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A local search algorithm solving an NP-complete optimisation problem can be viewed as

a stochastic process moving in an ’energy landscape’ towards eventually finding an optimal

solution. For the random 3-satisfiability problem, the heuristic of focusing the local moves on

the presently unsatisfied clauses is known to be very effective: the time to solution has been

observed to grow only linearly in the number of variables, for a given clauses-to-variables ratio

α sufficiently far below the critical satisfiability threshold αc ≈ 4.27. We present numerical

results on the behaviour of three focused local search algorithms for this problem, considering

in particular the characteristics of a focused variant of the simple Metropolis dynamics. We

estimate the optimal value for the “temperature” parameter η for this algorithm, such that

its linear-time regime extends as close to αc as possible. Similar parameter optimisation is

performed also for the well-known WalkSAT algorithm and for the less studied, but very well

performing Focused Record-to-Record Travel method. We observe that with an appropriate

choice of parameters, the linear time regime for each of these algorithms seems to extend

well into ratios α > 4.2 — much further than has so far been generally assumed. We discuss

the statistics of solution times for the algorithms, relate their performance to the process

of “whitening”, and present some conjectures on the shape of their computational phase

diagrams.



2I. INTRODUCTION

The 3-satisfiability (3-SAT) problem is one of the paradigmatic NP-complete problems [8]. An

instance of the problem is a formula consisting of M clauses, each of which is a set of three literals,

i.e. Boolean variables or their negations. The goal is to find a solution consisting of a satisfying

truth assignment to the N variables, such that each clause contains at least one literal evaluating

to ’true’, provided such an assignment exists. In a random 3-SAT instance, the literals comprising

each clause are chosen uniformly at random.

It was observed in [16] that random 3-SAT instances change from being generically satisfiable

to being generically unsatisfiable when the clauses-to-variables ratio α = M/N exceeds a critical

threshold αc. Current numerical estimates [4] suggest that this satisfiability threshold is located

approximately at αc ≈ 4.267. For a general introduction to aspects of the satisfiability problem

see [6].

Two questions are often asked in this context: how to solve random 3-SAT instances effectively

close to the threshold αc, and what can be said of the point at which various types of algorithms

begin to falter. Recently progress has been made by the “survey propagation” method [4, 5, 15]

that essentially iterates a guess about the state of each variable, in the course of fixing an ever

larger proportion of the variables to their “best guess” value.

In this article we investigate the performance of algorithms that try to find a solution by local

moves, flipping the value of one variable at a time. When the variables to be flipped are chosen

only from the unsatisfied (unsat) clauses, a local search algorithm is called focusing. A particularly

well-known example of a focused local search algorithm for 3-SAT is WalkSAT [23], which makes

“greedy” and random flips with a fixed probability. Many variants of this and other local search

algorithms with different heuristics have been developed; for a general overview of the techniques

see [1].

Our main emphasis will be on a focused variant of the standard Metropolis dynamics [13] of

spin systems, which is also the base for the well-known simulated annealing optimization method.

When applied to the 3-SAT problem, we call this dynamics the Focused Metropolis Search (FMS)

algorithm. We also consider the Focused Record-to-Record Travel (FRRT) algorithm [7, 22], which

imposes a history-dependent upper limit for the maximum energy allowed during its execution.

The space of solutions to 3-SAT instances slightly below αc is known to develop structure.

Physics-based methods from mean-field -like spin glasses imply through replica methods that the



3solutions become “clustered”, with a threshold of α ≈ 3.92 [15]. The clustering implies that if

measured e.g. by Hamming distance the different solutions in the same cluster are close to each

other. A possible consequence of this is the existence of cluster “backbones”, which means that

in a cluster a certain fraction of the variables is fixed, while the others can be varied subject to

some constraints. The stability of the replica ansatz becomes crucial for higher α, and it has been

suggested that this might become important at α ≈ 4.15 [17]. The energy landscape in which the

local algorithms move is however a finite-temperature version. The question is how close to αc one

can get by moving around by local moves (spin flips) and focusing on the unsat clauses.

