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ABSTRACT
One of the main current challenges in itemset mining is to
discover a small set of high-quality itemsets. In this paper we
propose a new and general approach for measuring the qual-
ity of itemsets. The method is solidly founded in Bayesian
statistics and decreases monotonically, allowing for efficient
discovery of all interesting itemsets. The measure is defined
by connecting statistical models and collections of itemsets.
This allows us to score individual itemsets with the proba-
bility of them occuring in random models built on the data.

As a concrete example of this framework we use exponen-
tial models. This class of models possesses many desirable
properties. Most importantly, Occam’s razor in Bayesian
model selection provides a defence for the pattern explosion.
As general exponential models are infeasible in practice, we
use decomposable models; a large sub-class for which the
measure is solvable. For the actual computation of the score
we sample models from the posterior distribution using an
MCMC approach.

Experimentation on our method demonstrates the mea-
sure works in practice and results in interpretable and in-
sightful itemsets for both synthetic and real-world data.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining; G.3 [Probability and Statistics]: Markov
processes

General Terms
Algorithms, Theory

Keywords
Itemset mining, exponential models, decomposable models,
junction trees, Bayesian model selection, MCMC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

1. INTRODUCTION
Discovering frequent itemsets is one of the most active

fields in data mining. As a measure of quality, frequency
possesses a lot of positive properties: it is easy to inter-
pret and as it decreases monotonically there exist efficient
algorithms for discovering large collections of frequent item-
sets [2]. However, frequency also has serious drawbacks.
A frequent itemset may be uninteresting if its elevated fre-
quency is caused by frequent singletons. On the other hand,
some non-frequent itemsets could be interesting. Another
drawback is the problem of pattern explosion when mining
with a low threshold.

Many different quality measures have been suggested to
overcome the mentioned problems (see Section 5 for a more
detailed discussion). Usually these measures compare the
observed frequency to some expected value derived, for ex-
ample, from the independence model. Using such measures
we may obtain better results. However, these approaches
still suffer from pattern explosion. To point out the prob-
lem, assume that two items, say a and b are correlated, and
hence are considered significant. Then any itemset contain-
ing a and b will be also considered significant.

Example 1. Assume a dataset with K items a1, . . . , aK

such that a1 and a2 always yield identical value and the
rest of the items are independently distributed. Assume that
we apply some statistical method to evaluate the significance
of itemsets by using the independence model as the ground
truth. If an itemset X contains a1a2, its frequency will be
higher than then the estimate of the independence model.
Hence, given enough data, the P-value of the statistical test
will go to 0, and we will conclude that the itemset X is inter-
esting. Consequently we will find 2K−2 interesting itemsets.

In this work we approach the problem of defining quality
measure from a novel point of view. We construct a connec-
tion between itemsets and statistical models and use this
connection to define a new quality measure for itemsets. To
motivate this approach further, let us consider the following
example.

Example 2. Consider a binary dataset with 5 items, say
a1, . . . , a5, generated from the independence model. We ar-
gue that if we know that the data comes from the indepen-
dence model, then the only interesting itemsets are the sin-
gletons. The reasoning behind this claim is that the frequen-
cies of singletons correspond exactly to the column margins,
the parameters of the independence model. Once we know
the singleton frequencies, there is nothing left in the data
that would be statistically interesting.



Let us consider a more complicated example. Assume that
data is generated from a Chow-Liu tree model [4], say

p(A) = p(a1)p(a2 | a1)p(a3 | a1)p(a4 | a2)p(a5 | a4).

Again, if we know that data is generated from this model,
then we argue that the interesting itemsets are a1, a2, a3,
a4, a5, a1a2, a1a3, a2a4, and a4a5. The reasoning here is
the same as with the independence model. If we know the
frequencies of these itemsets we can derive the parameters
of the distribution. For example, p(a2 = 1 | a1 = 1) =
fr(a1a2) /fr(a1).

Let us now demonstrate that this approach will produce
much smaller and more meaningful output than the method
given in Example 1.

Example 3. Consider the data given in Example 1. To
fully describe the data we only need to know the frequencies
of the singletons and the fact that a1 and a2 are identical.
This information can be expressed by outputting the frequen-
cies of singleton itemsets and the frequency of itemset a1a2.
This will give us K + 1 interesting patterns in total.

Our approach is to extend the idea pitched in the pre-
ceding example to a general itemset mining framework. In
the example we knew which model generated the data, in
practice, we typically do not. To solve this we will use the
Bayesian approach, and instead of considering just one spe-
cific model, we will consider a large collection of models,
namely exponential models. A virtue of these models is that
we can naturally connect each model to certain itemsets. A
model M has a posterior probability P (M | D), that is, how
probable is the model given the data. The score of a single
itemset then is just the probability of it being a parameter
of a random model given the data. This setup fits perfectly
the given example. If we have strong evidence that data
is coming from the independence model, say M , then the
posterior probability P (M | D) will be close to 1, and the
posterior probability of any other model will be close to 0.
Since the independence model is connected to the singletons,
the score for singletons will be 1 and the score for any other
itemset will be close to 0.

Interestingly, using statistical models for defining signif-
icant itemsets provides an approach to the problem of the
pattern set explosion (see Section 3.2 for more technical de-
tails). Bayesian model selection has an in-built Occam’s
razor, favoring simple models over complex ones. Our con-
nection between models and itemsets is such that simple
models will correspond to small collections of itemsets. In
result, only a small collection of itemsets will be considered
interesting, unless the data provides sufficient amount of ev-
idence.

Our contribution in the paper is two-fold. First, we intro-
duce a general framework of using statistical models for scor-
ing itemsets in Section 2. Secondly, we provide an example
of this framework in Section 3 by using exponential models
and provide solid theoretical evidence that our choices are
well-founded. We provide the sampling algorithm in Sec-
tion 4. We discuss related work in Section 5 and present
our experiments in Section 6. Finally, we conclude our work
with Section 7. The proofs are given in Appendix [19]. The
implementation is provided for research purposes1.

1http://adrem.ua.ac.be/implementations

2. SIGNIFICANCE OF ITEMSETS BY STA-
TISTICAL MODELS

As we discussed in the introduction, our goal is to define
a quality measure for itemsets using statistical models. In
this section we provide a general framework for such a score.
We will define the actual models in the next section.

We begin with some preliminary definitions and notations.
In our setup a binary dataset is a collection of N transac-
tions, binary vectors of length K. We assume that these
vectors are independently generated from some unknown
distribution. Such a dataset can be easily represented by
a binary matrix of size N × K. By an attribute ai we
mean a Bernoulli random variable corresponding to the ith
column of the data. We denote the set of attributes by
A = {a1, . . . , aK}.

An itemset X is simply a subset of A. Given an itemset
X = {ai1 , . . . , aiL} and a transaction t we denote by tX =
(ti1 , . . . , tiL) the projection of t into X. We say that t covers
X if all elements in tX are equal to 1.

We say that a collection of itemsets F is downward closed
if for each member X ∈ F any sub-itemset is also included.
This property plays a crucial point in mining frequent pat-
terns since it allows effective candidate pruning in level-wise
approach and branch pruning in a DFS approach.

Our next step is to define the correspondence between
statistical models and families of itemsets. Assume that we
have a setM of statistical models for the data. We will dis-
cuss in later sections what specific models we are interested
in, but for the moment, we will keep our discussion on a
high level. Each model M ∈ M has a posterior probability
P (M | D), that is, how probable the model M is given data
D. To link the models to families of itemsets we assume
that we have a function fam that identifies a model M with
a downward closed family of itemsets. As we will see later
on, there is one particular natural choice for such a function.

