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André Schumacher, Pekka Orponen, Thorn Thaler, and Harri Haanpää
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Abstract. We consider the problem of determining the transmission
power assignment that maximizes the lifetime of a data-gathering wire-
less sensor network with stationary nodes and static transmission power
levels. We present a simple and efficient distributed algorithm for this
task that works by establishing the minimum power level at which the
network stays connected. The algorithm is based on a binary search over
the range of feasible transmission power levels and does not require prior
knowledge of network topology. We study the performance of the result-
ing BSpan protocol by network simulations and compare the number
of control messages required by BSpan to two other recently proposed
methods, the Distributed Min-Max Tree (DMMT) and Maximum Life-
time Spanner (MLS) algorithms. We find that BSpan outperforms both
DMMT and MLS significantly.

1 Introduction

Consider a group of sensors newly deployed in an environment. In many applica-
tions, it is desirable to have the network to self-configure, i.e. to have the nodes
after wakeup contact their neighbors in order to decide where to forward the
collected data, at what intervals, transmission power levels etc. One important
goal of this self-configuration process is to determine data gathering and trans-
mission protocols so that the operational time of the network, for given initial
battery levels, is maximized [1, 2].

We address this lifetime maximization problem in the setting where it is the
task for a network of stationary nodes to provide a roughly uniform, low-intensity
stream of data to a designated sink node. Possible application scenarios include
monitoring some environmental parameters (temperature, humidity, chemical
concentrations) in a given region or, say, a forest-fire alarm network, where most
of the data traffic consists of regular “status ok” messages.

More specifically, we consider the problem of determining transmission power
levels for the nodes so that, under the assumption of uniform traffic load per
node, all the nodes maintain connectivity to the sink for a maximum amount of
time. In this paper we only consider the case of static power assignments, i.e.



we assume that once the transmission power levels have been set, they stay the
same throughout the operating life of the network.

Under these assumptions of stationary nodes, uniform traffic load and static
power assignments, the goal of maximizing the lifetime of a network is in fact
equivalent to finding the lowest possible transmission power levels for the nodes
that suffice to make all of the network connected to the sink. This version of the
problem was considered by Lloyd et al. [3] who presented a simple and efficient
binary search based solution to it, assuming that the full internode transmission
power threshold matrix of the network is centrally available.

Our Binary Search for Minmax Power Spanner (BSpan) algorithm presented
below is basically a distributed implementation of the “binary search over trans-
mission power levels” idea of Lloyd et al. [3]. However, getting this natural
approach to work in a fully distributed environment, starting in an initial state
where the nodes upon wakeup know nothing about their neighbors, let alone the
global topology of the network, is a somewhat nontrivial task. Nevertheless, we
have implemented this approach down to the level of a protocol agent in the
ns2 [4] simulator, and it shows quite competitive performance in comparison
with other recently proposed approaches to the same task. In graph-theoretic
terms the algorithm finds a spanning tree with maximum edge cost at most ǫ
greater than the minimum maximum edge cost possible, where ǫ is a parameter
of the algorithm. Thus we obtain a power assignment that, to arbitrary accuracy,
maximizes the time for which we can keep the network connected.

The rest of the paper is organized as follows. The following section overviews
some of the related work on lifetime maximization, and Section 3 gives a precise
formulation of the version of the problem we consider. Section 4 describes our
distributed method for finding a spanning tree of a given network with minimum
maximum transmission cost. In Section 5 we evaluate our proposed BSpan al-
gorithm in terms of the number of required control messages, and compare it to
the performance of the Distributed Min-Max Tree algorithm proposed in [5] and
the Maximum Lifetime Spanner (MLS) algorithm proposed in [6]. For our ex-
perimental comparison we use the ns2 network simulator. Section 6 summarizes
the paper.

2 Related Work

The problem of minimizing the maximum transmission power required to estab-
lish connectivity has been considered previously in the literature several times.
One of the earliest papers on the topic is the work of Ramanathan and Rosales-
Hain [7], which addresses the problem in the setting of maximizing the lifetime of
a single-session broadcast. Ramanathan and Rosales-Hain propose a centralized
algorithm for finding the minimum maximum (minmax) transmission power level
that maintains network connectivity, as well as two simple distributed heuris-
tics that aim at achieving the same. Their distributed heuristics, however, are
suboptimal and do not necessarily guarantee connectivity in all cases.



