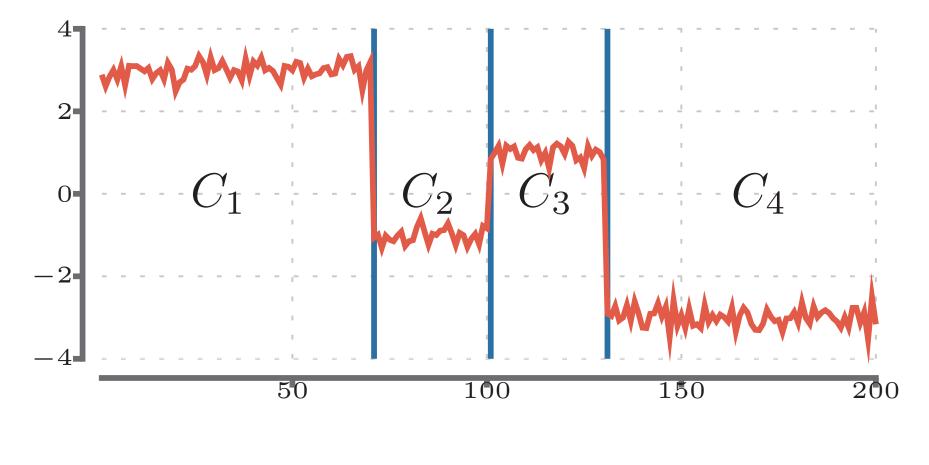
FAST SEQUENCE SEGMENTATION USING LOG-LINEAR MODELS

NIKOLAJ.TATTI@AALTO.FI Aalto University, Helsinki Institute of Information Technology

Aalto University

SEGMENTATION

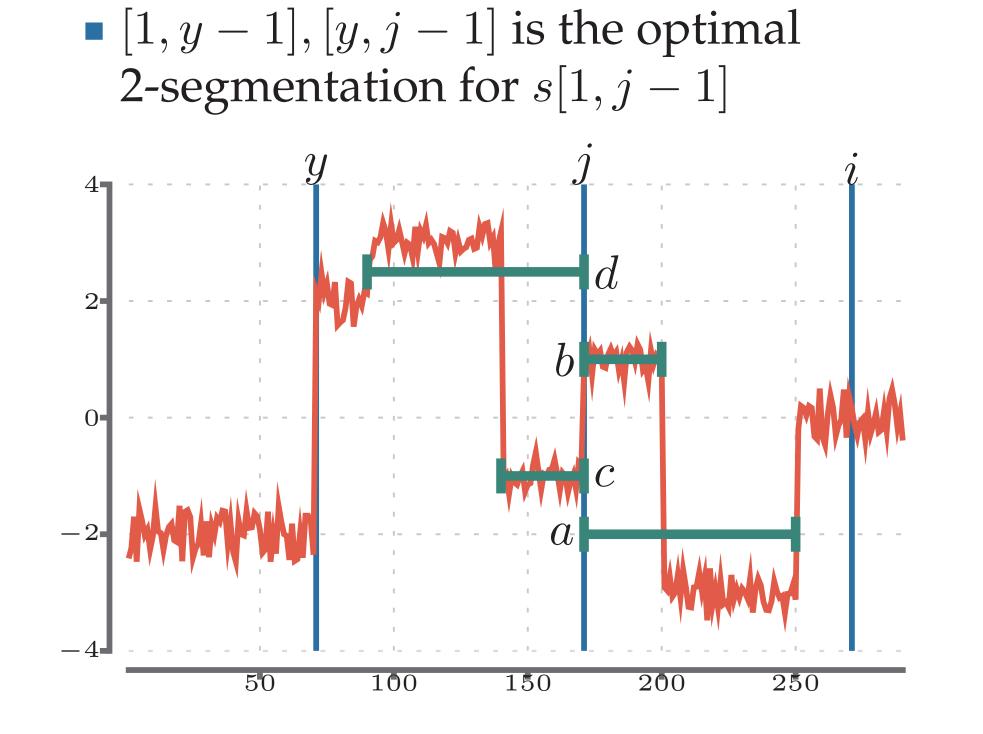
Given sequence *s*, and a number *K* divide *s* into *K* cohesive segments



