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Abstract

We prove that the problem of counting the number of stable states in a
given Hopfield net is # P-complete, and the problem of computing the size
of the attraction domain of a given stable state is NP-hard.

1 Introduction

A binary associative memory network, or “Hopfield net” [6], consists of n fully
interconnected threshold logic units, or “neurons”. Associated to each pair of
neurons ¢, j is an interconnection weight w;;, and to each neuron ¢ a threshold
value ;. At any given moment a neuron i can be in one of two states, z; = 1
or x; = —1. Its state at the next moment depends on the current states of the
other neurons and the interconnection weights; if sgn(zyzl wie; — b)) £ a4,
the neuron may switch to the opposite state. (Here sgn is the signum function,
sgn(z) = 1 for > 0, and sgn(z) = —1 for < 0.) Whether the state change
actually occurs depends on whether the neuron is selected for updating at this
moment. In the synchronous update rule, all neurons are updated at each step;
in an asynchronous rule only one neuron at a time is selected for updating.
Let us denote the state vector of a network by 2 = (21, ..., zy,), its matrix of
connection weights by W = (w;;), and its vector of thresholds by ¢t = (¢1,...,t,).
If W is symmetric with a zero diagonal, and an asynchronous update rule is
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used, it can be shown [6] that from any initial state, the network eventually
converges to a stable state, i.e. to a state z such that sgn(Waz —t) = 2. This
convergence property makes the use of such networks as associative memories
an attractive possibility. Let u!,...,u™ € {—1,1}" be a collection of patterns
(bit vectors) to be stored. Assume that a connection matrix W and a threshold
vector ¢ can be determined so that the state vectors corresponding to u', ..., u™
are stable. Given then as input a pattern which is a distorted version of some
u’, the correct pattern can (hopefully) be recovered by setting the initial states
of the neurons corresponding to the input, and letting the network repeat its
state-change operation until it stabilizes.

A well-behaved associative memory network should have at least the follow-
ing properties: the stored patterns should really be stable states of the system;
there should be as few spurious stable states as possible; and more generally
there should be some reasonably large domain of attraction around each desired
stable state, i.e. given an input that differs only slightly from one of the stored
patterns, the result of the stabilizing computation should be that pattern.

The fundamental properties and capabilities of Hopfield-type associative
memories have been analyzed extensively in the literature (e.g., [1, 2, 5, 6,
7,8, 11, 12]). Our main interest here is in the situation where some ready-made
associative memory network is given, and its quality is to be assessed. Problems
of interest in this setting include: given a network, compute its number of stable
states, and given a stable state in a network, compute the size of its domain of
attraction. As it turns out, both of these tasks are at least NP-hard.

We concentrate on the restricted class of networks with symmetric connec-
tion matrices with zero diagonals, i.e., the class of networks originally considered
by Hopfield in [6]. Asymmetric networks are not considered, because they can
simulate finite state automata, and consequently be quite ill-behaved. Moreover,
analyzing even the basic properties of general networks is hard. For instance,
Porat [9] has shown that the problem of determining whether every computation
in an asymmetric network ends up in a stable state is NP-hard, and Lipscomb et
al. [4] have shown that even the problem of determining whether such a network
has any stable states is NP-hard. The diagonal elements are usually required
to be zero in order to guarantee convergence and to exclude trivial connection
matrices resembling the identity matrix.

2 Determining the Number of Stable States

Given a network (W, t), it is easy to check that a set of desired patterns u®,i =
1,...,m, are all stable: just compute sgn(Wu’—t) for each one. Hence, comput-
ing the number of spurious stable states in a network is equivalent to computing
how many stable states it has altogether. Unfortunately, this is hard. We con-
sider first the case of symmetric connection matrices with nonzero diagonal
elements allowed.



Theorem 1 The problem “Given a symmetric integer valued matriz W; does
the mapping x +— sgn(Wx) have fized points?” is NP-complete.

Proof. Clearly, the problem is in NP. We prove that it is NP-hard by a
reduction from the PARTTTION problem [3, p. 223].