Kang and Poovendran [8] discuss several problems related to dynamic lifetime
maximization, such as the issue of non-uniform energy levels. They also empha-
size the importance of considering the minmax energy metric rather than the
more often addressed minimum total energy metric for the purpose of maximiz-
ing network lifetime. For a distributed implementation, Kang and Poovendran
rely on distributed methods for constructing minimum spanning trees, such as
the algorithm of Gallager, Humblet and Spira [9]. These techniques are, how-
ever, rather involved, and we complement this work by suggesting a much simpler
method for computing the minmax edge cost required for connectivity. In Section
4, we present a very efficient distributed algorithm that finds a spanning tree of
the transmission graph that has maximum edge cost close to the optimal cost.
For a discussion of the two different objectives, minimizing total transmission
power and minimizing maximum transmission power, see e.g. [3, 8].

The problem of minimizing the total, as opposed to minmax, network trans-
mission power required for connectivity has been studied extensively (cf. e.g. [3]
and the references therein). Rodoplu and Meng [10] present a distributed algo-
rithm for this problem that is based on the concept of relay regions: each node
is aware of its own geographic location and the location of its neighbors. Based
on a path-loss model, nodes can locally determine which neighbor they should
forward the message to in order to minimize the total energy consumption. The
algorithm proposed in [10] is optimal but requires extensive assumptions, such
as the availability of location information and a specific path-loss model.

In a recent work, Guo, Yang, and Leung [5] proposed a distributed algorithm
DMMT (Distributed Min-Max Tree) for the construction of multicast trees with
minimum maximum transmission cost, following Prim’s algorithm for construct-
ing minimum spanning trees. Since their technique can easily be adapted also
for the purpose of sensor network lifetime maximization, and seems to be the
proposal in the literature closest to our BSpan approach, we conducted an ex-
perimental comparison of the runtime behavior of the algorithms DMMT, the
recently proposed Maximum Lifetime Spanner (MLS) algorithm [6] and our
proposed BSpan algorithm.

3 The Lifetime Maximization Problem

We consider a wireless sensor network composed of stationary nodes with distinct
identifiers, operating in a data-gathering scenario. Each node is able to vary its
transmission power, either using a possibly large set of discrete power levels, or by
choosing the power from a continuous range of possible values. We further assume
that each node has a finite energy budget that is consumed during the operation
of the network and whose value is initially the same for all nodes. We consider a
scenario where the energy consumed by wireless communication dominates over
energy consumed by computation or sensing. We assume that traffic is generated
uniformly over the nodes and that data aggregation techniques can possibly be
applied, thereby yielding a close to uniform load within the network.



In order to maintain connectivity to a neighbor u, each node v has to spend
some energy that depends on v’s transmission power level. Each node has the
same maximum transmission power pmax that must not be exceeded. We assume
that the link costs are symmetric, so that if v can reach u at a certain power,
then u can also reach v at the same power; this is the case for example if the
costs represent signal attenuation resulting from a deterministic path-loss model
that only depends on the pairwise distance of nodes. We consider the notion of
lifetime that regards all nodes as equally important, so that the objective is to
maximize the time span after which the first node runs out of energy [11].

The transmission structure of the network is modelled as a graph G = (V,E)
with an associated edge cost function δ : E 7→ R

+. Here δ is scaled so that v
can reach u as long as τ(v) ≥ δ(v, u) pmax. A transmission power assignment
τ : V 7→ R

+ induces a graph G(τ) = (V,E(τ)) whose edges represent the radio
links that are supported by the given assignment τ : an edge (v, u) is an element
of E(τ) if and only if τ(v) ≥ δ(v, u) pmax, i.e. if and only if node v transmits at a
power that is sufficient for u to correctly receive messages from v. For simplicity,
we assume that G(τmax) with τmax(v) = pmax for all v is a connected graph.

We consider the problem of finding a static transmission power assignment
τ : V 7→ [0, pmax], such that the lifetime of the network is maximized while
the network remains connected. Within the context of this problem, any power
assignment τ that connects the network induces a spanning subgraph with some
maximum edge cost α = max(v,u)∈E(τ) δ(v, u); we aim to find a power assignment
that minimizes α. Although this condition generally does not uniquely determine
τ , choosing τ(v) = α pmax for all nodes v does not decrease the lifetime of the
network in terms of maximizing the lifespan of the node that first runs out
of energy. The power assignment τ is considered to be fixed after it has been
once determined during the initial network setup. Note that this problem is
considerably different from the case of computing a dynamic assignment of power
levels, which is a computationally more complex problem [12].