SUFFICIENT CONDITION

Segment s[1, i] with K = 3 segments

■ [*j*, *i*] is a candidate for the last segment



COMPUTING INTERVALS

Code for updating intervals: 1 foreach k = 2, ..., K do $P \leftarrow \emptyset;$ foreach $i = 1, \ldots, N$ do add *i* into *P*; foreach $j \in P$ do 5 compute segmentation; 6 compute left(j, i); if left(j, i) and right(k-1, j-1) overlap

DYNAMIC PROGRAM

If score is additive, optimal solution can be found by dynamic program

1 foreach k = 2, ..., K do foreach $i = 1, \ldots, N$ do 2 foreach $j = 1, \ldots, i$ do 3 $C \leftarrow opt(k-1, j-1)$ and 4 (i, j);if sc(C) < sc(O) then 5 $O \leftarrow C;$ 6 $opt(k,i) \leftarrow O;$

O(KN) space and $O(KN^2)$ time

SPEED-UP

Do not visit every j, instead keep list of candidates PWhenever possible, trim P

Define: left(j, i) = [a, b], where

segmentation for s[1, i]

i' > i.

 $a = \min_{j \le x \le i} (\text{average of } s[j, x])$ $b = \max_{j \le x \le i} (\text{average of } s[j, x])$

and right(k, j - 1) = [c, d], where

$$c = \min_{\substack{y \le x < j}} (\text{average of } s[x, j - 1])$$
$$d = \max_{\substack{y \le x < j}} (\text{average of } s[x, j - 1])$$

y is the starting index of the last segment in *k*-segmentation for s[1, j-1]**THEOREM:** If left(j, i) and right(k - 1, j - 1)

overlap, then *j* cannot be the starting in-

dex for the last segment of optimal k-

If the theorem holds for *i*, it also holds for

delete *j* from *P* as soon overlap occurs.

• keep intervals for every *j* in *P*.

then remove *j* from *P*; 9 $opt(k,i) \leftarrow C;$ 10 compute right(k, i); 11

Left interval is easy: let μ = average of s[j, i].

 $left(j,i) = [\min(a,\mu), \max(b,\mu)]$

Right interval is harder:

• *i* goes into different direction optimal segmentation is needed

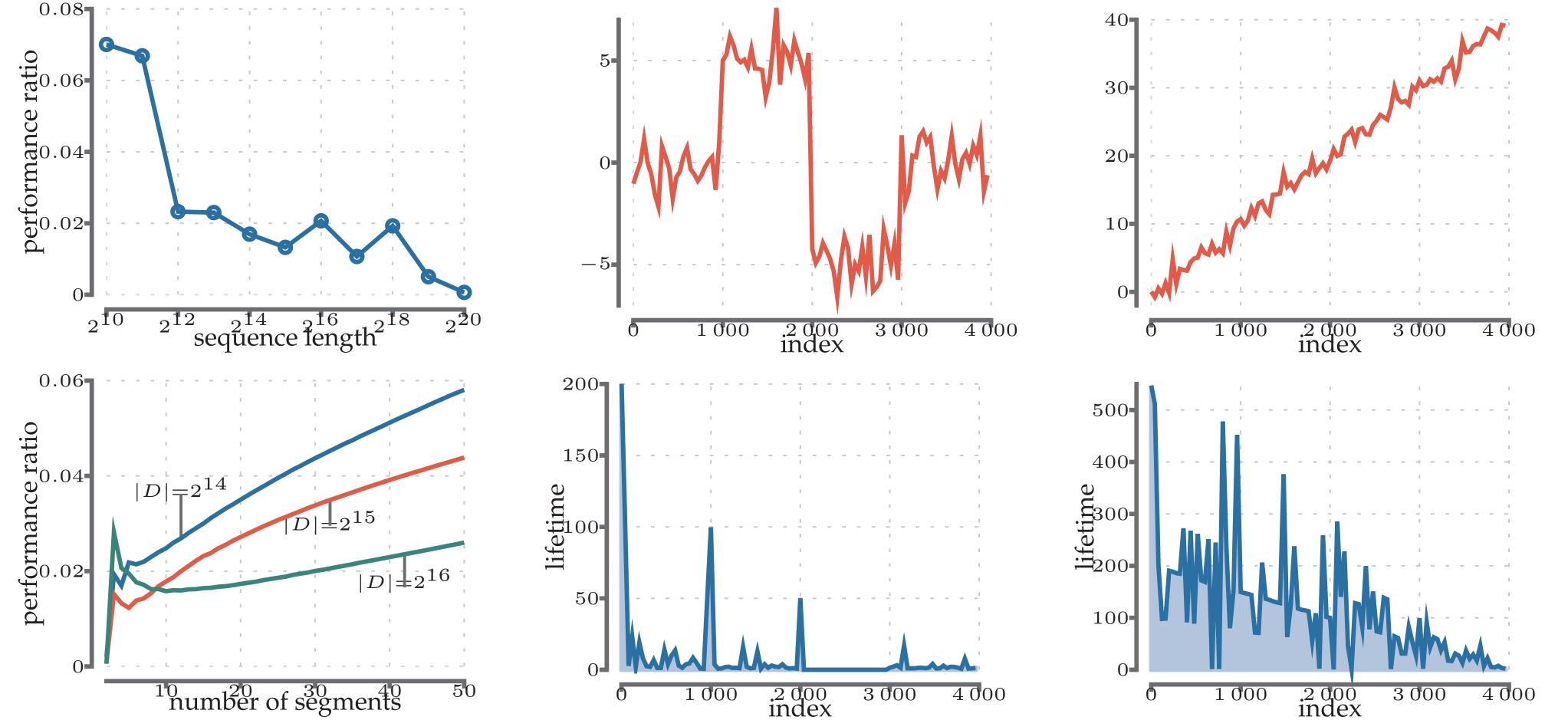