Consider an instance of PARTITION: “Given positive integers aq, ..., ag;
does there exist a set of indices A C {1,...,k}, such that )7, , a; = ZMZA a;?”
To reduce this to an instance of the problem under consideration, denote ¢ =
Zle a;, and choose

—C C aq as ar
[ —C —aq —as s —ap
aq —aq 1 0 e 0
W = as —as 0 1 e 0
ag —ag 0 0 st 1
Clearly W can be constructed from ay, ..., ar in polynomial time.

We now prove that there is a solution to the given PARTITION instance if
and only if the mapping ¢ +— sgn(Wz)has a fixed point. For brevity, let us
denote (ai,...,ax) = a.

(if ) If there is a fixed point of the form (1,1,€),& = (&1,...,&) € {—1,1}*,
then by row 1 of matrix W, a”¢ > 0, and by row 2 of W, —a”¢ > 0 Hence
at¢=0,and 3, a; = Yoigaaifor A={ie{l,... k}& =1}

Thus, let us prove that the only possible fixed points are of this form:

1. Form (—1,—1,€) is not possible, because then rows 1 and 2 of W would
imply that 0 > a”¢ > 0.

2. Form (1,—1,¢&) is not possible, because then row 1 of W would imply that
—2¢+aT¢ > 0. However, a”¢ < ¢,s0 —2c+aT¢ < —¢ < 0.

3. Form (—1,1,¢&) is not possible, because then row 1 of W would imply that
2¢+aT¢ < 0. However, a’¢ > —¢, 50 2c+a’€ > ¢ > 0.

(only if ) If A is a solution to the PARTITION instance, then Ele a;& =0,
where §; = 1ifie A and §; = —1ifi ¢ A. Thus 2 = (1,1,&1,...,&) is a fixed
point of the mapping « — sgn(Wz). O

We can actually make a slightly stronger statement than in Theorem 1,
but for this we need a few additional notions. An integer valued function f
belongs to the class #P if there is a nondeterministic polynomial time Turing
machine M that on each input z has exactly f(z) accepting computation paths.
A function f is #P-complete, if it is in #P, and any other function in #P
can be computed by some deterministic polynomial time Turing machine that
is allowed to access values of f at unit cost. To each NP decision problem



there corresponds in a natural way a #P counting problem (i.e., the problem of
counting “witnesses” or accepting computation paths), and vice versa. We shall
say, somewhat inaccurately, that an NP decision problem A isin #P (resp. #P-
complete) if the associated counting problem is in #P (resp. #P-complete). A
polynomial time transformation of one NP problem to another is parsimonious
if it preserves the number of witnesses to each instance. If the underlying NP
problem A of a #P-complete counting problem can be parsimoniously reduced
to another NP problem B, then also the counting problem associated with B
is #P-complete. (For a more extended discussion of these notions, see [3, pp.

168-169].)

Corollary 1 The problem “Given a symmetric integer valued matriz W; how
many fized points does the mapping x +— sgn(Wz) have?” is #P-complete.

Proof. The problem is clearly in #P. Since PARTITION is #P-complete
[10], and the reduction in the proof of Theorem 1 is parsimonious, the claim
follows. O

As the following simple proposition illustrates, the two negative diagonal
elements in the proof of Theorem 1 are crucial for the (non)existence of stable
states.

Proposition 1 Given a symmetric real-valued matriz W with non-negative
diagonal elements, and a real valued threshold wvector t, the mapping
z — sgn(Wzx — t) always has a fized point.

Proof. As shown by Hopfield in [6], if the neurons in a zero-diagonal network
are updated asynchronously, the network always stabilizes to a stable state from
any initial state. This is actually true of all networks with non-negative diagonal
elements [5]. Since the property of being a stable state is not dependent on the
way neurons are updated, a network of this type always has at least one stable
state. O

However, even in this case it is hard to determine the number of stable states,
as the following result shows.

Theorem 2 The problem “Given a symmetric integer valued matriv W with
zero diagonal elements; does the mapping © +— sgn(Wz) have at least three
fized points?” is NP-complete.