Our results concern the optimality of this strategy for various algorithms and α. First, we

demonstrate that WalkSAT works in the “critical” region up to α > 4.2 with the optimal noise

parameter p ≈ 0.57. Then, we concentrate on the numerical performance of the FMS method. In

this case, the solution time is found to be linear in N within a parameter window ηmin ≤ η ≤ ηmax,

where η is essentially the Metropolis temperature parameter. More precisely, we observe that within

this window, the median and all other quantiles of the solution times normalised by N seem to

approach a constant value as N increases. A stronger condition would be that the distributions of

the solution times be concentrated in the sense that the ratio of the standard deviation and the

average solution time decreases with increasing N . While numerical studies of the distributions

do not indicate heavy tails that would contradict this condition, we can of course not at present

prove that this is rigorously true. The existence of the η window implies that for too large η the

algorithm becomes entropic, while for too small η it is too greedy, leading to freezing of degrees of

freedom (variables) in that case.

The optimal η = ηopt(α), i.e. that η for which the solution time median is lowest, seems to

increase with increasing α. We have tried to extrapolate this behaviour towards αc and consider it

possible that the algorithm works, in the median sense, linearly in N all the way up to αc. This

is in contradiction with some earlier conjectures. All in all we postulate a phase diagram for the

FMS algorithm based on two phase boundaries following from too little or too much greed. Of this

picture, one particular phase space point has been considered before [3, 25], since it happens to be

the case that for η = 1 the FMS coincides the so called Random Walk method [18], which is known

to suffer from metastability at α ≈ 2.7 [3, 25].

The structure of this paper is as follows: In Section 2 we present as a comparison the WalkSAT

algorithm, list some of the known results concerning the random 3-SAT problem, and test the

WalkSAT for varying p and α values. In Section 3 we go through the FMS algorithm in detail, and



4WalkSAT(F,p):

s = random initial truth assignment;

while flips < max_flips do

if s satisfies F then output s & halt, else:

- pick a random unsatisfied clause C in F;

- if some variables in C can be flipped without

breaking any presently satisfied clauses,

then pick one such variable x at random; else:

- with probability p, pick a variable x

in C at random;

- with probability (1-p), pick some x in C

that breaks a minimal number of presently

satisfied clauses;

- flip x.

FIG. 1: The WalkSAT algorithm.

present extensive numerical simulations with it. Section 4 presents as a further comparison similar

data for the FRRT algorithm. In Section 5 we discuss how the notion of whitening [19] is related

to the behaviour of FMS with low η. Finally, section 6 finishes the paper with a summary.

II. LOCAL SEARCH FOR SATISFIABILITY

It is natural to view the satisfiability problem as a combinatorial optimisation task, where the

goal for a given formula F is to minimise the objective function E = EF (s) = the number of

unsatisfied clauses in formula F under truth assignment s. The use of local search heuristics in this

context was promoted e.g. by Selman et al. in [24] and by Gu in [9]. Viewed as a spin glass model,

E can be taken to be the energy of the system.

Selman et al. introduced in [24] the simple greedy GSAT algorithm, whereby at each step the

variable to be flipped is determined by which flip yields the largest decrease in E, or if no decrease

is possible, then smallest increase. This method was improved in [23] by augmenting the simple

greedy steps with an adjustable fraction p of pure random walk moves, leading to the algorithm

NoisyGSAT.

In a different line of work, Papadimitriou [18] introduced the very important idea of focusing

the search to consider at each step only those variables that appear in the presently unsatisfied



5clauses. Applying this modification to the NoisyGSAT method leads to the WalkSAT [23] algorithm

(Figure 1), which is the currently most popular local search method for satisfiability.

In [23], Selman et al. presented some comparisons among their new NoisyGSAT and WalkSAT

algorithms, together with some other methods. These experiments were based on a somewhat

unsystematic set of benchmark formulas with N ≤ 2000 at α ≈ αc, but nevertheless illustrated the

significance of the focusing idea, since in the results reported, WalkSAT outperformed NoisyGSAT

by several orders of magnitude.

More recently, Barthel et al. [3] performed systematic numerical experiments with Papadim-

itriou’s original Random Walk method at N = 50, 000, α = 2.0 . . . 4.0. They also gave an analytical

explanation for a transition in the dynamics of this algorithm at αdyn ≈ 2.7, already observed by

Parkes [21]. When α < αdyn, satisfying assignments are generically found in time that is linear

in the number of variables, whereas when α > αdyn exponential time is required. (Similar results

were obtained by Semerjian and Monasson in [25], though with smaller experiments (N = 500).)

