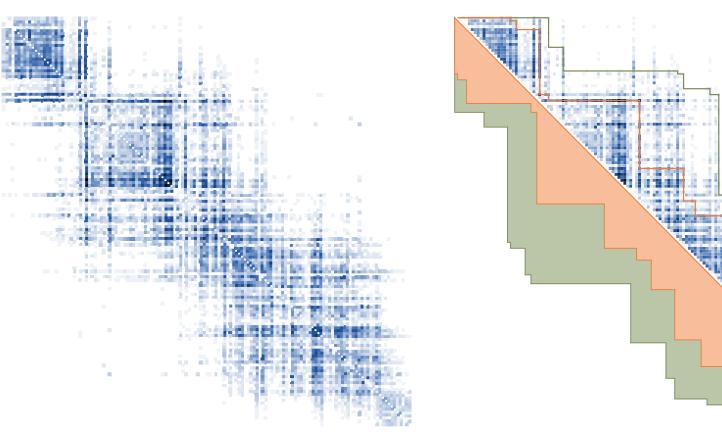
DISCOVERING BANDS FROM GRAPHS NIKOLAJ.TATTI@AALTO.FI Aalto University, Helsinki Institute of Information Technology

Aalto University

DISCOVERING BANDS

Many datasets have a band around the diagonal:



BORDERS

X is *not* a border if there are bands Y and Z such that

 $Y \subsetneq X \subsetneq Z$

and

 $a(X \setminus Y) \le a(Z \setminus X)$

otherwise, X is a border

DISCOVERING BORDERS

Can be done with isotonic regression

PROBLEM For a DAG G = (V, E, f) with vertex weights, find *g* such that

 $g(v) \ge g(w)$ for every $(v, w) \in E$

and

 $\sum |f(v) - g(v)|^2$

is minimized.

PROBLEM Given a(n adjacency) matrix, order entries and find K - 1 bands

 $\emptyset = B_0 \subsetneq B_1 \subsetneq \cdots \subsetneq B_K = A$

such that

inner bands are more dense,

 $a(B_i) > a(B_{i+1})$

segments are homogenous; they minimize some score

 $\sum q(B_i \setminus B_{i-1}) \qquad (\text{e.g., } q = L_2)$

ALGORITHM IN A NUTSHELL

1. Find order

spectral heuristic

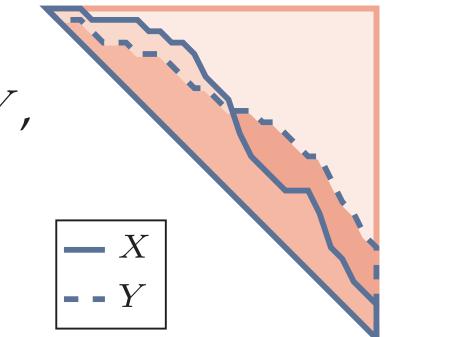
THEOREM There is an optimal solution that contains only borders

— X

- - Y

 $\cdots Z$

THEOREM Given borders X and Y, either $X \subseteq Y$ or $Y \subseteq X$.



COROLLARY All borders form a chain, $\emptyset =$ $B_1 \subsetneq B_2 \subsetneq \cdots \subsetneq B_L = A.$ The density is decreasing $a(B_i) > a(B_{i+1})$.

COROLLARY There are at most n(n-1)/2borders.

Discovering K **bands**

Dynamic programming:

Update equation:

 $opt(i,k) = optimal solution covering B_i$ with *k* bands

 $opt(i,k) = \max_{j < i} q(B_i \setminus B_j) + opt(j,k-1)$.

To find borders, let

• vertices to be cells $V = \{(i, j) \mid i < j\}.$ edges to be to the cells away from the diagonal,

> $E = \{(i, j) \to (i, j+1)\}$ $\cup \{(i,j) \to (i-1,j)\} \quad .$

weights are values in adjacency matrix **THEOREM** Given a border *B*, there is *t* s.t.

```
B = \{ (i, j) \mid g(i, j) \ge t \} \quad .
```