Now that we have our models that are connected to cer-
tain families of itemsets, we are ready to define a score for
individual itemsets. The score for an itemset X is the poste-
rior probability of X being a member in a family or itemsets,

sc(X) =
X

X∈fam(M),
M∈M

P (M | D). (1)

The motivation for such score is as follows. If we are sure
that some particular model M is the correct model for D,
then the posterior probability for that model will be close
to 1 and the posterior probabilities for other models will be
close to 0. Consequently, the score for an itemset X will be
close to 1 if X ∈ fam(M), and 0 otherwise.

Naturally, the pivotal choice of this score lies in the map-
ping fam. Such a mapping needs to be statistically well-
founded, and especially the size of an itemset family should
be reflected in the complexity of the corresponding model.
We will see in the following section that a particular choice
for the model family and mapping fam has these properties,
and leads to certain important qualities.

Proposition 4. The score decreases monotonically, that
is, X ⊆ Y implies sc(X) ≥ sc(Y ).

Proof. We are allowing fam only to map on downward
closed families. Hence the inequalityX

X∈fam(M),
M∈M

P (M | D) ≥
X

Y∈fam(M),
M∈M

P (M | D)

http://adrem.ua.ac.be/implementations


holds, and consequently we have sc(X) ≥ sc(Y ). This com-
pletes the proof.

3. EXPONENTIAL MODELS
In this section we will make our framework more concrete

by providing a specific set M of statistical models and the
function fam identifying the models with families of item-
sets. We will first give the definition of the models and the
mapping. After this, we point out the main properties of
our model and justify our choices. However, as, it turns out
that computing the score for these models is infeasible, so
instead, we solve this problem by considering decomposable
models.

3.1 Definition of the models
Models of exponential form have been studied exhaus-

tively in statistics, and have been shown to have good the-
oretical and practical properties. In our case, using expo-
nential models provide a natural way of describing the de-
pendencies between the variables. In fact, the exponential
model class contains many natural models such as, the inde-
pendence model, the Chow-Liu tree model, and the discrete
Gaussian model. Finally, such models have been used suc-
cessfully for predicting itemset frequencies [14] and ranking
itemsets [18].

In order to define our model, let F be a downward closed
family of itemsets containing all singletons. For an itemset
X ∈ F we define an indicator function SX(t) mapping a
transaction t into binary value. If the transaction t covers
X, then SX(t) = 1, and 0 otherwise. We define an expo-
nential model M associated with F to be the collection of
distributions having the exponential form

P (A = t |M, r) = exp

 X
X∈F

rXSX(t)

!
,

where rX is a parameter, a real value, for an itemset X.
Model M also contains all the distributions that can be ob-
tained as a limit of the distribution having the exponential
form. This technicality is needed to handle distributions
with zero probabilities. Since the indicator function S∅(t) is
equal to 1 for any t, the parameter r∅ acts like a normaliza-
tion constant. The rest of the parameters form a parameter
vector r of length |F| − 1. Naturally, we set F = fam(M).

Example 5. Assume that F consists only of singleton
itemsets. Then the corresponding model has the form

exp

 
r∅ +

KX
i=1

raiSai(t)

!
= exp(r∅)

KY
i

exp(raiSai(t)) .

(2)
Since Sai(t) depends only on ti, the model is actually the
independence model. The other extreme is when F consists
of all itemsets. Then we can show that the corresponding
model contains all possible distributions, that is, the model
is in fact the parameter-free model.

As an intermediate example, the tree model in Example 2
is also an exponential model with a corresponding family
{a1, . . . , a5} ∪ {a1a2, a2a3, a2a4, a4a5}.

The intuition behind the model is that when an itemset X
is an element of F , then the dependencies between the items
in X are considered important in the corresponding model.

For example, if F consists only of singletons, then there are
no important correlations, hence the corresponding model
should be the independence model. On the other hand, in the
tree model given in Example 2 the important correlations are
the parent-child item pairs, namely, a1a2, a2a3, a2a4, a4a5.
These are exactly, the itemsets (along with the singletons)
that correspond to the model.

Our choice for the models is particularly good since the
complexity of models reflects the size of itemset family. Since
Bayesian approach has an in-built tendency to punish com-
plex families (we will see this in Section 3.2), we are punish-
ing large families of itemsets. If the data states that simple
models are sufficient, then the probability of complex mod-
els will be low, and consequently the score for large itemsets
will also be low. In other words, we casted the problem of
pattern set explosion into a model overfitting problem and
used Occam’s razor to punish the complex models!

3.2 Computing the Model
Now that we have defined our model M , our next step

is to compute the posterior probability P (M | D). That
is, the probability of M given the data set D. We select
the model prior P (M) to be uniform. Recall that in Eq. 2
a model M has a set of parameters, that is, to pinpoint
a single distribution in M we need a set of parameters r.
Following the Bayesian approach to compute P (M | D) we
need to marginalize out the nuisance parameters r,

P (M | D) =

Z
r

P (M, r | D) ∝
Z

r

P (r |M)
Y
t∈D

P (t |M, r).

In the general case, this integral is too complex to solve
analytically so we employ the popular BIC estimate [15],

P (M | D) ≈ C × P (D |M, r∗)× exp

„
− log |D| |F| − 1

2

«
,

(3)
where C is a constant and r∗ is the maximum likelihood
estimate of the model parameters. This estimate is correct
when |D| approaches infinity [15]. So instead of computing a
complex integral our challenge is to discover the maximum
likelihood estimate r∗ and compute the likelihood of the
data. Unfortunately, using such model is an NP-hard prob-
lem (see, for example, [17]). We will remedy this problem
in Section 3.4 by considering a large subclass of exponen-
tial models for which the maximum likelihood can be easily
computed.

3.3 Justifications for Exponential Model
In this section we will provide strong theoretical justifica-

tion for our choices and show that our score fulfills the goals
we set in the introduction.

We saw in Example 2 that if the data comes from the
independence model, then we only need the frequencies of
the singleton itemsets to completely explain the underlying
model. The next theorem shows that this holds in general
case.

Theorem 6. Assume that data D is generated from a dis-
tribution p that comes from an exponential model M . Let
F = fam(M) be the family of itemsets. We can derive
the maximum likelihood estimate from the frequencies of F .
Moreover, as the number of transactions goes to infinity, we
can derive the true distribution p from the frequencies of F .



The preceding theorem showed that fam(M) is sufficient
family of itemsets in order to derive the correct true distribu-
tion. The next theorem shows that we favor small families:
if the data can be explained with a simpler model, that is,
using less itemsets, then the simpler model will be chosen
and, consequently, redundant itemsets will have a low score.

Theorem 7. Assume that data D is generated from a dis-
tribution p that comes from a model M . Assume also that
if any other model, say M ′, contains this distribution, then
|fam(M ′)| > |fam(M)|. Then the following holds: as the
number of data points in D goes into infinity, sc(X) = 1 if
X ∈ fam(M), otherwise sc(X) = 0.

3.4 Decomposable Models
We saw in Section 3.2 that in practice we cannot compute

the score for general exponential models. In this section
we study a subclass of exponential models, for which we
can easily compute the needed score. Roughly speaking, a
decomposable model is an exponential model where the cor-
responding maximal itemsets can be arranged to a specific
tree, called junction tree. By considering only decomposable
models we obviously will lose some models, for example, the
discrete Gaussian model, that is, a model corresponding to
all itemsets of size 1 and 2 is not decomposable. On the
other hand, many interesting and practically relevant mod-
els are decomposable, for example Chow-Liu trees. Finally,
these models are closely related to Bayesian networks and
Markov Random Fields (see [5] for more details).

To define a decomposable model, let F be a downward
closed family of itemsets. We write G = max(F) to be the
set of maximal itemsets from F . Assume that we can build
a tree T using itemsets from G as nodes with the following
property: If X,Y ∈ G have a common item, say a, then
X and Y are connected in T (by a unique path) and every
itemset along that path contains a. If this property holds
for T , then T is called junction tree and F is decomposable.
We will use E(T ) to denote the edges of the tree.