Definition 1. Given a set of nodes V , and an edge cost function δ : V × V 7→
R

+, a graph G = (V,E) is an α-spanner if G is connected and δ(v, u) ≤ α for

each edge (v, u) ∈ E.

In other words, an α-spanner is a connected spanning graph for the nodes in
V where the no edge has cost greater than α. Note that since we normalize the
edge costs for any network a 1-spanner exists exactly when the network can be
connected by the nodes sending at full power.

Definition 2. For given V and δ, an α-spanner is ǫ-optimal, if α′ ≥ α − ǫ for

all α′-spanners.

A 0-optimal α-spanner has a maximum edge cost α, but there are no span-
ners with only edges of cost less than α; thus, we also call such spanner a
minmax cost spanner. Network lifetime can now be maximized by determin-
ing the minmax cost spanner (V,E) and choosing the power assignment τ(v) =
pmax max(v,u)∈E δ(v, u).
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Fig. 1. Overview of the complete BSpan protocol, consisting of a setup stage, search
stage and notification stage.

4 Binary Search for a Minmax Power Spanner

We propose a distributed algorithm for determining an ǫ-optimal α-spanner,
given a graph with edge costs and the accuracy parameter ǫ. The algorithm
determines transmission power levels that maximize the time until the first node
runs out of energy.

The resulting protocol BSpan consists of three stages. All stages are initiated
by a designated reference node which also detects their termination (except for
the final stage that only requires local termination), but otherwise the computa-
tions proceed without central coordination. The protocol thus admits an efficient
implementation in a distributed setting such as a wireless sensor network.

In the first stage, nodes collect neighborhood information and estimate link
costs by transmitting and receiving beacon messages. The reference node also
obtains a count of the number of nodes in the network, assuming the transmission
graph G(τmax) is connected. The second stage of the protocol performs a binary
search over the range of possible transmission power levels. This stage is based
on results of the previous stage, as nodes rely on information about their incident
edges in the transmission graph and the reference node utilizes the obtained node
count to determine connectivity. The final stage consists of a network broadcast
in which the reference node notifies all other nodes of the global termination
of the algorithm and the resulting minmax power level. The three stages of the
BSpan protocol are executed in the order indicated in Fig. 1.

We now discuss the three stages of the protocol in more detail.

4.1 Setup Stage

The setup stage as described in Algorithm 1 first finds a spanning tree of the
transmission graph by a process of beaconing at maximum transmission power
pmax. Each node, once it has joined the spanning tree under construction, starts
sending a sequence of beacon messages using random delays between consecu-
tive messages. These beacons enable nodes to discover their neighbors, estimate
the cost of their incident edges in the transmission graph and determine whether



they are leaf nodes in the spanning tree. When the beaconing sequence has termi-
nated, a reply message is transmitted along the attained spanning tree edges to
the reference node, starting at the leaf nodes. This reply message contains a count
of the number of child nodes of each node, so that the reference node eventually
obtains a count of the total number of nodes in the network. More specifically,
in a beacon message beacon(v, f) the parameter v denotes the identity of the
beaconing node and f is its parent in the spanning tree being constructed; in a
reply message reply(v, count) the parameter v is again the identity of the sender,
and count represents the number of nodes in the subtree rooted at v.

The setup stage is initiated as if the reference node had received a beacon
message. Upon receiving a beacon message from a node u for the first time, each
node v sends the message beacon(v, u) and schedules a number of retransmissions
using random delays. After transmitting the beacon for the first time, v starts
listening for messages from neighboring nodes and records their presence in a
neighbor list together with a flag indicating whether the neighbor is a child node
in the spanning tree. Note that the neighbor u is a child of v, if u includes the
information that it previously received the beacon from v in the message. For
each received beacon, v also estimates a lower bound on the transmission power
that is required to reach the neighboring node.