The reason for this dynamical threshold phenomenon seems to be that at α > αdyn the search

equilibrates at a nonzero energy level, and can only escape to a ground state through a large

enough random fluctuation. A rate-equation analysis of the method [3] yields a very well matching

approximation of αdyn ≈ 2.71.[28] See also [26] for further analyses of the Random Walk method

on random 3-SAT.

WalkSAT is more powerful than the simple Random Walk, because in it focusing is accompanied

by other heuristics. However, it is known that the behaviour of WalkSAT is quite sensitive to the

choice of the noise parameter p. E.g. Parkes [20] experimented with the algorithm using a noise

value p = 0.3 and concluded that with this setting the algorithm works in linear time at least up

to α = 3.8. Even this result is not the best possible, since it has been estimated [10, 11, 27] that

for random 3-SAT close to the satisfiability transition the optimal noise setting for WalkSAT is

p ≈ 0.55. (Actually our numerical experiments, reported below, suggest that the ideal value is

closer to p ≈ 0.57.)

These positive results notwithstanding, it has been generally conjectured (e.g. in [4]) that no

local search algorithm can work in linear time beyond the clustering transition at αd ≈ 3.92. In

a series of recent experiments, however, Aurell et al. [2] concluded that with a proper choice of

parameters, the median solution time of WalkSAT remains linear in N up to at least α = 4.15, the

onset of 1-RSB symmetry breaking. Our experiments, reported below, indicate that the median

time in fact remains linear even beyond that, in line with our previous results [22].
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FIG. 2: Normalised solution times for WalkSAT, α = 3.8 . . . 4.3.

Figure 2 illustrates our experiments with the WalkSAT algorithm, [29] on randomly generated

formulas of size N = 105, various values of the noise parameter p, and values of α starting from

3.8 and increasing at increments of 0.2 up to 4.22. For each (p, α)-combination, 21 formulas were

generated, and for each of these the algorithm was run until either a satisfying solution was found

or a time limit of 80000×N flips was exceeded. Figure 2(a) shows the solution times tsol, measured

in number of flips normalised by N , for each generated formula. Figure 2(b) gives the medians and

quartiles of the data for each value of α.

As can be seen from the figures, for value p = 0.45 of the noise parameter WalkSAT finds satis-

fying assignments in roughly time linear in N , with the coefficient of linearity increasing gradually

with increasing α, up to approximately α = 4.1 beyond which the distribution of solution times for

the algorithm diverges. For p = 0.55, this linear regime extends further, up to at least α = 4.18,

but for p = 0.65 it seems to end already before α = 3.9. For the best value of p we have been

able to experimentally determine, p = 0.57, the linear regime seems to extend up to even beyond

α = 4.2.

To investigate the convergence of the solution time distributions, we tested the WalkSAT algo-

rithm with p = 0.55 at α = 4.15 and α = 4.20, in both cases with randomly generated sets of 100

formulas of sizes N = 104, 3×104, 105, 3×105 and 106. Figure 3 shows the cumulative distributions

of the solution times normalised by N achieved in these tests. As can be seen, for α = 4.15 the

distributions are well-defined, with normalised medians and all other quantiles converging to a fi-

nite value for increasing N . However, for α = 4.20, the distributions seem to diverge, with median
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values increasing with increasing N .[30]

In order to estimate the optimal value of the WalkSAT noise parameter, i.e. that value of p for

which the linear time regime extends to the biggest value of α, we generated test sets consisting

of 21 formulas, each of size N = 105, for α values ranging from 4.10 to 4.22 at increments of

0.02, and for each α for p values ranging from 0.50 to 0.60 at increments of 0.01. WalkSAT was

then run on each resulting (α, p) test set; the medians and quartiles of the observed solution time

distributions are shown in Figure 4. The data suggest that the optimal value of the noise parameter

is approximately p = 0.57. Figure 5 shows the empirical solution time distributions at α = 4.20

for p = 0.57. In contrast to Figure 3(b), now the quantiles seem again to converge to a finite value

for increasing N , albeit more slowly than in the case of the simpler α = 4.15 formulas presented in

Figure 3(a).
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FMS(F,eta):

s = random initial truth assignment;

while flips < max_flips do

if s satisfies F then output s & halt, else:

pick a random unsatisfied clause C in F;

pick a variable x in C at random;

let x’ = flip(x), s’ = s[x’/x];

if E(s’) <= E(s) then flip x, else:

flip x with prob. eta^(E(s’)-E(s)).