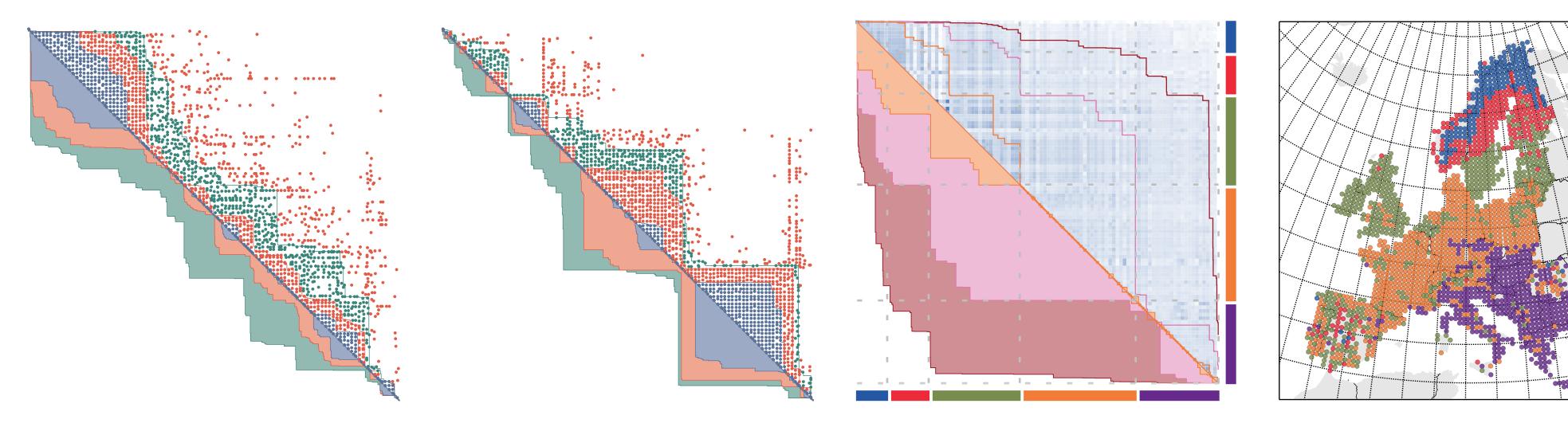
Needs $O(n^4)$ time, much less in practice.

APPROXIMATING BORDERS

THEOREM There is an order for cells, that given a border *B*, there is *t* such that

- hill-climb refinement
- 2. Find all the borders
 - exactly with grid isotonic regression
 - approximate by iterating total order isotonic regression
- 3. Select *K* borders that optimize the score

EXPERIMENTS



 $B = \{ (i, j) \mid g(i, j) \ge t \},\$

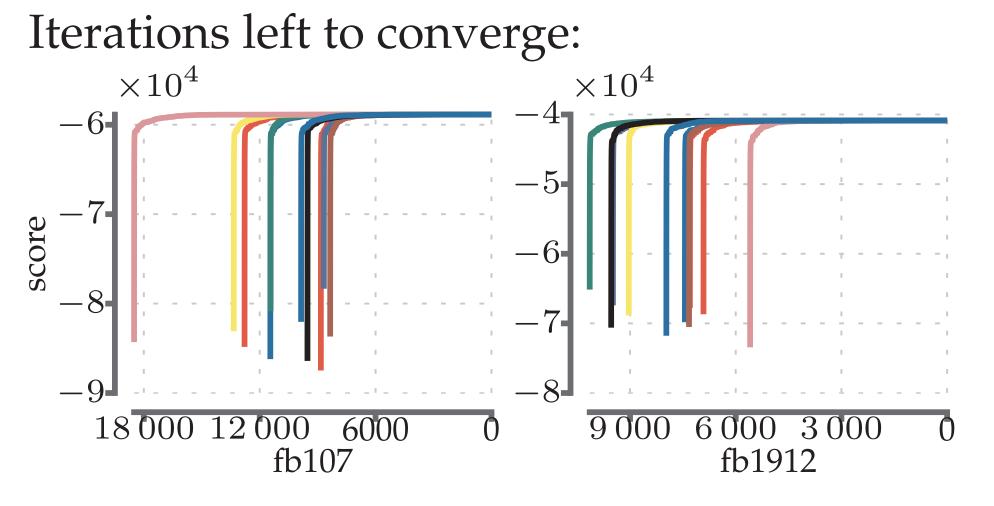
where *g* is a solution for total order isotonic regression.

- guess an order for cells
- solve total order isotonic regression

• needs O(m) time

permute the cells within the borders

repeat



	Approximate borders							Exact borders		
Name	time	brd	iter	rnd	ref	initial	final	time	initial	final
DblpCF	0.2s	55	235	48	3	945	908	.02s	945	905
DblpCP	0.4s	53	701	135	3	966	927	.05s	966	918
Fb107	12m	476	7217	676	7	61734	60 4 4 4	20s	61723	60 4 27
Fb1912	5m	375	7357	813	4	43 212	42 909	3.2s	43 212	42930
Paleo	4s	201	423	51	4	-8645	-8906	.13s	-8645	-8906
Mammals	33m	2975	2000	40		19798		2m	19798	19798
Synthetic	37m	625	2000	40		6956048				

FINDING ORDER

No fast approach to our knowledge.

Use heuristics:

• Fielder order:

order nodes using the 2nd smallest eigenvector of Lagrangian. refine order with hill climbing by swapping entries