More specifically, we consider a message that a node v receives from node u,
received with power precv, arrived successfully if precv ≥ pthresh, where pthresh is
the threshold power required for a successful transmission (disregarding interfer-
ence). In our simulations, the power precv is computed by the propagation model
under consideration. Assuming that the received power depends linearly on the
sending power, precv = Xu,v psend, and the receiver knows the sending power
used, the receiver v can estimate the attenuation coefficient Xu,v = precv/psend.
Assuming that Xv,u = Xu,v, node v can estimate the minimum transmission
power pmin it needs to use to transmit to u by solving pthresh = Xv,u pmin.
Combining these, we have

pmin =
pthresh psend

precv
,

where psend is the power that was used by u for sending. If the assumption
does not hold or if the measured transmission power shows random variations,
then beacon messages with varying transmission power can be used for the same
purpose, similar to the techniques proposed in [13]. Recall that the link costs
δ(v, u) are normalized so that the minimum power required for v to send to u
is pmin = δ(v, u) pmax; due to the normalization the link costs lie in the interval
[0, 1], and v can estimate the link cost as δ(v, u) = pmin/pmax, or if the maximum
power was used for sending, psend = pmax and δ(v, u) = pthresh/precv.

When v has sent a certain number of beacon messages, it decides that the
setup phase has locally terminated. In the case that v discovers itself to be a
leaf node of the constructed spanning tree, it sends a reply message to its father
reporting a node count of one. If v is not a leaf node it waits until it receives
replies from all its children before it sends a reply to its father that contains its



Algorithm 1: Setup stage

node v with variables father, node count, beacon delay, timer, rand, neighbor list,
beacon count, expecting reply from;

at start
node count← 0; expecting reply from← ∅;
enter state IDLE;

in state IDLE // wait for incoming beacon messages
if beacon(u, f ′) is received with power precv then

father← u; δ ← pthresh/precv; // estimate link cost
neighbor list← neighbor list ∪ (u, δ);
broadcast beacon(v, father) at power pmax;
timer← new beacon event after rand(0,beacon delay);
enter state BEACON;

end

in state BEACON // send beacon repetitions many beacons with random delay
if beacon(u, f ′) is received with power precv then

δ ← pthresh/precv; // estimate link cost
neighbor list← neighbor list ∪ (u, δ);
if f ′ = v then expecting reply from← expecting reply from ∪ {u};

end

if reply(u, count) is received with power precv then
expecting reply from← expecting reply from \ {u};
if expecting reply from = ∅ and beacon count = beacon repetitions then

unicast reply(v, node count + count + 1) at power pmax to father;
enter state SETUP FINISHED; // starts the next stage

else
node count← node count + count;

end

end

if timer triggers new beacon event then
broadcast beacon(v, father) at power pmax;
if beacon count < beacon repetitions then

beacon count← beacon count + 1;
timer← new beacon event after rand(0,beacon delay);

else if expecting reply from = ∅ then
unicast reply(v, node count + 1) at power pmax to father;
enter state SETUP FINISHED; // starts the next stage

end

end



child counts incremented by one, indicating the termination within the subtree
rooted at v. When the reference node has received replies from all its child nodes
the setup stage has terminated.

For measuring the strength of arriving radio signals, one can utilize for exam-
ple Received Signal Strength Indication (RSSI) for a system with IEEE 802.11
network interfaces or, alternatively, methods similar to the ones proposed in [13].

To obtain the correct neighborhood information for all the nodes, in most
cases the number of retransmissions for the beacon messages can be fairly small.
In the absence of interference and resulting collisions, it would be even suffi-
cient that each node beacons exactly once. Thus, the message complexity of the
beaconing stage is O(N), where N is the number of nodes in the network.

4.2 Search Stage

Algorithm 2 performs a binary search over the range of possible transmission
power levels, coordinated at the reference node. At each iteration of the algo-
rithm, the reference node initiates the computation of a rooted tree spanning the
nodes that can be reached from the reference node using paths with maximum
edge cost at most α. The reference node then checks whether this tree spans
all nodes in the network. After the search has terminated, the reference node
informs all other nodes about the termination and the minimum edge cost nec-
essary to connect all nodes. This cost can then be used to locally determine the
transmission power level required at each node. This second stage of the BSpan

protocol relies on the previous stage as follows: After the global termination of
the setup stage, each node has information of all other nodes in its maximum
transmission range, as well as the costs of the incident edges. Additionally, the
reference node knows the total number of nodes within the network.