Not all families have junction trees and some families may
have multiple junction trees.

a1a2

a2a4

a2a3

a4a5

(a) Decomposable
family F1 of itemsets

a1a2 a2a3a4 a4a5

(b) Decomposable fam-
ily F2 after merge

a1a2 a2a3a4 a3a4a5

(c) Decomposable family
F3 after the second merge

Figure 1: Figure 1(a) shows that the itemset fam-
ily given in Example 2 is decomposable. Fig-
ure 1(b) shows the junction tree for the family after
Merge({a2} , a3, a4) and Figure 1(c) shows the junc-
tion tree after Merge({a4} , a3, a5).

Example 8. Let F1 be the family of itemsets connected
to the Chow-Liu model given in Example 2. The maximal
itemsets F1 are {a1a2, a2a3, a2a4, a4a5}. Figure 1(a) shows

a junction tree for this family, making the family decompos-
able. On the other hand, family {a1a2, a1a3, a2a3} is not
decomposable since there is no junction tree for this family.

The most important property of decomposable families is
that we can compute the maximum likelihood efficiently. We
first define the entropy of an itemset X, denoted by H(X),
as

H(X) = −
X

t∈{0,1}|X|
qD(X = t) log qD(X = t),

where qD is the empirical distribution of the data.

Theorem 9. Let F be a decomposable family and let T
be its junction tree. The maximum log-likelihood is equal to

− logP (D |M, r∗)

|D| =
X

X∈max(F)

H(X)−
X

(X,Y )
∈E(T )

H(X ∩ Y ) .

Example 10. Assume that our model space M consists
only of two models, namely the tree model M1 given in Ex-
ample 2 and the independence model, which we denote M2.
Assume also that we have a dataset with 9 transactions,

t1 = (1, 0, 0, 0, 0), t2 = (1, 1, 0, 0, 1), t3 = (0, 0, 0, 0, 0),

t4 = (1, 1, 1, 1, 1), t5 = (1, 1, 0, 1, 1), t6 = (0, 1, 1, 0, 0),

t7 = (0, 0, 1, 0, 0), t8 = (0, 0, 1, 0, 1), t9 = (0, 1, 1, 1, 1).

To compute the probabilities P (M1 | D) and P (M2 | D),
we need to know the entropies of certain itemsets

H(a1) = H(a2) = H(a3) = H(a5) = 0.68, H(a4) = 0.64,

H(a1a2) = 1.31, H(a2a3) = 1.37,

H(a2a4) = H(a4a5) = 1.06.

The log-likelihood of the independence model is equal to

logP (D |M2, r
∗) = −9(4× 0.68 + 0.64).

We use the junction tree given in Figure 1(a) and Theorem 9
to compute the log-likelihood of M1,

logP (D |M1, r
∗) = −9(1.31+1.37+2×1.06−2×0.68−0.64).

Note that |fam(M2)| = 6 and |fam(M1)| = 10. Thus Eq. 3
implies that

P (M1 | D) ∝ P (D |M1, r
∗) exp(−9/2 log 9) = 6.27× 10−14,

P (M2 | D) ∝ P (D |M2, r
∗) exp(−5/2 log 9) = 2.43× 10−14.

We get the final probabilities by noticing that P (M1 | D) +
P (M2 | D) = 1 so that we have P (M1 | D) = 0.72 and
P (M2 | D) = 0.28. Consequently, the scores for itemsets are
equal to sc(a1a2) = sc(a2a3) = sc(a2a4) = sc(a4a5) = 0.72,
sc(ai) = 1, for i = 1, . . . , 5, and sc(X) = 0 otherwise.

4. SAMPLING MODELS
Now that we have means for computing the posterior

probability of a single decomposable model, our next step
is to compute the score of an itemset namely, the sum in
Eq. 1. The problem is that this sum has an exponential
number of terms, and hence we cannot solve by enumerat-
ing all possible families. We approach this problem from a
different point of view. Instead of computing the score for
each itemset individually, we will divide our mining method
into two steps:



1. Sample random decomposable models from the poste-
rior distribution P (M | D).

2. Estimate the true score of an itemset by computing
the number of sampled families of itemsets in which
the itemset occurs.

4.1 Moving from One Model to Another
In order to sample we will use a MCMC approach by mod-

ifying the current decomposable family by two possible op-
erations, namely

• Merge: Select two maximal itemsets, say X and Y .
Let S = X∩Y . Since X and Y are maximal, X−S 6= ∅
and Y − S 6= ∅. Select x ∈ X − S and y ∈ Y − S.
Add a new itemset S ∪ {x, y} into the family F along
with all possible sub-itemsets. We will use notation
Merge(S, x, y) to denote this operation.

• Split: Select an itemset X ∈ max(F). Select two
items x, y ∈ X. Delete X and all sub-itemsets con-
taining x and y simultaneously. We will denote this
operation by Split(X,x, y).

Naturally, not all splits and merges are legal, since some
operations may result in a family that is not decomposable,
or even downward closed.

Example 11. The family F2 given in Figure 1(b) is ob-
tained from the family F1 given in Figure 1(a) by perform-
ing Merge({a2} , a3, a4). Moreover, F3 (Figure 1(c)) is ob-
tained from F2 by performing Merge({a4} , a3, a5). Con-
versely, we can go back by performing Split(a3a4a5, a3, a5)
first and Split(a2a3a4, a3, a4) second.

The next theorem tells us which splits are legal.

Theorem 12. Let F be decomposable family and let X ∈
max(F) and let x, y ∈ X. Then the resulting family after
a split operation Split(X,x, y) is decomposable if and only,
there are no other maximal itemsets in F containing x and
y simultaneously.

Example 13. All possible split combinations are legal in
families F1 and F2 given in Figure 1(a) and Figure 1(b).
However, for F3 given in Figure 1(c) Split(a2a3a4, a3, a4)
is illegal since a3a4a5 contains a3 and a4. Similarly, the
operation Split(a3a4a5, a3, a4) is illegal.

In order to identify legal merges, we will need some addi-
tional structures. Let F be a downward closed family and let
G = max(F) be its maximal itemsets. Let S be an itemset.
We construct a reduced family, denoted by rf (F ;S) with the
following procedure. Let us first define

X = {X − S | X ∈ G, S ( X} .

To obtain the reduced family rf (F ;S) from X , assume there
are two itemsets X,Y ∈ X such that X∩Y 6= ∅. We remove
these two sets from X and replace them with X ∪Y . This is
continued until no such replacements are possible. We ignore
any reduced family that contains 0 or 1 itemsets. The reason
for this will be seen in Theorem 15, which implies that such
families will not induce any legal merges.

Example 14. The non-trivial reduced families of the fam-
ily given in Figure 1(a) are rf (F1; a2) = {a1, a3, a4} and
rf (F1; a4) = {a2, a5}. Similarly, the reduced families for the
family given in Figure 1(b) are rf (F2; a2) = {a1, a3a4}, and
rf (F2; a4) = {a2a3, a5}. Finally, the reduced families for the
family given in Figure 1(c) are rf (F3; a2) = {a1, a3a4} and
rf (F3; a3a4) = {a2, a5}.

The next theorem tells us when Merge(S, x, y) is legal.

Theorem 15. Let F be decomposable family. A merge
operation is legal, that is, F is still decomposable after adding
Z = S ∪{x, y} if and only if there are sets V,W ∈ rf (F ;S),
V 6= W , such that x ∈ V and y ∈W .