Note. This result, except for the zero thresholds, and for two instead of three
fixed points, has also been obtained independently by Lipscomb et al. [4].

Proof. Clearly, the problem is in NP. We prove that it is NP-hard by a
reduction from a restricted version of PARTITION, where the two sides of the

eventual partition are required to contain equally many elements. This problem,
which we call EQUIPARTITION, is also NP-complete [3, p. 223].



Thus, consider an instance of EQUIPARTITION: “Given positive integers
ai,...,ag, k even; does there exist a set of indices A C {1,...,k}, such that

|Al=k/2and ) iy ai =3 g0 a7

k
Denote ¢ = ", a;, and choose

0 0 c+ ay c+ay - c+ayg
0 0 —c—a; —c—as --- —C—ag
ct+a; —c—a 0 -1 -1
W= c+ay —c—as -1 0 -1
c+ap —c—ag -1 -1 0
Clearly W can be constructed from aq, ..., ar in polynomial time. Note also
that ¢ > k, and that the vectors (1,—1,1,1,...,1) and (—-1,1,—1,-1,...,—1)

are always fixed points of the mapping # +— sgn(Wz). We now prove that the
given EQUIPARTITION instance has a solution if and only if this mapping has
at least one more fixed point.

(if ) Assume that the mapping has a fixed point of the form (1, 1, &) for some
& = (&,...,&) € {—1,1}*. Let us again denote (ay,...,a;) = a, and for
brevity also (1,1,...,1) = 1, so that a®¢ = Zle a;& and 17¢ = Zle &. By
rows 1 and 2 of matrix W, c17¢ 4+ aT¢ = 0. Now if 17¢ # 0, then [17¢] > 2
(recall that k is even), and as |aT¢| < ¢, [e1T€¢ +aT¢] > ¢ > 0. Thus 17¢ = 0,
and so also a”¢ = 0. Hence, if we choose A = {i € {1,...,k}|& = 1}, we have
(Al =k/2 and 3 5¢ 4 a5 = D iga ai-

Let us then prove that the only possible fixed points besides (1,—1,1,...,1)
and (—1,1,—1,...,—1) are indeed of the form (1,1, ¢).

1. A fixed point cannot be of the form (—1,—1,¢&), since rows 1 and 2 of W
would then require that 0 > ¢17¢ 4+ aT¢ > 0.

2. If (1,—1,¢) is a fixed point, then for every i = 1,... k,
(Wa)ips =2c+2a; — (17¢ = &) > 2k +2— (k—1) > 0,
so (1,—1,1,...,1) is the only possible fixed point of this form.
3. If (—1,1,¢) is a fixed point, then for every i =1,... k,
(Wa)ips = —2¢—2a; —(1T¢ =&)< =2k =2+ (k—1) <0,
so (—1,1,—1,...,—1) is the only possible fixed point of this form.

(only if)If A C{1,...,k}, |A] = k/2, is a solution to the given EQUIPAR-
TITION instance, then defining & = 1if¢ € A, and & = —1if i € A yields
Zle a;& = 0 and Ele & = 0. Setting z = (1, 1,¢), it is easy to check that



(Wz), = (We)s =0, and (Wa);4e =&, fori=1,... k. Thus z = (1,1,£) is a
fixed point of the mapping z +— sgn(Wz). O

We can also easily strengthen Theorem 2 to a #P-completeness result after
we prove the requisite lemma:

Lemma 1 The EQUIPARTITION problem is #P-complete.

Proof. The problem is clearly in #P. Consider the following transformation
from PARTITION, which is #P-complete: given a PARTITION instance with
elements a1, ..., a,, denote ¢ = Z?zl a;, and construct an EQUIPARTITION
instance that consists of the elements

a1 +2c¢,as + 4e, ..., a, +2"%¢,2¢,4c,...,2"%.

Let us prove that this is in fact a parsimonious reduction, i.e., that to every
PARTITION solution there corresponds exactly one EQUIPARTITION solu-
tion, and vice versa.

