 0 and sgn(z) = —1
for < 0).

In the synchronous network model, this update step is performed simultaneously for all the
nodes. Thus we may denote the global update rule for the network as z := sgn(Wa — ¢), where
z = (21,22,...,2,) is the vector of states for the nodes. Tt is known [4] that, starting from any
initial vector of states, a sequence of such updates will eventually converge either to a stable vector
(i.e., a vector u such that sgn(Wu —t) = u), or to a cycle of length two (i.e., vectors u # v such
that sgn(Wu — t) = v and sgn(Wv —t) = u). We are only interested in the stable solutions.

In an asynchronous network, the update step is performed for one node at a time in some
(usually random) order. As shown in [6], in a network with w;; = 0 for each i, all asynchronous
computations eventually converge to stable vectors.

The attraction radius of a stable vector u is the largest Hamming distance from within which
all other vectors are guaranteed eventually to converge to u. The k-step attraction radius is the
largest distance from within which all other vectors converge to u in at most k£ update steps. As
the main interest in Hopfield nets is in their error-correcting capacity with respect to the stable
vectors, it would be of considerable importance to be able to determine the attraction radius of
a given stable vector. However, we show that this problem is NP-hard for both the synchronous
and the asynchronous networks, and thus not solvable by a polynomial time algorithm unless P =
NP. Even more, we show that the attraction radius of a given stable vector (of length n) cannot
be even approzimated in polynomial time within a factor n'=¢ for any fixed ¢ > 0, unless P =
NP. (Similar results for other problems arising in the context of analyzing Hopfield nets have been
obtained in [1, 3]. For general introductions to computational complexity issues in neural networks,
see [8, 10, 11].)

We start by examining the easier case: the synchronous network. As will be seen, the boundary

between tractability and intractability is here located between computing direct (one-step) and



two-step attraction radii. We first observe that the former can be computed in polynomial time.

Theorem 1 The problem “Given a synchronous Hopfield network, a stable vector u, and a distance

k, is the direct attraction radius of u equal to k?” is polynomially solvable.

Proof The following polynomial time procedure determines the direct attraction radius of z:

1. radius := n;
2. for each node 7 do:

(a) compute the values w;;ju; for j =1, ..., n and order them as ay > -+ > ap;
(b) sum := Ej a; —t; % this is the total input to node i;
(c) if #; = 1 then do:
k=1,
il. repeat sum = sum—2ay; k= k+ 1 until sum < O or o, <O or k=n+ 1;
iii. if sum < 0 then radius := min{radius, k — 2}
(d) if ; = —1 then do:
1. k:=mn;
ii. repeat sum := sum—2ay; k := k — 1 until sum > 0 or ap, > 0 or k = 0;

iii. if sum > 0 then radius := min{radius, n — k — 1}

3. return(radius).

Intuitively, we check for each node how many of its inputs must be altered to change its state
in the update. The minimum of these numbers is the distance to the nearest vector that results in

something else than . If this distance is k, the radius of direct attraction is k — 1. O

Next we consider the problem of computing the asymptotic attraction radius. Note that this
problem is in NP, if the weights in the network are polynomially bounded in n. A nondeterministic
algorithm for the problem works as follows: Given a vector u and a distance k, guess a vector that
is within distance k from u and does not converge to u, witnessing that the attraction radius of
u is less than k. When the weights are polynomially bounded, any vector converges to either a

stable vector or a cycle of length two in polynomial time [4].



Theorem 2 The problem “Given a synchronous Hopfield network, a stable vector u, and a distance

k; is the attraction radius of u less than k?” is NP-hard.

Proof We prove that the problem is NP-hard by a reduction from the NP-complete satisfiability
problem SAT: “Given a conjunctive normal form (CNF) formula F' with k variables and m clauses,
is there a satisfying truth assignment for /2”1 In fact, we need a special version of SAT: we require
that no clause contains both a variable and its negation, and we require that the number of clauses
is greater than the number of variables. It is easy to see that these requirements do not affect the
NP-completeness, since clauses with both a variable and its negation can be excluded, and if the
number of clauses is too small, we can simply repeat one of the clauses the required number of
times.

Let & = (&1, ..., &x) be some truth assignment not satisfying . Such an assignment is easy to
find: Take, for instance, the first clause and choose values for the variables against their appearance
in the clause; i.e., if variable z; is in the clause, choose false for it, if 2; appears negated in the
clause, choose true for it; otherwise the value of the variable does not affect the value of the clause,
so choose for instance value false for it.