Example 16. Family F2 in Figure 1(b) is obtained from
the family F1 in Figure 1(a) by Merge(a2, a3a4). This is
legal operation since rf (F1; a2) = {a1, a3, a4}. Similarly,
merge transforming F2 to F3 is legal since rf (F2; a4) =
{a2a3, a5}. However, this merge would not be legal in F1

since we do not have a3 in rf (F1; a4).

4.2 MCMC Sampling Algorithm
Sampling requires a proposal distribution Q(M ′ |M). Let

M be a current model. We denote the number of legal opera-
tions, either a split or a merge, by d(M). Let M ′ be a model
obtained by sampling uniformly one of the legal operations
and applying it to M . The probability of reaching M ′ from
M with a single step is Q(M ′ | M) = 1/d(M). Similarly,
the probability of reaching M from M ′ with a single step is
Q(M | M ′) = 1/d(M ′). Consequently, if we sample u uni-
formly from the interval [0, 1] and accept the step moving
from M into M ′ if and only if u is smaller than

P (M ′ | D)Q(M |M ′)
P (M | D)Q(M ′ |M)

=
P (M ′ | D)d(M)

P (M | D)d(M ′)
, (4)

then the limit distribution of the MCMC will be the poste-
rior distribution P (M | D) provided that the MCMC chain
is ergodic. The next theorem shows that this is the case.

Theorem 17. Any decomposable model M can be reached
from any other model M ′ by a sequence of legal operations.

Our first step is to compute the ratio of the models given
in Eq 4. To do that we will use the BIC estimate given in
Eq. 3 and Theorem 9. Let us first define a function

gain(X,x, y) =

|D|(H(X)−H(X − x)−H(X − y) +H(X − {x, y})),

where X is an itemset and x, y ∈ X are items.

Theorem 18. Let M be a decomposable model and let
M ′ = Split(X,x, y;M) be a model obtained by a legal split.
Let A be the BIC estimate of P (M | D) and let B be the
BIC estimate of P (M ′ | D). Then

B/A = exp
“

gain(X,x, y)− log |D|2|X|−3
”
.

Similarly, if M ′ = Merge(S, x, y;M), then

B/A = exp
“
−gain(S ∪ {x, y} , x, y) + log |D|2|S|−1

”
.



To compute the gain we need the entropies for 4 item-
sets. Let X be an itemset. To compute H(X) we first order
the transactions in D such that the values corresponding to
X are in lexicographical order. This is done with a radix
sort Sort(D,X) given in Algorithm 1. This sort is done
in O(|D||X|) time. After the data is sorted we can easily
compute the entropy with a single data scan: Set e = 0 and
p = 0. If the values of X of the current transaction is equal
to the previous transaction we increase p by 1/|D|, other-
wise we add −p log p to e and set p to 1/|D|. Once the scan
is finished, e will be equal to H(X). The pseudo code for
computing the entropy is given in Algorithm 2.

Algorithm 1: Sort(D,X). Routine for sorting the
transactions. Used by Entropy as a pre-step for com-
puting the entropy.

1 if X = ∅ or D = ∅ then return D;
2 ai ← first item in X;
3 D0 ← {t ∈ D | ti = 0}; D1 ← {t ∈ D | ti = 1};
4 D0 ← Sort(D0, X − ai); D1 ← Sort(D1, X − ai);
5 return D0 concatenated with D1.

Algorithm 2: Entropy(D,X). Computes the entropy
of X from the dataset D.

1 Sort(D,X);
2 e← 0; p← 0;
3 u← first transaction in D;
4 foreach t ∈ D do
5 if uX 6= tX then
6 e← e− p log p;
7 u← t;
8 p← 1/|D|;
9 else

10 p← p+ 1/|D|;

11 e← e− p log p;
12 return e;

Our final step is to compute d(M) and actually sample the
operations. To do that we first write sd(M) for the number
of possible Split operations and let sd(M,X) be the number
of possible Split operations using itemset X. Similarly, we
write md(M,S) for the number of legal merges using S and
also md(M) for the amount of legal merges in total.

Given a maximal itemset X we build an occurrence table,
which we denote by st(X), of size |X| × |X|. For x, y ∈ X,
the entry of the table st(X,x, y) is the number of maximal
itemsets containing x and y. If st(X,x, y) = 1, then Theo-
rem 12 states that Split(X,x, y) is legal. Consequently, to
sample a split operation we first select a maximal itemset
weighted by sd(M,X) /sd(M). Once X is selected we select
uniformly one legal pair (x, y).

To sample legal merges, recall that Merge(S, x, y) in-
volves selecting two maximal itemsets X and Y such that
S = X ∩ Y , x ∈ X − S, and y ∈ Y − S. Instead of selecting
these itemsets, we will directly sample an itemset S and then
select two items x and y. This sampling will work only if
two legal merges Merge(S1, x1, y1) and Merge(S2, x2, y2)
result in two different outcomes whenever S1 6= S2.

Theorem 19. Let S1 and S2 be two different itemsets
and let x1, y1 /∈ S1, and x2, y2 /∈ S2 be items. Assume
that Merge(Si, xi, yi) is a legal merge for i = 1, 2. Define
Zi = Si ∪ {xi, yi} for i = 1, 2. Then Z1 6= Z2.

The construction of a reduced family states that, if V,W ∈
rf (F ;S), V 6= W , then V ∩W = ∅. It follows from Theo-
rem 15 that

md(M,S) =
X

V,W∈rf (F;S)
V 6=W

|V ||W |.

To sample a merge we first sample an itemset S weighted
by md(M,S) /md(M). Once S is selected, we sample two
different itemsets V,W ∈ rf (F ;S) (weighted by |V | and
|W |). Finally, we sample x ∈ V and y ∈W .

Sampling S for a merge operation is feasible only if the
number of reduced families for which the merge degree is
larger than zero is small.

Theorem 20. Let K be the number of items. There are
at most K maximal itemsets. There are at most K−1 item-
sets for which the degree md(M, ·) > 0.

Pseudo-code for a sampling step is given in Algorithm 3.

Algorithm 3: MCMC step for sampling decomposable
models.

1 u← random integer between 1 and d(M);
2 if u ≤ sd(M) then
3 Sample X from max(F) weighted by sd(M,X);
4 Sample x, y ∈ X such that X is the only maximal

itemset containing both x and y;
5 M ′ ← Split(X,x, y;M);

6 g ← gain(X,x, y)− log |D|2|X|−3;

7 else
8 Sample S weighted by md(M,S);
9 Sample V ∈ rf (F ;S) weighted by |V |;

10 Sample W ∈ rf (F ;S), V 6= W , weighted by |W |;
11 Sample x ∈ V and y ∈W ;
12 M ′ ←Merge(S, x, y;M);

13 g ← −gain(S ∪ {x, y} , x, y) + log |D|2|S|−1;

14 z ← random real number from [0, 1];

15 if z ≤ exp(g) d(M)
d(M′) then return M ′;

16 else return M ;

4.3 Speeding Up the Sampling
We have demonstrated what structures we need to com-

pute so that we can sample legal operations. After a sample,
we can reconstruct these structures from scratch. In this sec-
tion we show how to optimize the sampling by constructing
the structures incrementally using Algorithms 4–7.

First of all, we store only maximal itemsets of F . Theo-
rem 20 states that there can be only K such sets, hence split
and merge operations can be done efficiently.

During a split or a merge, we need to update what split
operations are legal after the split. We do this by updating
an occurrence table st(X). An update takes O(|X|2) time.
The next theorem shows which maximal itemsets we need
to update for legal split operations after a merge.



Theorem 21. Let F be a downward closed family of item-
sets and let G be the family after performing Merge(S, x, y).
Let Y be a maximal itemset in max(F)∩max(G). Then legal
split operations using Y remain unchanged during the merge
unless Y is the unique itemset among maximal itemsets in
F containing either S ∪ {x} or S ∪ {y}.