Each iteration of the binary search algorithm consists of two steps: The first
step is initiated by the reference node and consists of a flooding of request mes-
sages over edges with cost at most α. The second step consists of a convergecast
of reply messages back to the reference node in order to count the nodes in the
tree computed in the first step. This count is then compared by the reference
node to the total number of nodes in the network.

The request messages are of the form (v, α, f) where v is the identity of the
sending node, α is the maximum allowable link cost in this iteration, and f is the
parent of node v. In the first step, each node v, upon receiving a request from a
neighbor u, broadcasts a request message at most(!) once by broadcasting it to all
neighboring nodes. We assume that all messages are sent at maximum power,
although that assumption is not critical to the algorithm: choosing a power
corresponding to α would be possible as well. There are several conditions that
have to be met in order to let v decide that sending the message is required.
Firstly, v must not have broadcast a request earlier in this iteration. If so, and
the cost of the link (u, v) is less or equal to α, the current edge cost under
consideration, u becomes the father of v. Note that the edge costs are assumed
to be symmetric. Secondly, there must still be adjacent nodes w different from
u such that the link (v, w) has cost less than or equal to α.



Algorithm 2: Search stage

node v with variables father, node count, status, is reference node, ǫ, α, lower,
upper, expecting msg from, N(v), αmax = 1;

at start

if is reference node then
α← αmax/2; lower← 0; upper← αmax;

for u ∈ N(v) do status[u]← processed;
enter state RESET;

in state RESET
father← none; node count← 0;
if is reference node then

if ǫ < upper − lower then enter state SEND REQUEST;
else enter state SEARCH FINISHED;

else enter state IDLE;

in state IDLE // wait for incoming requests
if request(u, α′, f ′) with α′ ≤ δ(u, v) is received then

α← α′; father← u;
enter state SEND REQUEST;

end

in state SEND REQUEST // broadcast a request to neighboring nodes
expecting msg from← {w ∈ N(v) \ {father} | δ(v, w) ≤ α};
for w ∈ expecting msg from do status[w]← wait ;
if expecting msg from 6= ∅ then

broadcast request(v, α, father);
enter state PROCESSING;

in state PROCESSING // process requests, wait for replies
if request(u, α′, f ′) is received then

if f ′ = v then // u has acknowledged v as its father
status[u]← child;

else // u has father f ′ different from v
status[u]← processed;

end

if reply(u, nodes) is received then
status[u]← processed; node count← node count + nodes;

if status[w] = processed for all w ∈ N(v) \ {father} then // end of iteration
if is reference node then

if total nodes = node count then upper← α;
else lower← α;
α← (upper + lower)/2;

else

unicast reply(v, node count + 1) to father; // report node count
enter state RESET;

end
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(a) Spanning Tree

1: transmit request(1, 0.75,−),
2: mark 1 as parent,
2: transmit request(2, 0.75, 1),
4: drop request from 2,
1: mark 2 as child,
3: mark 2 as parent,
3: transmit request(3, 0.75, 2),
2: mark 3 as child,
4, 5: mark 3 as parent,
5: transmit request(5, 0.75, 3),
4: transmit request(4, 0.75, 3),
4: drop request from 5,
5: drop request from 4
(b) Spanning Tree Construction

4→ 3: reply(4, 1),
5→ 3: reply(5, 1),
3→ 2: reply(3, 3),
2→ 1: reply(2, 4)

(c) Node Counting

Fig. 2. Simple example of a single iteration of the search stage as described in Algo-
rithm 2, initiated by reference node with id 1. (a) shows the spanning tree that results
from the parent record at each node at the end of the iteration; edges that are not
contained in the tree are shown dashed. (b) shows the request messages and the result-
ing actions of the nodes during the construction of the tree. (c) shows the replies that
are sent along the attained spanning tree edges and the node counting operation. Note
that requests reach all neighbouring nodes (broadcast), while replies are sent from a
child to its parent (unicast).

After sending the request (v, α, u), v waits for a request from any w that
meets the condition above. In the case that v receives a request (w, α, v′) from w,
it will mark w as child if v′ = v, and as processed otherwise. A neighbor marked
child corresponds to w being v’s child in the tree of the current iteration, and
the label processed corresponds at this step to w being in the tree already with
a different father node v′.