FIG. 6: The Focused Metropolis Search algorithm.

III. FOCUSED METROPOLIS SEARCH

From an analytical point of view, the WalkSAT algorithm is rather complicated, with its in-

terleaved greedy and randomised moves. Thus, it is of interest to investigate the behaviour of the

simpler algorithm obtained by imposing the focusing heuristic on a basic Metropolis dynamics [13].

We call the resulting algorithm, outlined in Figure 6, the Focused Metropolis Search (FMS)

method. The algorithm is parameterised by a number η, 0 ≤ η ≤ 1, which determines the probabil-

ity of accepting a candidate variable flip that would lead to a unit increase in the objective function

E. (Thus in customary Metropolis dynamics terms, η = e1/T , where T is the chosen computational

temperature. Note, however, that detailed balance does not hold with focusing.)

We repeated the data collection procedure of Figure 2 for the FMS algorithm with various

parameter values. The results for η = 0.2, 0.3, 0.4 and η = 0.36 (the best value we were able to

find) are shown in Figure 7; note that also rejected flips are here included in the flip counts. As can
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FIG. 8: Cumulative solution time distributions for FMS with η = 0.3.

be seen, the behaviour of the algorithm is qualitatively quite similar to WalkSAT. For parameter

value η = 0.2, the linear time regime seems to extend up to roughly α = 4.06, for η = 0.3 up to

at least α = 4.14, and for η = 0.36 even beyond α = 4.20; however for η = 0.4 again only up to

maybe α = 4.08. To test the convergence of distributions, we determined the empirical cumulative

distributions of FMS solution times for η = 0.3 at α = 4.0 and α = 4.1, in a similar manner as in

Figure 3. The results are shown in Figure 8.

To determine the optimal value of the η parameter we proceeded as in Figure 4, mapping out

systematically the solution time distributions of the FMS algorithm for α increasing from 4.10 to

4.22 and η ranging from 0.28 to 0.38. The results, shown in Figure 9, suggest that the optimal
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value of the parameter is approximately η = 0.36.

In order investigate the algorithm’s behaviour at this extreme of its parameter range, we deter-

mined the empirical cumulative distributions of the FMS solution times for η = 0.36 at α = 4.20.

The results, shown in Figure 10, suggest that even for this high value of α, the FMS solution times

are linear in N , with all quantiles converging to a finite value as N increases.

The linearity of FMS can fail due to the formation of heavy tails. This, with a given α and a

not too optimal, large η would imply that the solution time tsol has at least a divergent mean (first

moment) and perhaps a divergent median as well. This can be deliberated upon by considering the

”scaling ansatz”

P (tsol) ∼ (tsol)
−af(tsol/N

b) (1)

where f(x) = const for x small, and f → 0 rapidly for x ≥ 1. This simply states that for a fixed

N there has to be a maximal solution time (even exponentially rare) since the FMS is “ergodic”
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guide for the eye.

or able to get out of local minima.[31] The condition that 〈tsol〉 ∼ N b(2−a) be divergent with

N would then set a relation for the exponents a and b. Our experiments in the linear regime

have not yielded any evidence for a distribution following such an ansatz, and moreover we have

not explored systematically the non-linear parameter region, where such behaviour might make

considering scalings as Eq. (1) interesting. The average solution time, in terms of flips per spin,

is shown in Figure 11(a) for α = 4.1. Together with Figure 11(b), showing the tendency for the

width of the distribution to diminish as 1/
√

N , this 1/N -behaviour implies rather trivial finite

size corrections to P (tsol). In the Figure we depict the width of the distribution P measured by

quantiles instead of the standard deviation, since this is the most sensible measure given the nature

of the data.

We also tried to extract the best possible performance of the algorithm as a function of α.