The following theorem tells us how reduced families should
be updated after a merge operation. To ease the notation,
let us denote by link(F , S, x) the unique itemset (if such
exists) in rf (F ;S) containing x.

Theorem 22. Let F be a downward closed family of item-
sets and let G be the family after performing Merge(S, x, y).
Then the reduced families are updated as follows:

1. Itemsets link(F , S, x) and link(F , S, y) in rf (F ;S) are
merged into one itemset in rf (G;S).

2. Itemset {x} is added into rf (G;S ∪ {y}). Itemset {y}
is added into rf (G;S ∪ {x}).

3. Let T ( S and let z ∈ S−T . The itemset containing z
in rf (F ;T ∪ {y}) is augmented with item x. Similarly,
itemset containing z in rf (F ;T ∪ {x}) is augmented
with item y.

4. Otherwise, rf (F ;T ) = rf (G;T ) or md(F ;T ) = 0 and
md(G;T ) = 0.

Theorems 21 and 22 only covered the updates during
merges. Since Split(S ∪ {x, y} , x, y) and Merge(S, x, y)
are opposite operations we can derive the needed updates
for splits from the preceding theorems.

Corollary 23 (of Theorem 21). Let F be a down-
ward closed family of itemsets and let G be the family af-
ter performing Split(X,x, y). Let Y be a maximal item-
set in max(F) ∩ max(G). Then legal split operations us-
ing Y remain unchanged during the merge unless Y is the
unique itemset among maximal itemsets in G containing ei-
ther X − {x} or X − {y}.

Corollary 24 (of Theorem 22). Let F be a down-
ward closed family of itemsets and let G be the family after
performing Split(X,x, y). Let S = X − {x, y}. Then the
reduced families are updated as follows:

1. Itemset containing {x, y} in rf (F ;S) is split into two
parts, link(G, S, x) and link(G, S, y).

2. Itemset {x} is removed from rf (G;S ∪ {y}). Itemset
{y} is removed from rf (G;S ∪ {x}).

3. Let T ( S and let z ∈ S − T . Item x is removed from
the itemset containing z in rf (F ;T ∪ {y}). Similarly,
item y is removed from the itemset containing z in
rf (F ;T ∪ {x}).

4. Otherwise, rf (F ;T ) = rf (G;T ) or md(F ;T ) = 0 and
md(G;T ) = 0.

We keep in memory only those families that have posi-
tive merge degree. Theorem 20 tells us that there are only
K − 1 such families. By studying the code in the update
algorithm we see that, except in two cases, the update of
a family is either a insertion/deletion of an element into an
itemset or a merge of two itemsets. The first complex case
is given on Line 2 in MergeSide which corresponds to Case

2 in Theorem 22. The problem is that this family may have
contained only itemset before the merge, hence we did not
store it. Consequently, we need to recreate the missing item-
set, and this is done in O(

P
X∈F X) time. The second case

occurs on Line 2 in SplitSide. This corresponds to the case
where we need to break the itemset W ∈ rf (S) containing
x and y apart during a split (Case 1 in Corollary 24). This
is done by constructing the new sets from scratch. The con-
struction needs O(|W |K (|W |+M)) time, where M is the
size of largest itemset in F .

Algorithm 4: SplitUpdate(X,x, y). Routine for up-
dating the structures during Split(X,x, y).

1 Update F ;
2 Remove link(S, x) from rf (S);
3 S ← X − {x, y};
4 SplitSide(X,x, y, S); SplitSide(X, y, x, S);

Algorithm 5: Subroutine SplitSide(X, a, b, S) used by
SplitUpdate.

1 Z ← S ∪ {a};
2 while changes do
3 Z ← Z ∪ {X ∈ max(F) ;S ( Z ∩X};
4 Add Z into rf (S);
5 if rf (S ∪ {a}) exists then
6 Remove {b} from rf (S ∪ {a});
7 for T ( S, rf (T ∪ {a}) exists do
8 z ← (any) item in S − T ;
9 Remove b from link(S, z);

10 if there is unique Z ∈ max(F) s.t. S ∪ {a} ( Z then
11 Update st(Z);

Algorithm 6: MergeUpdate(S, x, y). Routine for up-
dating the structures during Merge(S, x, y).

1 Merge link(S, x) and link(S, y) in rf (S);
2 A← itemset in max(F) such that S ∪ {x} ⊆ A;
3 B ← itemset in max(F) such that S ∪ {y} ⊆ B;
4 Build st(S ∪ {x, y}) from st(A) and st(B);
5 MergeSide(S, x, y); MergeSide(S, y, x);
6 Update F ;

Algorithm 7: Subroutine MergeSide(S, a, b) used by
MergeUpdate.

1 U ← S ∪ {a};
2 if U /∈ max(F) and rf (U) does not exists then

3 rf (U)←
nS

U⊆X∈max(F) X
o

;

4 Add b into rf (U);
5 for T ( S, rf (T ∪ {a}) exists do
6 z ← (any) item in S − T ;
7 Augment link(S, z) with b;

8 if there is unique Z ∈ max(F) s.t. U ( Z then
9 Update st(Z);



5. RELATED WORK
Many quality measures have been suggested for itemsets.

A major part of these measures are based on how much the
itemset deviates from some null hypothesis. For example,
itemset measures that use the independence model as back-
ground knowledge have been suggested in [1, 3]. More flexi-
ble models have been proposed, such as, comparing itemsets
against graphical models [11] and local Maximum Entropy
models [12, 18]. In addition, mining itemsets with low en-
tropy has been suggested in [9].

Our main theoretical advantage over these approaches is
that we look at the itemsets as a whole collection. For ex-
ample, consider that we discover that item a and b deviate
greatly from the null hypothesis. Then any itemset contain-
ing both a and b will also be deemed interesting. The reason
for this is that these methods are not adopting to the dis-
covered fact that a and b are correlated, but instead they
continue to use the same null hypothesis. We, on the other
hand, avoid this problem by considering models: if itemset
ab is found interesting that information is added into the
statistical model. If this new model then explains bigger
itemsets containing a and b, then we have no reason to add
these itemsets, into the model, and hence such itemsets will
not be considered interesting.

The idea of mining a pattern set as a whole in order to
reduce the number of patterns is not new. For example,
pattern reduction techniques based on minimum description
length principle has been suggested [16, 21, 10]. Discovering
decomposable models have been studied in [20]. In addi-
tion, a framework that incrementally adopts to the patterns
approved by the user has been suggested in [8]. Our main
advantage is that these methods require already discovered
itemset collection as an input, which can be substantially
large for low thresholds. We, on the other hand, skip this
step and define the significance for itemsets such that we
can mine the patterns directly.

6. EXPERIMENTS
In this section we present our empirical evaluation of the

measure. We first describe the datasets and the setup for the
experiments, then present the results with synthetic datasets
and finally the results with real-world datasets.

6.1 Setup for the Experiments
We used 2×3 synthetic datasets and 3 real-world datasets.
The first three synthetic datasets, called Ind, contained

15 independent items and 100, 103, and 104 transactions,
respectively. We set the frequency for the individual items
to be 0.1. The next three synthetic datasets, called Path,
also contained 15 items. In these datasets, an item ai were
generated from the previous one with P (ai = 1 | ai−1 =
1) = P (ai = 0 | ai−1 = 0) = 0.75. The probability of the
first item was set to 0.5. We set the number of transactions
for these datasets to 100, 103, and 104, respectively.

Our first real-world dataset Paleo2 contains information
of species fossils found in specific paleontological sites in
Europe [7]. The dataset Courses contains the enrollment
records of students taking courses at the Department of
Computer Science of the University of Helsinki. Finally,
our last dataset is Dna is DNA copy number amplification
data collection of human neoplasms [13]. We used 100 first

2NOW public release 030717 available from [7].

items from this data and removed empty transactions. The
basic characteristics of the datasets are given in Table 1.

