Discovering Descriptive Tile Trees by Mining Optimal Geometric Subtiles

Nikolaj Tatti and Jilles Vreeken

{nikolaj.tatti, jilles.vreeken}@ua.ac.be, ADReM, University of Antwerp, Belgium

The Goal

Describe ordered binary data with a hierarchy of tiles. Each tile identifies a significantly dense, or sparse, area of the data. We return a tree of such tiles: each child tile models an exceptional region of its parent.

if $dens(V) \ge dens(U)$, x is not a border of y

Tile Trees

a tile \leftrightarrow a consecutive submatrix of the data a child tile \leftrightarrow a consecutive submatrix of parent tile

How do we measure quality?Each tile is modelled by a Bernoulli variable. We allow overlap: the first most specific tile describes a cell.We score a tile tree by MDL; essentially the negative log-likelihood of the data, and a complexity term.

Example here we go from 20 to only 6 borders

Updating

Borders

- consider rows one by one, in order of the data
- while $dens(2^{nd}$ to last tile) $\geq dens(\text{last tile})$
 - these tiles can be safely merged

each merge deletes a border, hence amortized $\Theta(1)$ time

Ignore x_1 — x_4 when checking y; and x_6 — x_7 after y x_5 x_6 threshold

$$L(D|M) = -\sum_{T} p_{T} \log \frac{p_{T}}{p_{T} + n_{T}} + n_{T} \log \frac{n_{T}}{p_{T} + n_{T}}$$

How do we construct a tile tree?

Given a current tile *T* we find the **optimal subtile** *P* of *T*. Repeat for *T*, and for *P*, until MDL tells us to **stop**.

Finding the Optimal Subtile

The naïve approach takes $\Theta(N^2M^2)$ time

K iterations removes K - 1 borders, hence amortized $\Theta(1)$ time

Experiments

We consider both synthetic and real world data

		W/ OVERLAP		
	$N \times M$	L%	T	time
Composition	240×240	81.6	7	1 m 23 s
Abstracts	859×541	89.5	14	27 m 54 s
DNA	4590×391	61.6	446	625m
Mammals	2183×121	54.6	50	3 m 06 s
Paleo	501×139	79.1	13	1m22s

We can **ignore** a candidate *T* if $dens(V \setminus T) \ge dens(T \setminus U)$

We show how to do it in only $\Theta(NM\min(N,M))$ by ignoring suboptimal borders

Conclusions

If your data is, or can be, meaningfully ordered, take this into account when analysing the data.

- we model ordered binary data hierarchically
 we show how to find optimal subtiles efficiently
 future work includes
 - richer data/pattern types

