
MINING CLOSED EPISODES WITH SIMULTANEOUS EVENTS NIKOLAJ.TATTI@UA.AC.BE · BORIS.CULE@UA.AC.BE

Episode Mining

Episode is a set of events occurring in a sequence

- that occur often enough
- that occur in their vicinity
- that may have some restricted order Episode is specified by a DAG. A sequence covers an episode if
- a node is mapped to a unique event
- parents occur before children

Problems

- Pattern Explosion: lf
 - $a_1 \longrightarrow a_2 \longrightarrow \cdots \longrightarrow a_N$ is frequent, then at least

N	1	2	3	4	5	6	
	1	4	16	84	652	7742	
N			7		8		9
	13	938'	7 3	7302	16	1456050)24

Subset relationship

Need a proper subset relationship for pruning non-closed episodes for removing similar episodes Definition: episode G is a subepisode of H

 \leftrightarrow s covers $H \rightarrow s$ covers G.

Theorem: testing subset relation \leftrightarrow NPhard.

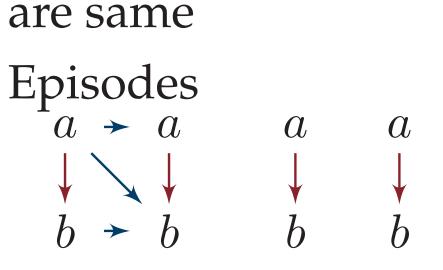
Not a problem in practice episodes are typically small most of them are simple cases Simple case: if all events have unique labels, relationship can be checked by checking the edges.

Support \leftrightarrow number of fixed-size windows covering the episode

a_b_c_a_d_c_b_d_b_a_c_d_

5 windows of length 5 cover the example

Simultaneous Events


Extend episodes to handle simultaneous events. 4 different type of relationships between two events.

- order between *a* and *b* doesn't matter
- *a* and *b* must occur at the same time
- *b* must follow *a* or occur at the same time

• *b* must follow *a* properly Introduce two types of edges: episodes are frequent

Redundancy issues: Episodes

$$a \rightarrow b \rightarrow c \qquad b \rightarrow c$$

are same

 \boldsymbol{b}

 $a \rightarrow d$

 G_1

 G_3

b

 \boldsymbol{a}

Closed Episodes

Technique for reducing number of patterns

General case:

check by

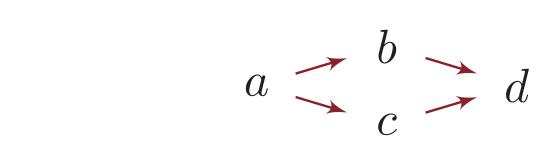
- generating all sequences that cover *H*
- if they cover G, then $G \subseteq H$
- generate in a clever way
 - remove sinks from *H* and try
 - to find corresponding sinks from *G*
 - continue recursively

Experiments

alarms dataset

- alarms generated in a factory
- 514 502 events of 9 595 different types

18 months of data


- same time
- ab c
- *a* and *b* must occur together
- *d* follows or occurs at the same time as *a*
- *e* follows or occurs at the same time as *c* • *e* must follow *a* (and *b*) properly

Goal & Approach

Find all episodes that have enough support

- Key step \leftrightarrow Support is higher for subepisodes
- Discover episodes in depth-first style. Three different levels for travelsal
- 1. add new nodes

Closed pattern \leftrightarrow no superpattern with the same support

$$G_2$$

$$\begin{array}{cccc} c \rightarrow b \\ a \rightarrow d \end{array} \qquad \begin{array}{cccc} a \rightarrow c \rightarrow b \rightarrow d \end{array}$$

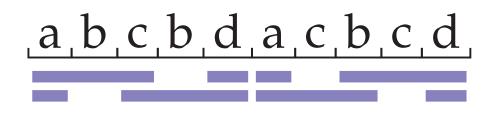
 G_4

$$\begin{array}{c} \rightarrow & c \\ \rightarrow & d \\ G_5 \end{array} \qquad \begin{array}{c} a \rightarrow & b \rightarrow & c \rightarrow & c \\ G_6 \end{array} \end{array}$$

abcbdacbcd

 G_1, \ldots, G_4 have support 2. G_4, G_6 are closed Problem \leftrightarrow closure of an episode is not unique: G_4 and G_6 are both closures for G_1

<i>w</i> (s)	$\sigma/10^3$	s-cl.	<i>m-</i> cl.	freq.(est)
180	500	6	6	6
180	400	8	8	8
180	300	12	12	12
180	240	23	26	26
600	2000	4	4	4
600	1000	24	27	39
600	500	90	137	493
600	280	422	698	2321
900	2000	24	26	40
900	1000	52	58	94
900	500	280	426	1997
900	350	1845	9484	190990


trains dataset

- delays at a railway station in Belgium
- 10115 events, 1280 different train IDs
- one month of data
- window size \leftrightarrow 30 minutes

2. add weak edges 3. turn weak edges into proper edges Prune branches with infrequent episodes.

Apply closure and prune branch if it has been already processed.

Use number of instances instead of support

 G_1 and G_2 have 4 mappings, G_3, \ldots, G_6 have 2 mappings $\longrightarrow G_2, G_4, G_6$ are closed and are closures for G_1 , G_3 , G_5

σ	s-cl.	<i>m</i> -cl.	freq.(est)
30000	141	141	141
20000	1994	1995	2593
17000	8352	8416	22542
15000	26170	26838	172067
13000	94789	101882	3552104
12000	189280	211636	33660094

Theorem: mapping-closed episode is also support-closed

Mine mapping-closed episodes, keep only support-closed in postprocessing