PAV ALGORITHM

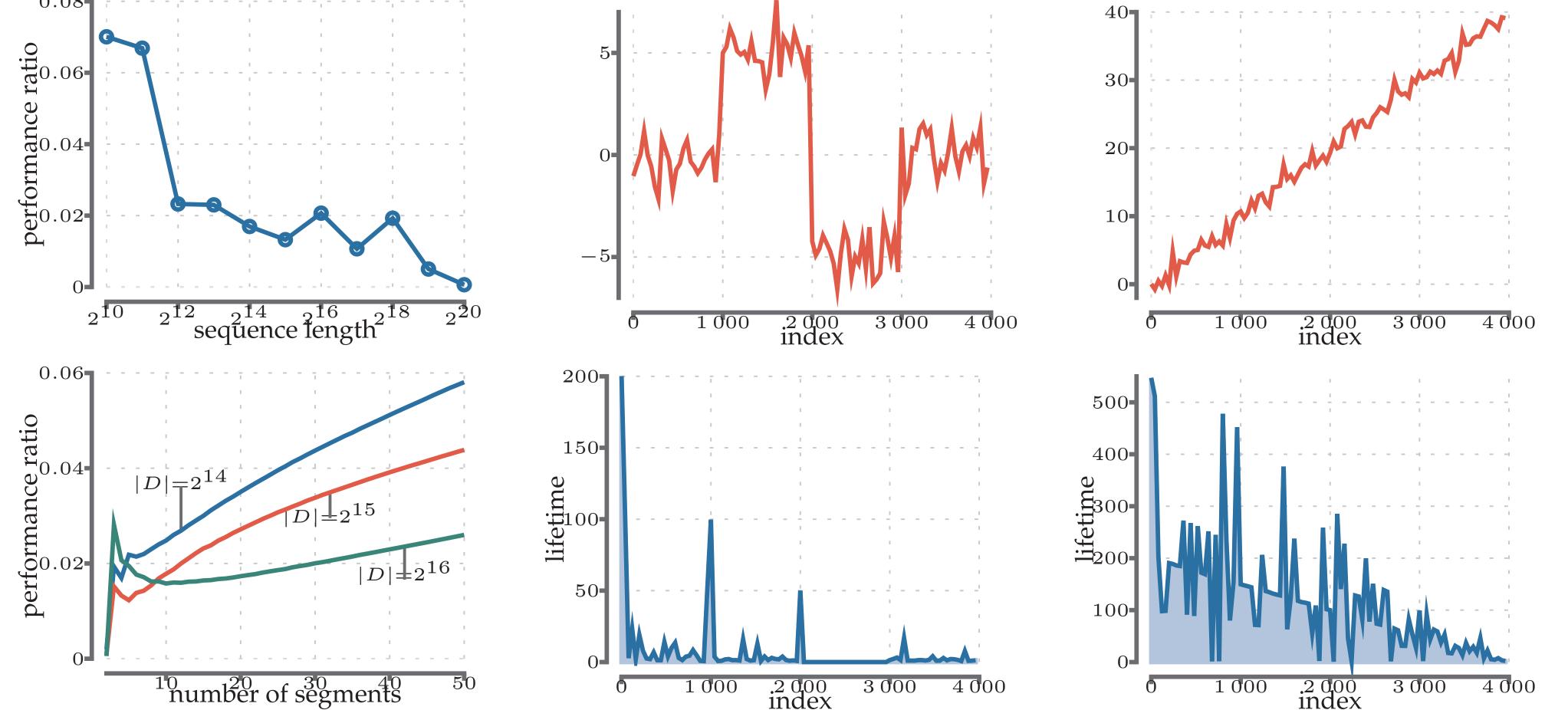
Compute right interval with PAV algorithm