In the case that v has no child nodes, either because there are no adjacent
nodes with low enough edge costs or if they all have different father nodes, it can
determine that it is a leaf node in the current tree. Subsequently, it originates
a reply message that contains its id and a node count of one, which it sends to
its father node u. If v has at least one child w, v waits for replies from all its
child nodes before sending a reply. After receiving a reply from w, node v marks
w as processed. When v receives the last outstanding reply (all neighbors except
its father are marked processed in v’s neighbor table), v updates the last reply
to contain the sum of all node counts received from its child nodes incremented
by one and then forwards the reply to its father. Thus, the reference node can
determine the number of nodes in the network reachable by edges with a cost
less or equal to the current candidate edge cost α. By comparing this count with
the count that the reference node obtained during the setup stage, the reference
node is able to determine whether α is an upper or lower bound of the minmax
transmission cost and update α correspondingly. See Algorithm 2 for details and
Fig. 2 for a toy example of a single iteration of the search stage.



In each iteration each node that has been reached by a request, except the
reference node and nodes that have no adjacent neighbors that they could reach
with cost at most α, sends exactly two messages, one request and one reply.
The reference node sends a request but no reply. Therefore, the total number
of messages sent in a single iteration is at most 2(N − 1) + 1, where N is the
number of nodes in the network. The binary search over intervals of size ǫ of the
range [0, 1] requires ⌈log(1/ǫ)⌉ iterations, where the logarithm is taken in base
2. Thus, the search stage has message complexity O(N log(1/ǫ)).

Note that in a realistic setting the different costs resulting from the available
transmission power levels are not necessarily equidistant. Instead, the possible
power levels would be represented by an ordered set PL of real numbers. In
this case, instead of using the range [0, 1] to represent the edge costs, one would
perform a search on the set of available power levels using their rank, rather
than their cost value. The number of iterations required by the algorithm would
then be ⌈log(|PL|)⌉, where |PL| is the number of distinct power levels.

4.3 Notification Stage

The notification stage consists of a simple network-wide broadcast which is used
by the reference node to inform all other nodes about the termination of the
algorithm and the final edge cost value α that resulted from the search stage
(the upper bound in Algorithm 2). The notification messages are sent at power α
and nodes keep track from which node they first receive a notification message.
In this way, similar to the previous stages, the notification stage constructs a
spanning tree of the transmission graph that is an ǫ-optimal α-spanner. From
the adjacency list and by listening to notification messages all nodes can infer
locally their power level assignment.

The number of messages that are required for the notification stage is at
most N . However, the search stage clearly dominates the message complexity
of the protocol. We therefore conclude that the complete BSpan protocol has
message complexity O(N log(1/ǫ)).

5 Experimental Evaluation

We experimentally evaluated the algorithm described in the previous section us-
ing the ns2 [4] network simulator and compared it to two previously proposed
algorithms, Distributed Min-Max Tree (DMMT) [5] and Maximum Lifetime
Spanner (MLS) [6]. To measure the performance of the algorithms, we consid-
ered both the number of control messages and the time it takes for the algorithms
to finish. The network topologies were generated by scattering nodes randomly
in a square, whose dimensions were chosen such that the expected node density
was constant for all number of nodes. We used the TwoRayGround model as
the propagation model, for it perfectly meets the conditions as outlined in Sec-
tion 4.1. Instances for which the placement does not yield a connected network



ns2 version 2.31 Node density 1 node per 130 m×130 m
Transmission range 250 m Number of nodes 50-500
Number of nodes 50-500 Propagation model TwoRayGround
Max jitter (BSpan) 0.5 s BSpan iterations 7
Message timeout 2.1 s ǫ 2−7

Beacon delay (max) 1.5 s Beacon repetitions 3
Table 1. Simulation parameters; the input graphs were generated by random place-
ment of nodes within the area, while disconnected graphs and graphs for which the
beaconing did not yield the correct node count were discarded.

were discarded from the simulations. We also disregard simulation runs that re-
sult in an incorrect node count due to beacon collisions during the setup stage
of BSpan, as this event possibly invalidates results obtained during the later
stages. During the experiments this event occured in at most 0.5% of runs for
any network size. Refer to Table 1 for the list of simulation parameters.

5.1 Distributed Min-Max Tree Algorithm

The DMMT algorithm proposed in [5] determines for a given set M of nodes
(the multicast group) a spanning tree with minmax edge cost. Choosing M = V ,
DMMT can be readily applied to solve the lifetime maximization problem as
formulated in Section 2. In this paper, we focus on the version of the algorithm
that was proposed for omnidirectional antennas.