If AC{l,...,n}isasolution to the PARTITION instance, so that ) _, , a; =
EMZA a;, then clearly

dai+20)+ > 2e=> (a;+2c)+ Y 2'c,

i€A igA igA icA

and both sides of the equality have n terms. Moreover, if B C {1,...,n} is such

that

Z(ai + Qic) + Z Ve = Z(ai + Qic) + Z 2e,

icA jEB igA jgB
and |A|+|B| = n, then both sides of the equality must be equal to £ + 27+ — 2)¢,
and s0 ) 4 20 4 z]'eB 27 = 97+l _ 2 But there is only one way to ob-
tain 27! — 2 as a sum of exactly n positive powers of 2; viz., to have B =
{1,...,n}— A.

Conversely, let A, B C {1,...,n} be a solution to the EQUIPARTITION

instance, so that

Z(ai +2%¢) + Z 2e= Z(ai +2%) + Z e,
€A jEB igA jgB

and |A|+ |B| = n. Since both sides of the equality must equal £ + (2"+! —2)c,
and since 2%¢ > 2¢ > ZiGA a;, ZieA a; for all £ > 1, it must be the case that

ZieA a; = Zig{A aj=73. 0O

Corollary 2 The problem “Given a symmetric integer valued matriz W
with zero diagonal elements; how many fizred points does the mapping
z — sgn(Wz) have?” is #P-complete.



Proof. The reduction in Theorem 2 provides a parsimonious transformation
from EQUIPARTITION to the slightly modified version “Given a symmetric
integer valued matrix W with zero diagonal elements; how many fixed points
beyond two does the mapping z +— sgn(Wz) have?”. Hence EQUIPARTITION,
and any counting problem in #P, can be solved in polynomial time, assuming
an ability to solve instances of the original problem in a single step. O

3 Determining Sizes of Attraction Domains

In this section we consider the problem of computing the size of the attraction
domain of a given state, i.e. the number of patterns that converge to this
state. We first give a simple result showing that in general it is NP-complete to
determine whether there are any patterns that map to a given state.

Theorem 3 The problem “Given a symmetric integer valued n X n-matriz W
with zeros as diagonal elements; does there exist a point x € {—1,1}" such that
sgn(Wa) = (1,...,1)2” is NP-complete.

Proof. The problem is obviously in NP. Now, given a PARTITION instance
with elements aq, ..., ar, consider

0 0 ay ag

0 0 —ay —ay,
W — ay —aq 0 O

ap —ag 0 0

It can be verified that the given instance of PARTITION has a solution if
and only if there is an @ € {—1, 1}**? such that sgn(Wz) = (1,...,1). O

Of course, if we know that y € {—1,1}" is a fixed point, there is trivially
at least one point € {—1,1}" such that sgn(Wz) = y, namely y itself. How-
ever, our next theorem shows that even in this case asking for another pattern
in the attraction domain is NP-complete. We first formulate a lemma, of cer-
tain interest in itself, showing that a certain very restricted form of 0-1 integer
programming is NP-complete.

Lemma 2 The problem “Given a symmetric zero-diagonal n X n-matriz A with
entries from {—1,0,1}; does there exist a point z € {0,1}", 2 # 0, such that
Ax > 097 is NP-complete.

Proof. The problem is clearly in NP. We prove completeness in two stages:
we first reduce the NP-complete MINIMUM COVER problem [3, p. 222] to the
present problem without requiring that the resulting matrix be symmetric or
zero-diagonal, and then we show how to impose these two conditions.
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Figure 1: Matrix C.

Consider an instance of MINIMUM COVER: “Given a matrix B € {0,1}"*¢
and a constant k; is it possible to select from B a set of ¢ < k column vectors
Yi,...,Yq s0 that S27_, y; > 17" (Here again we use the notation 1 = (1,...,1).)