Using the data for varying η allows one to extract roughly the optimal values ηopt(α) which are

demonstrated in Figure 12. As can be seen, the data indicate a roughly linear increase of the optimal

η with in particular no notice of the approach to αc or to an algorithm-dependent maximum value

αmax. The same data can be also utilised to plot, for a fixed N (recall the FMS runs linearly

in this regime) the solution time at the optimal noise parameter η. Figure 13 shows that this as

expected diverges. Attempts to extract the value αmax limiting the linear regime by fitting to

various divergences of the kind tsol ∼ (αmax −α)−b do not allow one to make a statistically reliable

conclusion as to whether αmax < αc, though . The reason for this is, as far as the data is concerned,
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the distance of the α studied to any plausible value of αmax. See Figure 14.

IV. FOCUSED RECORD-TO-RECORD TRAVEL

Record-to-Record Travel, a very simple stochastic local optimisation algorithm outlined in Fig-

ure 15, was introduced by Dueck in [7]. It restricts acceptable moves based on the best configuration

found so far, and is in this way non-Markovian. Dueck claimed good results on solving 442-city

and 532-city instances of the Travelling Salesman Problem, but after that the algorithm has been
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RRT(E,d):

s = random initial configuration;

s* = s; E* = E(s);

while moves < max_moves do

if s is a global min. of E then output s & halt,

else:

pick a random neighbour s’ of s;

if E(s’) <= E* + d then let s = s’;

if E(s’) < E* then:

s* = s’; E* = E(s’).

FIG. 15: The Record-to-Record Travel algorithm.

little used. Initial experiments on applying the focused version of this algorithm to the satisfiability

problems were reported in [22].

In applying Record-to-Record Travel to satisfiability, one again chooses as the objective function

E(s) = number of clauses unsatisfied by truth assignment s. The local search is performed over

single-variable flip neighbourhoods. We also impose the focusing condition requiring that the flipped

variables are always chosen from unsatisfied clauses. (Precisely: one unsatisfied clause is chosen at

random, and from there a variable at random.) This leads to the focused RRT (FRRT) algorithm.

The algorithm is surprisingly powerful, as indicated by the results in Figure 16. Interestingly, at

least within the range of values tested, the FRRT algorithm does not seem to have an optimal value
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for the deviation parameter d, but larger values of d appear to always extend the linear regime

of the algorithm further, albeit with increasing coefficients of linearity. E.g. for d = 5 the linear

regime seems to extend only to about α = 4.12, but for d = 9 already to α = 4.2, and for d = 11

even further.

To validate these results, we again determined the normalised cumulative solution time distri-

butions for the FRRT algorithm with d = 9 at both α = 4.15 and α = 4.20, similarly as in Figure 3.

As can be seen from Figure 17, FRRT behaves for these parameter values more predictably than

WalkSAT at p = 0.55, and comparably to WalkSAT at the near-optimal noise parameter value

of p = 0.57. (Interestingly, the FRRT normalised median solution times seem to decrease slightly
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FIG. 18: Cumulative solution time distributions for FRRT with d = 7.

with increasing N . This phenomenon is undoubtedly connected to the smoothing of the random

3-SAT energy landscapes for increasing N , but otherwise we have no clear explanation for it. It

can also be observed that the shapes of the cumulative distributions are qualitatively different from

the FMS case.)

For comparison, Figure 18 illustrates the corresponding distributions for d = 7. As can be seen,

for α = 4.15 FRRT converges even with d = 7, but for α = 4.20 a larger value of d is required.

V. WHITENING AND THE LINEAR TIME REGIME

As already mentioned in Section 2, WalkSAT finds a solution in linear time when α < αdyn(p),

where αdyn is a dynamical threshold depending on the noise parameter p. When α > αdyn, the

energy falls to a metastable level around which it remains fluctuating. In this metastable state new

unsat clauses are produced at approximately the same rate as they are being eliminated, and a

solution is found only by a lucky fluctuation, for which the waiting time is exponential in N [3, 25].

Our experiments show this kind of behaviour also for FMS.[32] When the parameter η is de-

creased away from one, the corresponding αdyn(η) value increases (cf. Figure 24 in Section 6). Since

the rate of production of unsatisfied clauses vanishes as η decreases toward zero, it is tempting to

think that if FMS is in the linear time regime for some particular values of α and η, then it remains

so also for all smaller η given that particular α. But this seems not always to be the case.