The DMMT algorithm borrows ideas from the well-known Prim’s algorithm
for contructing minimum spanning trees. Prim’s algorithm grows a subtree of the
original graph starting from an initial node, such that in each step the minimum
cost edge is added that connects one node belonging to the tree and another node
not yet in the tree. After all nodes have been added, the algorithm terminates
and the resulting tree form a minimum spanning tree.

The DMMT algorithm finds a minimum power spanner by adding an addi-
tional step to each iteration, the so-called growth phase: After the attempt of
finding the minimum outgoing-edge-cost has terminated, this cost is propagated
to all tree nodes in a join request message. Each tree node u then forwards this
message to each neighbor v that u believes is not yet in the tree if the cost of the
edge (u, v) is less or equal to the minimum outgoing edge-cost. This operation
corresponds to growing the tree along edges with cost less or equal to the current
threshold cost. After a non-tree node has been added via an edge adjacent to
the tree node, the tree node becomes the parent node of the newly added node
which becomes a child node of its parent.

However, the DMMT algorithm does not necessarily always find an outgoing
edge in the search phase of the algorithm, as is the case for an iteration of Prim’s
algorithm. This is due to the fact that nodes only learn about their neighbors
being in the tree when these forward request messages to them and can result
in costly non-progress iterations of the algorithm depending on the distribution
of edge costs in the network.



The formulation in [5] employs timers at each node in order to let the nodes
distributively estimate the termination of the growth phase. In our evaluation we
considered a more synchronized method initiated by the reference node to notify
the nodes to switch from the growth to the search phase. This modification was
considered necessary, in order to make DMMT more resilient against network
failures, such as packet drops at the MAC level. Additional control messages
were not taken into account for the comparisons described below.

5.2 Maximum Lifetime Spanner Algorithm

The Maximum Lifetime Spanner (MLS) algorithm proposed in [6] uses a breadth-
first search approach to construct paths with minmax edge cost, which are com-
bined to form a minmax power spanner of the transmission graph. Starting from
the reference node, messages containing the lowest edge cost known so far are
propagated in the network. Upon receiving a request for the first time from a
neighbor v containing the maximum edge cost α on the path the request has
taken from the reference node to v, each node u keeps track of its father and
forwards the message to its neighbors. When u forwards the message received
from v, u updates α to be the maximum of α and the cost of the edge (v, u).

If a node learns about a better route during the execution of the algorithm, it
informs the old father by sending a NAK message (negative acknowledgement)
to its father. Then the node changes the father to the node it learns the better
route from. As soon as it has received replies form each of its neighbors, the node
sends an ACK message (positive acknowledgement) to its father. It is therefore
possible that a node first accepts a node as its father but then declines it, for it
has learnt about a better route.

These ACK and NAK messages serve two purposes. Firstly, they allow each
node to be aware about both, its father and its children, and secondly, they
guarantee the termination of the algorithm. As soon as the reference node has
received acknowledgements, either positive or negative, from all its neighbors,
the algorithm terminates. So in the end of the algorithm each node u knows
about which of its neighbors it is responsible for. Thus, it can decide which
power level it has to choose to assure connectivity.

5.3 Network Simulations

We implemented the aforementioned algorithms, BSpan, DMMT and MLS,
as protocol agents in ns2. All three protocols are initiated by the designated
reference node. DMMT and MLS require topology information in the form
of neighbor lists and edge costs that are loaded into the nodes prior to the
execution of the algorithms. For BSpan, the reference node starts the protocol
by initiating the setup stage to obtain the weighted neighbor lists and a count
of the nodes in the network. The total message counts of BSpan, DMMT and
MLS are depicted in Fig. 3(a). Both DMMT and MLS require prior topology
information in the form of neighbor lists. However, as opposed to BSpan the
number of messages of the setup stage are not included in the total message
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Fig. 3. Number of messages required by BSpan, DMMT and MLS for networks of
increasing size. Errorbars represent standard deviations over 1000 repetitions. The
number of messages for BSpan includes the messages in the setup and search stages;
the notification stage was excluded from the results, as it is not part of the DMMT

and MLS algorithms, although required for global termination of the algorithms. The
choice for ǫ in (a) is 2−7. Note the different scale in (a) and (b).

counts of DMMT and MLS. Despite this handicap, BSpan outperforms MLS

by a factor of 3 for 50 nodes and 5 for 200 nodes. DMMT even requires between
8 and more than 40 times more messages than BSpan and therefore does not
scale well with the size of the network. One should note that BSpan also benefits
from the broadcast advantage of wireless networks.