For the reduction, construct first from B and %k an intermediate matrix C'
as in Figure 1. We claim that B has a set of ¢ < k columns yi,...,y, such
that Egzl y; > 1 if and only if C has a set of columns z1,...,z,,p > 1, such
that >°¥_ x; > 0. The “only if” direction is clear: given a set of columns from
B, choose from C' the corresponding columns plus the k rightmost columns.
For the “if” direction, note first that whatever columns are chosen from C,
the k rightmost columns, in particular the utter rightmost one, must be among
these. This implies that for the columns of B obtained as projections of the
choices from C', each of the row sums must be at least 1. Also, there cannot
be more than k& B-columns, because otherwise it would not be possible to get a
nonnegative sum on row r + 1 of C'.

Having constructed the matrix C' as above, a symmetric zero-diagonal matrix
A can then be constructed as in Figure 2. Matrix A satisfies our requirements
in the same way as C' does, because in fact none of the columns to the right of
column s + k of A can ever be included in a set of columns with nonnegative
row sums. O

Theorem 4 The problem “Given a symmeiric zero-diagonal n x n-matriz W
with entries from {—1,0,1} such that sgn(W1) = 1; do there exist any points
ze{-1,1}"x #1, such that syn(Wz) = 12" is NP-complete.
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Figure 2: Final matrix A.

Proof. The problem is clearly in NP. We prove that it is NP-hard by a
reduction from the problem in Lemma 2. Consider an instance of this: “Given
a symmetric zero-diagonal matrix A € {—1,0,1}¥**; does there exist a point
x € {0,1}*, 2 # 0 such that Az > 07”

Let K; be the symmetric k£ x k-matrix whose entry k;; is 1 if j = ¢+ 1
(mod k), and 0 otherwise, and let K3 be the symmetric k x k-matrix whose
entry kjjislif j=i+lorj=i¢+2 (modk), and 0 otherwise. Let 1 denote
the k x k£ matrix all of whose entries are 1. Choose n = bk, and let

-A A 0 0 0

AT 0 1 Ky 0

W= 0 1 —-1471+4+K, —-Ky 1T
0 K —Ky Ky 0

0 0 I 0 0

It is easy to verify that sgn(W1) = 1. We now show that there exists a
y € {0,1}*% y # 0, such that Ay > 0 in the problem in the Lemma if and only if
there exists an z € {—1,1}", 2 # 1, such that Wz > 0 in the present problem.

Denote z = (1), ..., (), where () € {-1,1}*,i=1,...,5.

(if) ¥ Wz > 0, and 2 # 1, then 23 = 1 by rows 4k +1,...,5k of W. Thus
2 = 24 =1 by rows 3k+1,...,4k, and then z5) = 1 by rows 2k +1, ..., 3k.
Hence z(1) # 1, and by rows 1,...,k, —AzM 4+ A1 > 0. But this implies that
Ay >0 for y = %(1 — 21y £0.



(only if) Tf Ay > 0, and y # 0, then take z = (), 2(®) ... 26)) =
(1 = 2y,1,...,1). Now Wz >0,and 2 # 1. O

Corollary 3 The problem “Given a symmetric zero-diagonal n X n-matriz W
with entries from {—1,0, 1} such that sgn(W1) = 1; how many pointsxz € {—1, 1}"
are there such that sgn(Wa) = 127 is #P-complete.

Proof. The MINIMUM COVER problem is #P-complete (to verify this, see
the sequence of parsimonious reductions in [3, pp. 48-53, 64] that lead from
SATISFIABILITY to MINIMUM COVER). Furthermore, the reductions given
in Lemma 2 and Theorem 4 are parsimonious. O

4 Conclusion

We have shown that given a Hopfield net, it is NP-hard to either count the
total number of stable states in it, or to count the number of states converging
to a given stable state. The latter result holds even when the interconnection
weights between neurons are restricted to 0 and +1. More strongly, we have
shown that the stable state counting problem, and the problem of counting
states converging to a given stable state in a single parallel update step are both
#P-complete. A remaining open problem is to show that computing the size of
the full attraction domain of a given stable state is also #P-complete. Also, an
important issue we have not addressed at all is computing the attraction radius
of a given stable state, i.e., the maximal Hamming distance from within which
all patterns converge to this state.
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