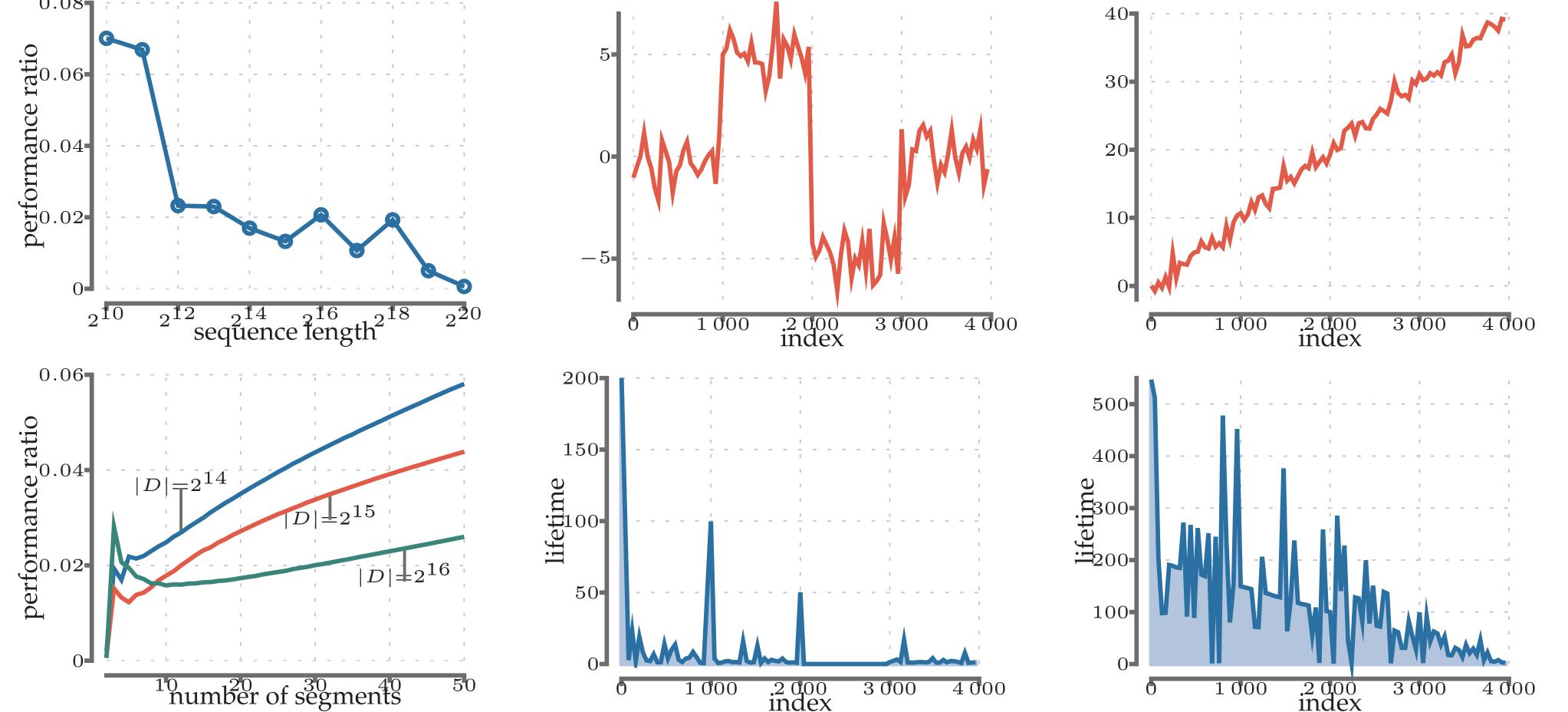
- online algorithm, input a stream of numbers, x_1, \ldots
- at *i*th point returns the largest average amortized constant time, linear space

1 foreach k = 2, ..., K do $P \leftarrow \emptyset;$ foreach $i = 1, \ldots, N$ do 3 add *i* into *P*; 4 foreach $j \in P$ do 5 compute segmentation; 6 **if** *j* is guaranteed to be suboptimal **then** remove *j*; 8 $opt(k,i) \leftarrow C;$ 9

EXPERIMENTS







At *i*th point maintain a x_1, \ldots, x_i arranged into blocks, each block has higher average than previous. The last block has the highest average.

Update step:

1 add new point as a single block; 2 while violating monotonicity do merge last two blocks; 3

RIGHT INTERVALS

Keep blocks pav(j, i) for s[j, i], for $j \in P$.

When optimal last segment is known, say j^* , compute the right interval from $pav(j^*, i)$.

Lists require quadratic space. Can be rearrange into a tree:

Sequence s = (2, 0, 1, 2, 1, 1, 9, 2, 5, 0, 1)

Potential candidates P = (1, 3, 8, 10, 11)

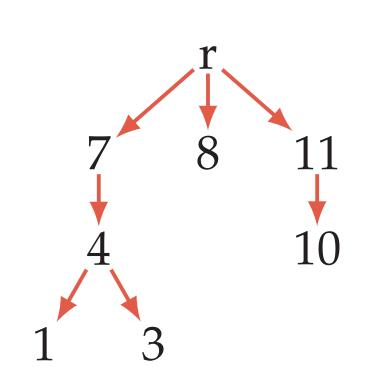
Blocks (start indices): pav(1, 11) = (1, 4, 7)

pav(3, 11) = (3, 4, 7)

pav(10, 11) = (10, 11)

pav(11, 11) = (11)

pav(8, 11) = (8)



Tree:

performance ratio = total number of score comparisons, normalized between 0 and 1 lifetime = how many iterations index is in *P*