Recall that BSpan is guaranteed to find an ǫ-optimal spanner. For a fixed
ǫ the number of messages required by BSpan is linear in the number of nodes,
whereas for a fixed number of nodes the message count for BSpan is linear in
log 1/ǫ. Figure 3(b) illustrates the effect of different values for ǫ. As opposed to
DMMT and MLS, BSpan therefore scales well with the number of nodes. For
our further observations we fixed ǫ at 2−7 which corresponds to a difference of
less than one percent compared to the optimal value.

When evaluating running time, one has to consider the effect of timers on
the performance of the different protocols. Assuming a collision free network,
BSpan would only require a timer in the setup stage of the protocol. However,
as this assumption is not necessarily realistic, one has to introduce a retransmis-
sion timer into the search stage of the protocol in order to avoid the following
erroneous state: When a request that was sent by a node u is not received cor-
rectly at node v due to a collision at node v, or the later request sent by v is
not received due to a collision at u, the node u will end up in a deadlock. This
is due to the fact that u waits for v to broadcast a request, possibly indicating
u to be its parent, or unicast a reply message if v is in fact a leaf node.

To avoid the situation above, a retransmission timer ensures that u sends a
copy of the last request by unicast every 2.1 s until the node receives any message
from the particular neighbor, whose reply is outstanding. Unicast communication
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Fig. 4. Total simulated running time (in seconds). Errorbars represent standard de-
viations over 1000 repetitions; note that the total running times are plotted on a
logarithmic scale. The duration of the notification stage of BSpan was excluded from
the results, as it is not part of the DMMT and MLS algorithms, although required for
global termination of the algorithms.

is sufficient as possibly not all neighbors of u are required to react. A node v
that receives a retransmitted request from node u will either unicast its last
transmitted request back to u in order to signal u that u is not v’s parent in the
current iteration, or process it as usual, if it has not processed any request in
the iteration previously.

The second timer involved is used in the setup stage to allow a leaf node
to wait some time before it starts to reply, in order to discover neighbors,
which it may have missed due to collision drops. This timer triggers after ∆ =
(Number of Beaconings) × (Maximum Jitter) = 1.5s after the node has broad-
casted the request for the last time, since, unless all beacon messages were
dropped, a potential neighbor sends its last broadcast message after ∆ s at
the latest. In a collision free network this timer could be set to ∆ = 2 ×
(Maximum Propagation Delay), for in the ideal case no jitter would be needed,
and the only delay is due to radio propagation.

The DMMT protocol makes extensive use of timers, whose values naturally
have a strong impact on the running time. Figure 4 shows that BSpan is slightly
slower than MLS, which - one could argue - is partly due to the absence of
timers in MLS and that BSpan significantly outperforms DMMT. One should
note that there is an important tradeoff between the running time and message
count for BSpan when one considers maximum delay, which is controlled by the
parameter Maximum Jitter.

6 Conclusions

We have presented an efficient distributed algorithm for the problem of life-
time maximization in a wireless sensor network with stationary nodes and static
transmission power assignments. Unlike many previously proposed algorithms



for related problems, our algorithm does not rely on prior knowledge of the
network, such as the number of nodes or list of neighbors for each node. The
algorithm is based on a binary search for the minimum maximum edge cost that
is required to connect the network, where connectivity is determined in each
iteration of the algorithm by counting the nodes reachable from the reference
node.

The algorithm has been formulated as a network protocol BSpan and im-
plemented using the ns2 network simulator. In our experiments comparing the
runtime behavior of BSpan to the DMMT algorithm for constructing minmax
trees and the previously proposed MLS protocol, BSpan systematically outper-
forms both other algorithms in terms of number of control messages generated,
and it also performs clearly better than DMMT in terms of execution times.

A natural extension of the present work would be to consider the task of
lifetime maximization under dynamic transmission power assignments. This is,
however, a computationally much more challenging problem than the static one
considered here [12]. One possible (suboptimal) heuristic would be to build a dy-
namic schedule iteratively from solutions to appropriately scaled static problems,
using the BSpan protocol as an auxiliary routine.
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