For each data we sampled the models from the poste-
rior distribution using techniques described in Section 3.4.
We used singleton model as a starting point and did 5000
restarts. The number of required MCMC steps is hard to
predictm since the structure of the state space of decompos-
able models is complex. Further it also depends on the ac-
tual data. Hence, we settle for heuristic: for each restart we
perform 100K logK MCMC steps, where K is the number of
items. Doing so we obtained N = 5000 random models for
each dataset. The execution times for sampling are given
in Table 1. Let {F1, . . . ,FN} be the discovered models.
We estimated the itemset score sc(X) ≈ |{Fi | X ∈ Fi}|/N
and mined interesting itemsets using a simple depth-first
approach.

Name |D| K # of steps time

Ind 100–104 15 4 063 4m–2h
Path 100–104 15 4 063 7m–3.5h
Dna 1160 100 46 052 6h
Paleo 501 139 68 590 5h
Courses 3506 90 40 499 8.5h

Table 1: Basic characteristics of the datasets. The
fourth column contains the number of sample steps
and the last column is the execution time.

6.2 Synthetic datasets
Our main purpose for the experiments with synthetic data-

sets is to demonstrate how the score behaves as a function
of number of data points. To this end, we plotted the num-
ber of significant itemsets, that is itemsets whose score was
higher than the threshold σ, as a function of the threshold
σ. The results are shown in Figures 2(a) and 2(b).

Ideally, for Ind, the dataset with independent variables
we should have only 15 significant itemsets, that is, the sin-
gletons, for any σ > 0. Similarly, for Path we should have
15 + 14 = 29 itemsets, the singletons and the pairs of form
aiai+1. We can see from Figures 2(a) and 2(b) that as we
increase the number of transactions in data, the number
of significant itemsets approaches these ideal cases, as pre-
dicted by Theorem 7. The convergence to the ideal case
is faster in Path than in Ind. The reason for this can be
explained by the curse of dimensionality. In Ind we have
15 × 14/2 = 105 combinations of pairs of items. There is a
high probability that some of these item pairs appear to be
correlated. On the other hand, for Path, let us assume that
we have the correct model. That is, the singletons and the
14 pairs aiai+1. The only valid itemsets of size 3 that we can
add to this model are of the form aiai+1ai+2. There are only
13 of such sets, hence the probability of finding such itemset
important is much lower. Interestingly, in Path we actually
benefit from the fact that we are using decomposable models
instead of general exponential models.

6.3 Use cases with real-world datasets
Our first experiment with real-world data is to study the

number of significant itemsets as a function of the threshold
σ. Figure 2(c) shows the number of significant itemsets for
all three datasets. We see that the number of significant
itemsets increases faster than for the synthetic datasets as
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Figure 2: Number of significant itemsets as a function of the threshold. The smallest threshold used for Ind
and Path is 0.01. The smallest threshold used for real datasets is 0.05.

the threshold decreases. The main reason for this difference,
is that with real-world datasets we have more items and less
transactions. This is seen especially in the Paleo dataset for
which the number of significant itemsets increases steeply
between the interval 0.4–1.0 when compared to Dna and
Courses.

Our next experiment is to compare the score against base-
lines, namely, the frequency fr(X) and entropyH(X). These
comparisons are given in Figures 3(a) and 3(b). In addition,
we computed the correlation coefficients (given in Table 2).
From results, we see that sc(X) has a positive correlation
with frequency and a negative correlation with entropy. The
correlation with entropy is expected, since low-entropy im-
plies that the empirical distribution of an itemset is different
than the uniform distribution. Hence, using the frequency of
such an itemset should improve the model and consequently
the itemset is considered interesting.

Data fr(X) H(X) index diff.

Dna 0.16 -0.27 -0.28
Paleo 0.45 -0.16 -0.17
Courses 0.18 -0.35 -0.02

Table 2: Correlations of sc(X) and baselines.

Both datasets Paleo and Dna have a natural order be-
tween the items, for example, for Paleo dataset it is the era
when particular species was extant. Our next experiment is
to test whether this order is represented in the discovered
patterns. In our experiments, the items in these datasets
were ordered using this natural order. Let X = aiaj be an
itemset of size 2. In Figure 3(c), we plotted j − i as a func-
tion of sc(X). We used only itemsets of size 2, since larger
itemsets have inherently smaller scores and larger difference
between the indices. In addition, we compute the correla-
tion coefficients (given in Table 2). From the results we see
that for Paleo and Dna the more significant itemsets tend
to have a smaller difference between their indices. On the
other hand, we do not discover any significant correlation in
Courses.

Finally, we report some of the discovered patterns from
Courses. The 4 most significant itemsets of size 2 are (Com-
puter Architectures, Performance Analysis) with a score of
0.95, (Design & Analysis of Algorithms, Principles of Func-
tional Programming) scoring 0.94, (Database Systems II, In-

formation Storage) scoring 0.94, (Three concepts: probabil-
ity, Machine Learning) scoring 0.92.

7. CONCLUSIONS
In this paper we introduced a novel and general approach

for ranking itemsets. The idea behind the approach is to
connect statistical models and collections of itemsets. This
connection enables us to define the score of an itemset as the
probability of itemset occurring in a random model. Doing
so, we transformed the problem of mining patterns into a
more classical problem of modeling.

As a concrete example of the framework, we used exponen-
tial models. These models have many important theoretical
and practical properties. The connection with itemsets is
natural and the Occam’s razor inherent to these models can
be used against the pattern explosion problem. Our experi-
ments support the theoretical results and demonstrate that
the measure works in practice.
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APPENDIX
A. PROOFS FOR SECTION 3

Proof of Theorem 6. We will prove the theorem us-
ing the well-known connection between maximum entropy
principle and exponential models. Let qD be the empirical
distribution of the data. Let P be the collection of distribu-
tions,

P = {p | p(X = 1) = fr(X) = qD(X = 1), X ∈ F} ,

that is, a distribution in P has the same itemset frequencies
for F as the data. Assume for the time being that all entries
in qD are positive. Then, a well-known theorem [6] states
that the unique distribution, say p∗, maximizing the entropy
among P belongs to the exponential model M such that
fam(M) = F . Let the corresponding parameters for the
model be r∗.

We need to show that p∗ is actually a maximum likelihood
distribution. To see this, let q ∈ M be another distribution
from the model and let r be its parameters. A straightfor-
ward calculus reveals that

log
p∗(D)

q(D)
=
X
t∈D

log
p∗(t)

q(t)
= |D|

X
t∈Ω

qD(t) log
p∗(t)

q(t)

= |D|
X
t∈Ω

X
X∈F

qD(X = 1)(r∗X − rX)

= |D|
X
t∈Ω

X
X∈F

p∗(X = 1)(r∗X − rX)

= |D|
X
t∈Ω

p∗(t) log
p∗(t)

q(t)
= |D|KL(p∗‖q) ≥ 0,

where KL(p‖q) is the Kullback-Leibler divergence between
p∗ and q. The inequality shows that r∗ has the highest like-
lihood. If qD has zero probabilities, then we can consider a
sequence εn → 0 as n→∞. Define qn = (1−εn)qD +εn2−K .
Let p∗n be the maximal entropy distribution computed from
qn. Let p∗ be the maximal entropy distribution computed
from qn and let rn = (1 − εn)p∗ + εn2−K . Since rn has
the same frequencies than qn for each X ∈ F , it follows
that H(p∗n) ≥ H(rn). Since rn converges to p∗, we have
that lim inf H(p∗n) ≥ H(p∗). Any converging subsequence of
p∗n will converge to a distribution in P, and hence having
the entropy H(p∗). Since maximal entropy distribution is
unique, the sequence p∗n converges to the unique value, p∗.
Following the same calculus as above we can show that p∗

is the maximal likelihood distributionX
t∈Ω

qD(t) log
p∗(t)

q(t)
= lim

n→∞

X
t∈Ω

qn(t) log
p∗n(t)

q(t)

= lim
n→∞

X
t∈Ω

X
X∈F

qn(X = 1)(r∗X − rX)

= lim
n→∞

X
t∈Ω

X
X∈F

p∗n(X = 1)(r∗X − rX)

= lim
n→∞

X
t∈Ω

p∗n(t) log
p∗n(t)

q(t)

=
X
t∈Ω

p∗(t) log
p∗(t)

q(t)
= KL(p∗‖q) ≥ 0.