It is a common observation that excessive greediness can be detrimental to the quality of op-

timisation results. How is such behaviour exhibited in the case of the FMS algorithm on random



16WHITENING(F, s):

mark all the clauses white (*, joker, wild card) except those that

have only one true literal (thus, also unsatisfied clauses are marked

white, so that they do not affect the whitening process);

loop

- mark those variables white that appear as satisfying literals

only in white clauses;

- halt, if all the variables are white (s is completely white);

- halt, if no new variables became white in this round (s has a core);

- mark those clauses white that contain at least one white variable.

FIG. 19: The whitening algorithm for a truth assignment s.

3-SAT? We think that the answer is related to the concept of whitening, introduced in the context

of the graph colouring problem (hence the name) in [19] and applied to random 3-SAT in [5, 12].

The constraints between variables contain slack that can be consumed too quickly by a greedy

search. This slack is due to “safe” clauses, i.e. clauses that contain at least two true literals. For

some α values, if η is too low, FMS typically drives the system to a state where some unsatisfied

clauses can no longer be eliminated “locally”.[33]

The whitening algorithm[34] presented in Figure 19 searches for frozen variables in a given truth

assignment. Flipping any frozen variable produces at least one new unsat clause that contains

only frozen variables. To get rid of that unsat clause, one of its variables must be flipped, and

that produces again at least one new unsat clause with all of its other variables frozen, and so on.

The only way to do away with all of these newly produced unsat clauses is by loops, i.e. by flip

sequences that encounter some variables more than once. In random 3-SAT instances these loops

are typically long, growing as O(log N). So when N → ∞, also the loops become infinitely long. If

there are no frozen variables, the truth assignment is said to be completely white, otherwise it has

a core of frozen variables (the term core in this connection is from [12]).

When energy decreases during a search, a transition can occur from a state where the encoun-

tered truth assignments are generically completely white to a state where the truth assignments

generically have a core of frozen variables. We call this the freezing transition. It is natural to

assume that when a freezing transition has happened, the remaining unsatisfied clauses cannot be

eliminated in linear time, because then the search needs loops growing with the system size.

In Figure 20 we present estimates of the freezing transition energy density ef ≡ Ef/N for a few
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FIG. 20: Freezing transition energies ef , when using FMS. Each point corresponds to a single run (N = 105).

Dotted lines are linear fits.

sample runs of the FMS algorithm. We have not studied the dependence of Ef on N, but it appears

to be self-averaging, so that for any α and η for which a freezing transition occurs, ef converges to

a constant value as N → ∞. Hence the ef values given in Figures 20 and 21 are similar to their

N → ∞ limits. Also the freezing transition time tf (measured in flips/N) seems to converge for

many (α, η)-pairs, but it is not at all clear that this needs to be so in every case. There may exist

some region of α and η values for which a superlinear number of flips are required before either a

satisfying solution or a truth assignment with a core is reached (cf. Figure 22).

We conjecture that there are almost always truth assignments with a core at all energy levels

below any level at which a freezing transition can happen at given α. For example, this implies that

one can pick an η-value for α = 4.2, such that the freezing takes place at, say, E/N = 0.005 (Figure

20). Hence we believe that there exist solutions with a core also in the N → ∞ limit in some region

of α-values, approximately 4.10 . α < αc. The lower bound of 4.10 has been estimated using FMS

with η = 0.01 (Figure 20). Since the choice of algorithm may have an effect on the estimate, the

actual threshold point below which there do not exist solutions with a core in the N → ∞ limit

can be lower than this.

There may be a narrow region below αc where typical instances do not have any completely

white solutions. In this region, if it exists, focused algorithms presumably cannot find a solution

in linear time. On the other hand, in [12] it is conjectured that almost all solutions are completely

white (“all-∗ assignments” in the terminology of [12]) up to αc. This claim is based on experimental
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evidence using the survey propagation algorithm [4, 5, 15], which seemingly finds only completely

white solutions when N is large [12], just like focused local algorithms. However, if solutions with a

core cannot be found in linear time, it is not surprising that usually the first solution encountered

is completely white. Thus, the issue of a possible core transition (similar to the simpler XORSAT

problem [14]) below αc remains open. We have not tried to assess which type of solution is more
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numerous near αc, or whether having a majority of completely white solutions is in fact a necessary

or even a sufficient condition for maintaining time-linearity of local search methods. Thus, we

can at the moment only conjecture a relation between the algorithmic performance of local search

methods and the entropy of the solution space, as measured in terms of the “white” and “core”

fractions vs. N .

