
DISCOVERING NESTED COMMUNITIES
NIKOLAJ.TATTI@AALTO.FI · ARISTIDES.GIONIS@AALTO.FI
Aalto University, Helsinki Institute of Information Technology

DISCOVERING COMMUNITIES
Given a graph G and a set of vertices S, find
a good community around S

Graphs rarely have clear community struc-
ture

Discovering communities becomes ill-
defined problem:

Should we select

a small and tight community
or larger and sparser community?

We could either

introduce a score that balances between
size and tightness
or discover multiple communities

NESTED COMMUNITIES
Given a graph G = (V,E), number of com-
munities K, and a set of nodes S, find a se-
quence of communities

S = V0 (V1 (· · · (VK = V such that

Vi is more dense than Vi+1

quality score q(V0, . . . , VK) is optimized

DENSITY

Ei = edges of Vi

replace each non-edge with an edge with
a weight of 0

outer edges Fi = Ei \ Ei−1

density:

d(Fi) =
1

|Fi|
∑
e∈Fi

w(e)

QUALITY SCORE

q(V0, . . . , VK) =
K∑
i=1

∑
e∈Fi

|w(e)− µi|2 ,

where µi is the centroid, µi = d(Fi).

FIXING ORDER
Split the problem into 2 subproblems:

1. given a graph with ordered nodes, find a
sequence of communities respecting the
order:

if vj ∈ Vi, then vj−1 ∈ Vi

2. find a good order

There are orders corresponding to the opti-
mal solution

THEOREM: Finding optimal communities
given the order is a monotonic segmentation
problem

MONOTONIC SEGMENTATION
Input: a sequence of real-numbers
x1, . . . , xN with weights m1, . . . ,mN

Output: partition of the sequence intoK seg-
ments such that

quality score

q(C1, . . . , CK) =
K∑
i=1

∑
j∈Ci

mj |xj − µi|2

is minimized
Ci has a higher average than Ci+1.

Can be solved by a classic dynamic program

quadratic time, linear space
linear time approximations exist

Monotonicity can be enforced with prepro-
cessing using PAV algorithm

COMMUNITIES AS SEGMENTS
Express community detection as segmenta-
tion problem by setting

xi =
1

i− 1

i−1∑
j=1

w((vi, vj)) and mi = i− 1

Then

q(V0, . . . , VK) = q(C1, . . . , CK) + const

SELECTING ORDER
degree of each node
personalized page rank
dense subgraph algorithm

1 W ← V ;
2 while W 6= S do
3 w ← argminx∈W degW (x);
4 delete w from W ;

WEIGHTING EDGES
Compute p(v) = personalized pagerank.

3 options:

wn(e) =
p(v)

deg(v)
+

p(w)

deg(w)

ws(e) = p(v) + p(w)

wm(e) = min(p(v), p(w))

ALTERNATIVE APPROACHES
Any subcommunity of Vi is more dense than
any subcommunity of Vi+1

THEOREM: Let X and Y such that

Vi−1 ⊆ Y (Vi (X ⊆ Vi+1

then

d(E(Vi) \ E(Y)) > d(E(X) \ E(Vi))

ATTEMPT 1: Add dense communities first

1 W ← S;
2 while W 6= V do
3 C ← densest community

containing W ;
4 add C to W ;

ATTEMPT 2: Delete sparse communities first

1 W ← V ;
2 while W 6= S do
3 C ← sparsest community in W s.t.

C ∩ S = ∅;
4 remove C from W ;

Finding C is NP-hard

EXPERIMENTS
Karate (33, 34 as seeds):

1

1112

13

14

18

2

20

22

332

4

5 6

78

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17

ws
wn

2 4 6 8 10

0.55

0.6

0.65

0.7

number of communities

Polblogs wm

SORTVERTICES

DEGREE

PAGERANK

performance q(V) /q(H)
Name |V (G)| |E(G)| Time N wn ws wm

Adjnoun 112 425 2ms 84 0.90/0.95 0.88/0.95 0.77/0.94
Dolphins 62 159 1ms 41 0.67/0.80 0.61/0.78 0.57/0.80
Karate 34 78 1ms 21 0.78/0.91 0.76/0.91 0.60/0.93
Lesmis 77 254 2ms 37 0.77/0.93 0.84/0.94 0.62/0.94
Polblogs 1 222 16 714 84ms 872 0.87/0.96 0.95/0.99 0.57/0.96
DBLP 703 193 2 341 362 23s 1 797 0.87/0.99 0.98/1.00 0.45/0.99