Finally, as the number of transactions goes into infinity r∗

converges to the true parameters of the model and p∗ con-
verges into true underlying distribution p.
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To prove Theorem 7 we will need the following lemma
whose prove can be found for example in [22].

Lemma 25. Assume that D with N data points comes
from a model M with parameters r. Let rN be the maxi-
mal likelihood estimate. Then

logP (D |M, rN )− logP (D |M, r)

converges uniformly to χ2 distribution with d ≤ |F |−1 num-
ber degrees of freedom.

Proof of Theorem 7. Let M ′ 6= M be a model and
F ′ = fam(M ′). We need to show that

P (M ′ | D)

P (M | D)
→ 0

as the number of data points goes to infinity.
We will use the BIC estimate given in Eq. 3 to prove the

theorem. Let N = |D|. Let us define pN to be the maximal
likelihood distribution from M and qN to be the maximal
likelihood distribution in M ′. Let us write

AN = log qN (D)− log pN (D)

and

BN = logN(|F| −
˛̨
F ′
˛̨
)/2.

Then asymptotically

logP (M ′ | D)− logP (M | D) = AN +BN .

Let A be the limit of AN and B be the limit of BN .
Assume that p /∈M ′. Let q ∈M ′ be the maximum likeli-

hood distribution as N →∞. Since the exponential models
are closed sets q cannot be p. A straightforward calcula-
tion reveals that N−1AN → −KL(p‖q) < 0. In addition,
N−1BN → 0. Thus N−1(AN + BN ) approaches a negative
value, and so A+B = −∞.

Assume that p ∈ M ′, then the conditions imply that
|F ′| > |F| so that B = −∞. Lemma 25 implies that A
is a difference of two χ2 distributions. More importantly,
since convergence in Lemma 25 is uniform we can compute
the limit inside the probability so that the probability

P (AN +BN > σ)→ P (A+B > σ) = P (A >∞) = 0

for any σ ∈ R. Hence AN +BN approaches −∞. This proves
the theorem.

Proof of Theorem 9. Let p(A) = P (A | M, r) be the
distribution from a model M with parameters r. To ease
the notation, let us define G = max(F) and

S = {X ∩ Y | (X,Y ) ∈ E(T )} .

A classic result states that we can decompose p to factors,

p(A = t) =

Q
X∈G p(X = tX)Q
S∈S p(S = tS)

,

where tX is a projection of a binary vector t to the variables
of X. Let q(A) be the empirical distribution. Let p be the
maximum-likelihood distribution. The proof of Theorem 6
states that p(X = 1) = q(X = 1) for any itemset X ∈ F .
Using the exclusion-inclusion rules and the fact that F is
downward closed we can show that p(X = t) = qD(X = t)

for every X ∈ F and every possible binary vector t of length
|X|. Using the equalityX

t∈D

log p(X = tX) =|D|
X
tX

q(X = tX) log p(X = tX)

=|D|
X
tX

q(X = tX) log q(X = tX)

=− |D|H(X)

we see that the log-likelihood is equal to

log
Y
t∈D

p(A = t) =
X
t∈D

log

Q
X∈G p(X = tX)Q
S∈S p(S = tS)

=− |D|
X
X∈G

H(X) + |D|
X
S∈S

H(S) .

This proves the theorem.

B. PROOFS FOR SECTION 4
We will need the following technical lemma for several

subsequent proofs.

Lemma 26. Let X1, . . . , XN ∈ max(F) with N ≥ 3. De-
fine Si = Xi ∩ Xi+1 and SN = XN ∩ X1. If each Si has
a unique item (when compared to other Si), then F is not
decomposable.

Proof of Theorem 12. Let us assume that X is the
only itemset containing x and y simultaneously. Let T be a
junction tree. The adjacent itemsets of X either miss x or
y or both. Thus we can remove X and replace it X − x and
X − y, connected to each other, the adjacent itemsets of X
can be connected to either X−x or to X−y. If X−x is not
maximal, that is there is an itemset Z ⊃ X − x , then we
can remove X − x and connect all the edges going to X − x
to Z. We can repeat this for X − y as well. The resulting
tree is a junction tree.

To prove the other direction, assume that there is an an-
other itemset Y containing x and y, simultaneously. There
must be an item z ∈ X such that z /∈ Y . Then itemsets Y ,
X − x, and X − y satisfy the requirements of Lemma 26,
hence the new family is not decomposable.

Proof of Theorem 15. Let T be a junction tree. As-
sume that V and W exist. By construction of rf (F ;S) it
follows that there must be two itemsets X,Y ∈ F such that
S = X ∩ Y , x ∈ X, and y ∈ Y . If X and Y are adjacent in
T , we can add Z between X and Y (possibly removing X
and Y if they are no longer maximal), and T still remains a
junction tree.

If X and Y are not adjacent, then there is a path P con-
necting them. There must be itemsets Pi and Pi+1 along
that path such that Pi ∩ Pi+1 = S, otherwise X and Y
would have been merged during the construction of reduced
family, which is a contradiction. If we remove edge (Pi, Pi+1)
and add edge (X,Y ) we will obtain an alternative junction
tree for F . It is straightforward to see that this tree is truly
a junction tree. But in this tree X and Y are adjacent, so
we can add Z between them.

To prove the other direction, assume that adding Z is a
legal merge. By definition it immediately implies that there
are sets V,W ∈ rf (F ;S) such that x ∈ V and y ∈ W . We
need to show that V 6= W . LetH be the family resulted from
the merge. Let U be a junction tree for H. Let X ∈ max(F)



be an itemset such that S ∪ {x} ⊆ X and, similarly, let
Y ∈ max(F) such that S ∪ {y} ⊆ Y . We may assume that
X 6= S∪{x} and Y 6= S∪{y}, otherwise the proof is trivial.
Hence, X,Y ∈ max(H) Let P be a path in U from X to
Y . Let R be a path in U from Z to X and let Pe be the
first entry in path R that also occurs in P . We must have
Z∩X ⊆ Pe. The path from Z to Y must also contain Pe, and
so Z∩Y ⊆ Pe. This implies that Z = (Z∩X)∪(Z∩Y ) ⊆ Pe.
Since Z is a maximal set, we must have Z = Pe.

Itemset Z is the only maximal itemset in H that contains
x and y simultaneously. Otherwise, Theorem 12 states that
Split(Z, x, y) is illegal in H so Merge(S, x, y) is illegal in
F .

We can remove Z = Pe from U , attach Pe−1 and Pe+1

to each other, and connect the rest adjacent nodes either to
Pe−1 or to Pe+1 depending whether these nodes have x or y
as a member. The outcome, say R, is a junction tree for F .

If V = W , then there must be a sequence

X = (T1, . . . , TN ) = Y ∈ F

such that S ( Ti ∩ Ti+1. Now consider a path O in R
visiting each Ti in turn. Since R is a junction tree we must
have S ( Oi∩Oi+1. Since X = T1 and Y = TN path O must
use the edge (Pe−1, Pe+1). But we must have Pe−1∩Pe+1 =
S, otherwise U would not have been a junction tree. This
contradiction implies that V 6= W .