Transform formula F' to an equivalent formula F by adding k times one of the false clauses.
This ensures that at least £+ 1 of the clauses evaluate to false under z. In the following, m refers
to the number of clauses in F”.

Now we construct a Hopfield network in such a way that there is a stable vector u corresponding
to the truth assignment #, and unless there is a satisfying truth assignment, all input vectors
differing from u in at most k elements converge to u. On the other hand, if there is a satisfying

truth assignment z, the vector corresponding to z differs from the stable vector @ in at most k

1A CNF formula is a conjunction of clauses ¢1, ca, ..., cm, where a clause is a disjunction of boolean variables
z1, T2, ..., ) and their negations, e.g., z1 V -z3 V z4; and a satisfying truth assignment is a choice of values (true

or false) for the variables so that the formula gets value true.



elements and does not converge to u; hence the attraction radius of @ is less than &.

In the construction, truth value true is represented by node state +1, and truth value false
is represented by node state —1. In the following, we make no distinction between the truth values
and the corresponding node states.

The network has nodes corresponding to the variables and the clauses, and 2k 4+ 2 additional
nodes, in total 3k + m + 2 nodes. We denote a state vector of the network as (z,¢,r,s), where
subvector z = (21, ..., &)) corresponds to the variables, subvector ¢ = (¢1, ..., ¢ ) corresponds to
the clauses, and subvectors r and s, each of length # = &k + 1, correspond to the additional nodes.

Let ¢y be the vector of truth values for the clauses resulting from assignment z. Especially,
denote ¢ = cz. The stable vector in our construction will be @& = (&,¢, —1, —1).

Each r-node represents the conjunction of the clauses represented by the c-nodes; the r-nodes
are replicated to guarantee that not all of them can be +1 for vectors within Hamming distance k
from the stable vector @, which has » = —1. The s-nodes work in such a way that as soon as all
of them get state 41, their states cannot change any more.

Let « = 32+ 1 = k? + 2k + 2. The Hopfield network is constructed in the following way (see

Figure 1):

the threshold value of each node z; is —(am + 1)#;,

e the threshold value of each node ¢; is —a(k; — 1), where k; is the number of literals (i.e.,

variables and negations of variables) in the clause ¢;,

e the threshold value of each node r; is f(m — 1),

e the threshold value of each node s; is 0,

e there is an edge between each z; and each ¢; with weight « if literal z; is in clause ¢;, and

with weight —o if literal —z; is in clause ¢;,
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Figure 1: The structure of the Hopfield network in Theorem 2.
o there is an edge between each ¢; and each r; with weight 3,
e there is an edge between each r; and the corresponding s; with weight k,

e the s-nodes constitute a fully connected subnetwork: there is an edge between each s; and

each s; (where j # i) with weight 1, and
e all other edges have weight 0, i.e., they are excluded.

It is easy to check that @ = (z,¢,—1,—1) is a stable vector in this network.

This construction is polynomial in the size of the input formula, and we can now proceed
to proving that this is the desired reduction. We prove first that if there is no satisfying truth
assignment, all vectors at distance at most k from u converge to u, and after that we prove that
if there is a satisfying truth assignment &, then vector (#,¢,—1,—1) does not converge to @, and
hence the attraction radius of u is strictly less than the Hamming distance between 2 and &, which

1s at most k.

1. Assume there is no satisfying truth assignment. In this case, take an arbitrary input vector

(z,¢,7,s) with Hamming distance at most k from .



At the first update step, the states of the z-nodes become Z, since the input to node z; is
between —am and am, and hence z; gets state sgn(tam + (am + 1)&;) = #;. We use here
an abbreviation of type sgn(a + b) for sgn(z), where ¢ — b < 2 < a + b. As the threshold
values in this way force the z-nodes to get states Z, the states of the z-nodes do not change

any more during the computation.

The states of the c-nodes get values ¢;. As there is no satisfying truth assignment, at least

one of the ¢;-values is —1.

Recall that at least one c; has initial state —1 even if k c-nodes have their states differing
from é. Hence the input to each r-node from the c¢-nodes is at most B(m — 2), and as there
is only one connection from an s-node to each r-node, the s-nodes contribute at most k to
the input. Thus the r-nodes get state —1, and the only situation in which the r-nodes can

get states 1 is when all the ¢-nodes have state 1.

