
FAST SEQUENCE SEGMENTATION USING
LOG-LINEAR MODELS
NIKOLAJ.TATTI@AALTO.FI
Aalto University, Helsinki Institute of Information Technology

SEGMENTATION
Given sequence s, and a number K divide s
into K cohesive segments

50 100 150 200

−4

−2

0

2

4

C1 C2 C3 C4

DYNAMIC PROGRAM
If score is additive, optimal solution can be
found by dynamic program

1 foreach k = 2, . . . ,K do
2 foreach i = 1, . . . , N do
3 foreach j = 1, . . . , i do
4 C ← opt(k − 1, j − 1) and

(i, j);
5 if sc(C) < sc(O) then

O ← C;
6 ;

7 opt(k, i)← O;

O(KN) space and O(KN2) time

SPEED-UP
Do not visit every j,
instead keep list of candidates P

Whenever possible, trim P

1 foreach k = 2, . . . ,K do
2 P ← ∅;
3 foreach i = 1, . . . , N do
4 add i into P ;
5 foreach j ∈ P do
6 compute segmentation;
7 if j is guaranteed to be

suboptimal then remove j;
8 ;

9 opt(k, i)← C;

SUFFICIENT CONDITION
Segment s[1, i] with K = 3 segments

[j, i] is a candidate for the last segment
[1, y − 1], [y, j − 1] is the optimal
2-segmentation for s[1, j − 1]

50 100 150 200 250

−4

−2

0

2

4
y j i

a

b

c

d

Define:
left(j, i) = [a, b], where

a = min
j≤x≤i

(average of s[j, x])

b = max
j≤x≤i

(average of s[j, x])

and right(k, j − 1) = [c, d], where

c = min
y≤x<j

(average of s[x, j − 1])

d = max
y≤x<j

(average of s[x, j − 1])

y is the starting index of the last segment in
k-segmentation for s[1, j − 1]

THEOREM: If left(j, i) and right(k − 1, j − 1)
overlap, then j cannot be the starting in-
dex for the last segment of optimal k-
segmentation for s[1, i]

If the theorem holds for i, it also holds for
i′ > i.

keep intervals for every j in P .
delete j from P as soon overlap occurs.

COMPUTING INTERVALS
Code for updating intervals:

1 foreach k = 2, . . . ,K do
2 P ← ∅;
3 foreach i = 1, . . . , N do
4 add i into P ;
5 foreach j ∈ P do
6 compute segmentation;
7 compute left(j, i);
8 if left(j, i) and

right(k − 1, j − 1) overlap
then remove j from P ;

9 ;

10 opt(k, i)← C;
11 compute right(k, i);

Left interval is easy: let µ = average of s[j, i].

left(j, i) = [min(a, µ) ,max(b, µ)]

Right interval is harder:

i goes into different direction
optimal segmentation is needed

PAV ALGORITHM
Compute right interval with PAV algorithm

online algorithm, input a stream of num-
bers, x1, . . .
at ith point returns the largest average
amortized constant time, linear space

At ith point maintain a x1, . . . , xi arranged
into blocks, each block has higher average
than previous. The last block has the high-
est average.

Update step:
1 add new point as a single block;
2 while violating monotonicity do
3 merge last two blocks;

RIGHT INTERVALS
Keep blocks pav(j, i) for s[j, i], for j ∈ P .

When optimal last segment is known, say j∗,
compute the right interval from pav(j∗, i).

Lists require quadratic space.
Can be rearrange into a tree:

Sequence s = (2, 0, 1, 2, 1, 1, 9, 2, 5, 0, 1)
Potential candidates P = (1, 3, 8, 10, 11)

Blocks (start indices):
pav(1, 11) = (1, 4, 7)
pav(3, 11) = (3, 4, 7)
pav(8, 11) = (8)
pav(10, 11) = (10, 11)
pav(11, 11) = (11)

Tree:

r

7

4

1 3

8 11

10

EXPERIMENTS

210 212 214 216 218 220

0

0.02

0.04

0.06

0.08

sequence length

pe
rf

or
m

an
ce

ra
ti

o

0 1 000 2 000 3 000 4 000

−5

0

5

index
0 1 000 2 000 3 000 4 000

0

10

20

30

40

index

10 20 30 40 50

0

0.02

0.04

0.06

|D|=214

|D|=215

|D|=216

number of segments

pe
rf

or
m

an
ce

ra
ti

o

0 1 000 2 000 3 000 4 000

0

50

100

150

200

index

lif
et

im
e

0 1 000 2 000 3 000 4 000

0

100

200

300

400

500

index

lif
et

im
e

performance ratio = total number of score comparisons, normalized between 0 and 1
lifetime = how many iterations index is in P