Proof of Theorem 17. We will prove the theorem by
showing that all models can be brought by legal splits to
the indepenence model. Since a split Split(X,x, y) and a
merge Merge(X − {x, y} , x, y), are the opposite operations
we can reach model M from M ′ by first reaching the inde-
pendence model with splits and then reaching M from the
independence model by merges.

Let T be a junction tree for F ′ = fam(M ′) and let X ∈
max(F ′) be a maximal itemset such that X is the leaf clique
in a junction tree T with |X| ≥ 2. If no such X exist, then
M ′ is in fact the independence model. Let Y be the maximal
itemset into which X is connected in T .

There must be an item x ∈ X such that x is not contained
in any other maximal itemset of F ′. To prove this, assume
otherwise. Then for each item z there is a maximal itemset
Z that contains z. The path fromX toX must go through Y
so the running intersection property implies that x ∈ Y . But
this implies that X ⊆ Y which contradicts the maximality of
X. Let y ∈ X such that x 6= y. Theorem 12 now states that
Split(X,x, y) is a legal operation. We can now iteratively
apply this step until we reach the independence model. This
proves the theorem.

Proof of Theorem 18. For notational convinience, let
us write

a(M) =
X

(X,Y )
∈E(T )

H(X ∩ Y ) and b(M) =
X

X∈max(F)

H(X) .

Theorem 9 and Eq. 3 implies that

logA = |D|(a(M)− b(M))− log |D|(|F| − 1)

2

and

logB = |D|
`
a(M ′)− b(M ′)

´
− log |D|(|F ′| − 1)

2
.

Let us write d = |D|(a(M ′) − b(M ′) − a(M) + b(M)). We
will first show that d = gain(X,x, y). Let us denote S =

X − {x, y}, U = X − x, and V = X − y. Consider the
possibility that U is not maximal in F ′, in such case there
must be a maximal itemset Q ∈ F such that U ⊂ Q and that
Q is adjacent to X with a separator U . Similarly, if V is not
maximal in F ′, then there is a maximal itemset P ∈ F such
that V ⊂ P and that P is adjacent to X with a separator
V . By studying the first part of the proof of Theorem 12 we
see that there are four possible cases depending whether U
and/or V is maximal set in F ′. The split operations are

X −→ SU V (Case 1)

VX P −→ SU P (Case 2)

UQ X −→ SQ V (Case 3)

U VQ PX −→ SQ P (Case 4)

In all cases, the difference d is equal to H(X) + H(S) −
H(V )−H(U) = gain(X,x, y). For example, in Case 2, the
term H(X) is in b(M) but not in b(M ′), similarly the term
H(U) is in b(M ′) but not in b(M), consequently b(M) −
b(M ′) = H(X)−H(U). Similarly, a(M)−a(M ′) = H(V )−
H(S). Thus d = gain(X,x, y) for Case 2, and similar ob-
servations show that d = gain(X,x, y) holds also for other
cases.

To complete the proof we need to show that |F| − |F ′| =
2|X|−2. During a split, itemsets containing x and y are re-
moved, but there are exactly 2|X|−2 such itemsets. We can
now combine these results

logB − logA = d− log |D|
2

(|F| −
˛̨
F ′
˛̨
)

= gain(X,x, y)− log |D|2|X|−3,

which proves the theorem.

Proof of Theorem 19. Let Xi and Yi be the maximal
itemsets such that Xi ∩Yi = Si, xi ∈ Xi and yi ∈ Yi. These
sets must exist since adding Zi is a legal merge.

Assume that Z1 = Z2. This implies that either all items
x1, y1, x2, and y2 are unique or two of them are the same.
Assume the latter case and assume that x1 = x2. Then
we must have y2 ∈ S1 − S2 and y1 ∈ S2 − S1. We have
x1 ∈ X1 ∩X2, y1 ∈ X2 ∩ Y1, and y2 ∈ Y1 ∩X1. Hence the
conditions in Lemma 26 hold and F is not decomposable.

Assume now that all four items are unique. This implies
that x1, y1 ∈ S2 − S1 and y2 ∈ S1 − S2. Again we have
x1 ∈ X1 ∩X2, y1 ∈ X2 ∩ Y1, and y2 ∈ Y1 ∩X1 so Lemma 26
implies that F is not decomposable.

Proof of Theorem 20. Let S be an itemset. We will
show that md(M,S) > 0 only if S is a separator, that is,
S = X ∩Y for two adjacent itemsets in a junction tree. The
theorem will follow from this, since a junction tree contains
at most K nodes and hence at most K − 1 edges.

To prove the result, assume that md(M,S) > 0. This
implies that there are two sets, say U, V ∈ rf (F , S). Let
x ∈ U and y ∈ V . This implies that there are (at least) two
sets X and Y such that S ∪ {x} ⊂ X and S ∪ {y} ⊂ Y .
Let P = (P1, . . . , PL) be a path from X to Y in the junc-
tion tree. The running intersection property implies that



S ⊆ Pi ∩ Pi+1 If there is no i such that S = Pi ∩ Pi+1, then
X and Y should have been joined together during the con-
struction of rf (F , S). In other words, there must be a set
in rf (F , S) containing x and y. Hence, there are adjacent
itemsets Pi and Pi+1 such that S = Pi ∩ Pi+1. This proves
the theorem.

Proof of Theorem 21. Adding X = S ∪ {x, y} into
F can only make splits illegal. Assume that Split(Y, a, b)
becomes illegal after adding X. Theorem 12 implies that
a, b ∈ X. We must have {a, b} 6⊆ S since otherwise the
split would not be legal in the original family. Assume that
a = x and let W ∈ max(F) is the maximal itemset contain-
ing {x} ∪ S (such itemset exists because of the definition of
merge). Note that, b 6= y, so b ∈ S and {a, b} ∈ W . If
there is another maximal itemset, say Z ∈ max(F), such
that {x, b} = {a, b} ⊂ Z, then the split Split(Y, x, b) is not
legal in the original family. This proves the theorem.

Proof of Theorem 22. Let Z = S ∪ {x, y}. This item-
set is the only maximal itemset in G that contains x and y
simultaneously. The definition of reduced family now im-
plies immediately Claims 2 and 3.

To prove Claim 1 let V,W ∈ rf (F ;S) such that x ∈ V and
y ∈W . These must be separate sets because of Theorem 19.
The set Z now connects these sets into one in rf (G;S).

To see Claim 4 let T be an itemset. If x, y ∈ T , then
rf (G;T ) has only one set and rf (ifamG;T ) has zero sets.
If x ∈ T and y /∈ T , then T − S 6= ∅, otherwise T is covered
by Claim 2 or 3. In such case, the construction of rf (G;T )
does not use Z, and hence remains unchanged. Assume
that x, y /∈ T . Let X,Y ∈ max(F) be the itemsets such that
S ∪ {x} ⊆ X and S ∪ {y} ⊆ Y . If T − S 6= ∅, then Z is not
used. Assume now that S ( T . In this case the items of
X −T and Y −T are already joined into one itemset, hence
rf (G;T ) remains unchanged.


	Introduction
	Significance of Itemsets by Statistical Models
	Exponential Models
	Definition of the models
	Computing the Model
	Justifications for Exponential Model
	Decomposable Models

	Sampling Models
	Moving from One Model to Another
	MCMC Sampling Algorithm
	Speeding Up the Sampling

	Related Work
	Experiments
	Setup for the Experiments
	Synthetic datasets
	Use cases with real-world datasets

	Conclusions
	Acknowledgments
	References
	Proofs for Section 3
	Proofs for Section 4