At the second update step the states of the c-nodes become ¢. This can be seen as follows.
As ¢ represents the truth values resulting from Z, the input from the z-nodes is —ak; if
¢; = —1, and at least —a(k; —2) if ¢; = 1. The input from the r-nodes is between —3? and
B2, so if ¢; = —1, then ¢; gets state sgn(—ak; + 32 + a(k; — 1)) = —1, and if ¢; = 1, then ¢;
gets state sgn(—a(k; —2) + % + a(k; — 1)) = 1. As the z-nodes do not change any more,

also the ¢-nodes do not change any more during the computation.

As there is some c-node with state —1, the states of the r-nodes do not change: They are all

still —1.

As the Hamming distance between (z, ¢, r, s) and 4 is at most £, at least one r-node and at
least one s-node have initial states —1. Thus at the first update step, the absolute value of
the input from other s-nodes to each s-node is at most k — 2, whereas the input from the

corresponding r-node is the state of the r-node times k. This results in the s-nodes having



the same states after the first update step as the r-nodes had before the first update step.
Consequently, there is at least one s-node with state —1 after the first update step. The first
update step results in all r-nodes having state —1. Consequently, all s-nodes get states —1

in the second update step.

To sum up: Starting with (z,¢,r, s), the first update step results in (Z,¢;,—1,7), and the

)

second update step results in u.

2. Assume that there is a satisfying assignment . We show that the input vector (z,¢, —1,—1)

does not converge to @, which implies that the attraction radius must be less than k.

In the first update step, the z-nodes become z, each c¢; gets state sgn(—a(k; — 2) &+ 8% +
a(kj —1)) =1, and r and s stay —1. In the second update step, the ¢;-nodes become ¢, but
each r; gets state sgn(Bm + k — B(m — 1)) = 1, while s still stays —1. In the third update
step, the r-nodes become —1 but each s; gets state sgn(k — k) = 1. Now s stays as it is, since

from now on the total input to each s; is —k + k¥ = 0. The computation has converged to

The proof is now completed. O

From the construction in the proof, we see that just determining the two-step attraction radius
is NP-hard. Computing the direct attraction radius is easy while computing the two-step attraction
radius is hard, because for the direct radius it is enough to check the change of one element at a
time while for the two-step radius we have to check the changes of the changes.

Also approximating the attraction radius is hard. We say that an approximation algorithm to
a minimization problem approximates the problem within a factor K, if for all sufficiently large
problem instances I, the result of the algorithm is at most Kmin(7I), where min(7) is the optimal

result for instance 1.



If a CNF formulais satisfiable, it can in general be satisfied by many different truth assignments.
We use the name MIN ONEs for the problem of finding the minimum number of true variables
in a satisfying truth assignment. (The analogous maximization problem MAX ONES has been
considered in [9].)

We see from the construction of the network in Theorem 2 that the attraction radius is one less
than the minimum Hamming distance between vector z and a satisfying vector . Now, construct
from a given instance of SAT a formula in the way described in Theorem 2. For each z; = 1,
change all literals z; to —z; and all literals —z; to z;. Now setting all variables to false yields
a nonsatisfying truth assignment for the formula, and (—1,c_g,—1,—1) is the stable vector we
consider. Thus, the problem of computing the attraction radius is equivalent to the problem MiIN
ONES of finding the minimum number of true variables in a satisfying truth assignment to a CNF
formula.

It is easy to show that there is no polynomial time algorithm approximating MIN ONES within
a factor K for any fixed K > 1, unless P = NP. Given a CNF formula F with k variables, denote

n = |Kk]| and add n + 1 new variables z, z1, z9, ..., z,. Construct the formula
G=(FVz)AN(zV-z)A 2V ).
i=1

Note that GG can be made into a CNF formula by distributing the z in the first conjunct over the
clauses of F'. Now the number of true variables needed to make G true is either at most &k (if '
is satisfiable) or n 4+ 1 > Kk (setting z1, z3, ..., z,, and z to true). Consequently, an algorithm
approximating MIN ONES within a factor K would in fact decide the satisfiability of formula F'.
We shall introduce here also a stronger construction, which was suggested to us by Viggo Kann
[7]. For this construction, we need the MINIMUM INDEPENDENT DOMINATING SET minimization
problem, which asks for the size of a minimum independent dominating set in an undirected graph.
Let (V, E) be a graph, where V is the set of nodes and £ C V x V is the set of edges. Then a

subset S of V' is an independent dominating set if there is no edge between any two nodes in S



and every node in the graph is either in S or is a neighbor of a node in S. Magnus Halldérsson has
shown that MINIMUM INDEPENDENT DOMINATING SET cannot be approximated in polynomial
time within a factor n!=¢ for any fixed ¢ > 0, unless P = NP [5]. Here n is the number of nodes

in the graph.