Another way to establish the existence of qualitatively different kinds of solutions is to look

at the proportion of “safe” clauses (i.e. clauses that contain at least two satisfying literals) in the

solutions found by FMS with different values of η (Figure 23). One can say that with greater η,

better quality solutions are found. Note that these safe clauses are just what enable variables to

become unfrozen in the whitening algorithm (Figure 19).

Whiteness is just one indicator that can be used during the search process to tell when the linear-

time property has been lost. Certainly there can be more powerful indicators that alarm about

difficulties earlier, when the freezing transition has not yet happened. If a truth assignment which

is not a solution is completely white, it means that any one of the still remaining unsat clauses can

be resolved locally (assuming dependency loops between clauses don’t incidentally block this). It

does not, however, mean that an arbitrary subset of the remaining unsat clauses could necessarily

be resolved locally, or that there necessarily exists a solution. A truth assignment can turn from
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a completely white one to having a core by the flip of just one variable. One can envision higher

order whitenings: a kth order whitening would tell whether all truth assigments that differ in at

most k variable values from the assignment in question are completely white (in the usual sense,

i.e. zeroth order whitened). Maybe a higher order whitening with any fixed k can (in principle[35])

be used as an indicator for the linear-time property, just like the zeroth order one. There can also

be some indicators that have nothing to do with whitening.[36]

VI. CONCLUSIONS

In this paper we have elucidated the behaviour of “focused” local search algorithms for the

random 3-SAT problem. An expected conclusion is that they can be tuned so as to extend the

regime of “good”, linear-in-N behaviour closer to αc.

An unexpected conclusion is that FMS (and WalkSAT, and FRRT) seem to work well very close

to the critical threshold. Figure 24 proposes a phase diagram. FMS with η = 1 is just the Random

Walk algorithm; hence the first transition point is at α ≈ 2.67. For larger α there is the possibility

of having two phase boundaries in terms of the noise parameter. The upper value ηu separates the

linear regime from one with too much noise, in which the fluctuations of the algorithm degrade its



21performance. For η < ηl, greediness leads to dynamical freezing, and though FMS (in contrast to

FRRT in particular) remains ergodic, or able to climb out of local minima, the algorithm no longer

scales linearly in the number of variables.

The phase diagram presents us with two main questions: what is the smallest α at which

ηl(α) starts to deviate from zero? Does the choice of an ideal ηopt allow one to push the linear

regime arbitrarily close to αc? Note that the deviation of ηu(α) from unity with increasing α could

perhaps be analysed with similar techniques as the methods in refs. [3, 25]. The essential idea

there is to construct rate equations for densities of variables or clauses while ignoring correlations

of neighboring ones. This would not resolve the above two main ones, of course.

The resolution of these questions will depend on our understanding the performance of FMS or

other local search presence of the clustering of solutions. The whitening or freezing experiments

provide qualitative understanding on the behaviour for small η: too greedy search procedures are

not a good idea. Thus FMS seems to work well only when it actually finds solutions that can be

completely whitened. Figure 24 also points out, via the whitening data for α > αc, that the line

of whitening thresholds ηl for FMS apparently is continuous over αc. In particular in this case,

one can then separate between two possible scenarios: either the ηu-line extends to αc and finishes

there, or otherwise it meets with the ηl-line at an α < αc at a point that is “tri-critical” in statistical

mechanics terms. Note, however, that ηl determined by whitening is not necessarily the highest

lower bound to the linear phase.

The range of the algorithm presents therefore us with a fundamental question: though replica-

methods have revealed the presence of clustering in the solution space starting from α ≈ 3.92,

the FMS works for much higher α’s still. The clustered solutions should have an extensive core

of frozen variables, and therefore to be hard to find. Thus, the existence of “easy solutions” for

the FMS tells that there are features in the solution space and energy landscape that are not well

understood, since the FMS can pick, for a right choice of η almost always such easy solutions out of

those available for any particular instance. This would seem to imply that such completely white

ones have a considerable entropy.

Our numerics also implies that in the linear scaling regime the solution time probability distri-

butions become sharper (“concentrate”) as N increases, implying indeed that the median solution

time scales linearly. We can by numerical experiments not prove that this holds also for the aver-

age behaviour, but would like to note that the empirically observed tail behaviours for the same

distributions give no indication of such heavy tails that would contradict this idea.
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