Lemma 1 There is no polynomial time algorithm approrimating MIN ONES within a factor n'~¢

for any fized ¢, where 0 < € < 1, unless P = NP. Here n is the number of variables in the CNF

formula.

Proof We prove that a polynomial time algorithm approximating MIN ONES within a factor
K would give a polynomial time algorithm approximating MINIMUM INDEPENDENT DOMINATING
SET within a factor K. Consequently, MIN ONES is at least as hard to approximate as MINIMUM
INDEPENDENT DOMINATING SET, and the claim follows from Halldérsson’s result.

Let (V, E) be a graph with n nodes. Create one variable s; for each node s; € V. Note that
for simplicity we use the same notation for both the node and the variable. Now we transform the
property that a node is in an independent dominating set to the property that the corresponding
variable is true. Denote the set of neighbors of node s; by E; = {s; | {si,s;} € E}. Construct

the CNF formula

G= /\ (siv \/ sj)/\ /\ (—s; V —1s5).

s;€EV s;EE; {s:,5;}€E

But every satisfying truth assignment to this formula corresponds to an independent dominating
set in the graph and the size of this set is equal to the number of true variables. This completes

the proof. O

Corollary 1 There is no polynomial time algorithm approzimating the attraction radii in a syn-
chronous Hopfield network (with n nodes) within a factor n'=¢ for any fized €, where 0 < € < 1,

unless P = NP.
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Proof We have already seen that the problem of computing the attraction radius is equivalent
to the problem MIN ONEs of finding the minimum number of true variables. The claim follows

immediately from Lemma 1. O

The results above for synchronous Hopfield memories can be extended to asynchronous Hopfield
memories. In the asynchronous case, the results are valid for the asymptotic attraction radius only;
the k-step attraction radius is not interesting.

We sketch below how the proof of Theorem 2 must be modified in order to apply for asyn-
chronous Hopfield memories. The nonapproximability result then follows in the same manner as

in Corollary 1.

Theorem 3 The problem “Given an asynchronous Hopfield network, a stable vector u, and a

distance k; is the atiraction radius of u less than k?” is NP-hard.

Proof (sketch) The problem in applying the proof of Theorem 2 to the asynchronous case
lies in the free update order. To avoid this problem, we add for each clause ¢; a subnetwork
checking that ¢; has the correct value for the current variables z; i.e., the subnetwork computes
¢j = (zy, Vi, V-V ;L‘Z'kj).2 The results of the subnetworks are used by the r-nodes: Node r; gets
value 1 if and only if ¢; = 1 and, additionally, the equivalence is satisfied.

In order to avoid cheating the equivalence test by choosing suitable initial values, the subnet-
works are replicated so that there are ¥ = # — 1 such subnetworks for each ¢;. Node r; gets
value 1 if and only if all the subnetworks connected to it yield 1. Additionally, to avoid cheating
by manipulating a small set of the z variables, the result of the equivalence test must be false for

the stable state u. Hence, we extend the equivalence test to

(¢j = (wiy Vi, Vo Vg ) ANz £ T).

2Note that some variables may appear negated in the disjunction. For simplicity of notation, we assume that cj

is of the expressed form.
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Figure 2: The network part with direct connections to node ¢; in the modified network in Theorem 3
(cf. Figure 1). Note that there in fact are four connections with different weights between each

z-node and each subnetwork (denoted by a square).

The subnetworks are put between the layer of e-nodes and the layer of r-nodes: Each subnet-
work has connections from each z-node and from the corresponding e-node and the result of the
subnetwork is used by the corresponding r-node. Thus node r; is connected to node ¢; and to
all the 3 — 1 subnetworks connected to ¢;; each connection has weight 5. (See Figure 2.) Each
subnetwork has 3k + 5 nodes and depth 4; the weights must again be chosen so that nodes to the
right cannot influence the result (nodes to the left determine solely the outcome of the update).
This means also that the weight o must be increased to o’ = kmax(8% + 28 — 3) + 8+ 1, where
kmax 1s the maximum number of literals in a clause in the formula.

Now we can proceed roughly as in Theorem 2. O
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