
Finding Good Itemsets by Packing Data

Nikolaj Tatti

HIIT, Department of Information and Computer Science

Helsinki University of Technology

ntatti@cc.hut.fi

Jilles Vreeken

Department of Computer Science

Universiteit Utrecht

jillesv@cs.uu.nl

Abstract

The problem of selecting small groups of itemsets that

represent the data well has recently gained a lot of atten-

tion. We approach the problem by searching for the itemsets

that compress the data efficiently. As a compression tech-

nique we use decision trees combined with a refined ver-

sion of MDL. More formally, assuming that the items are

ordered, we create a decision tree for each item that may

only depend on the previous items. Our approach allows

us to find complex interactions between the attributes, not

just co-occurrences of 1s. Further, we present a link be-

tween the itemsets and the decision trees and use this link

to export the itemsets from the decision trees. In this paper

we present two algorithms. The first one is a simple greedy

approach that builds a family of itemsets directly from data.

The second one, given a collection of candidate itemsets, se-

lects a small subset of these itemsets. Our experiments show

that these approaches result in compact and high quality de-

scriptions of the data.

1 Introduction

One of the major topics in data mining research is the

discovery of interesting patterns in data. From the introduc-

tion of frequent itemset mining and association rules [2],

the pattern explosion was acknowledged: at high frequency

thresholds only common knowledge is revealed, while at

low thresholds prohibitively many patterns are returned.

Part of this problem can be solved by reducing these col-

lections either lossless or lossy, however even then the re-

sulting collections are often so large that they cannot be an-

alyzed by hand or even machine. Recently, it was therefore

argued [14] that while the efficiency of the search process

has received ample attention, there still exists a strong need

for pattern mining approaches that deliver compact, yet high

quality, collections of patterns (see Section 6 for a more

detailed discussion). Our goal is to identify the family of

itemsets that form the best description of the data. Recent

proposals to this end all consider just part of the data, by ei-

ther only considering co-occurrences [30] or being lossy in

nature [5, 7, 20]. In this paper, we present two methods that

do describe all interactions in the data. Although different

in approach, both methods return small families of itemsets,

which are selected to provide high-quality lossless descrip-

tions of the data in terms of local patterns. Importantly, our

parameterless methods regard the data symmetrically. That

is, we consider not just the 1s in the data, but also the 0s.

Therefore, we are able to find patterns that describe all inter-

actions between items in the data, not just co-occurrences.

As a measure of quality for the collection of itemsets

we employ the practical variant of Kolmogorov Complex-

ity [23], the Minimum Description Length (MDL) princi-

ple [13]. This principle implies that we should do induction

through compression. It states that the best model is the

model that provides the best compression of the data: it is

the model that captures best the regularities of the data, with

as little redundancy as possible.

The main idea of our approach is to use decision trees

to determine the shortest possible encoding of an attribute,

by using the values of already transmitted attributes. For

example, let us assume two binary attributes A and B. Now

say that for 90% of the time when the attribute A has a value

of 1, the attribute B has a value of 0. If this situation occurs

frequently, we recognize this dependency, and include the

item A in the tree deciding how to encode B.

Using such trees allows us to find complex interactions

between the items while at the same time MDL provides

us with a parameter-free framework for removing fake in-

teractions that are due to the noise in the data. The main

outcome of our methods is not the decision trees, but the

group of itemsets that form their paths: these are the impor-

tant patterns in the data since they capture the dependencies

between the attributes implied by the decision trees.

The two algorithms we introduce to this end are orthogo-

nal in approach. Our first method builds the encoding deci-

sion trees directly from the data; it greedily introduces splits

until no split can help to compress the data further. Just as

naturally as we can extract itemsets from these trees, we can

consider the trees that can be built from a collection of item-

sets. That link is exploited by our second method, which

tries to select the best itemsets from a larger collection.

Experimental evaluation shows that both methods return

small collections of itemsets that provide high quality data

descriptions. These sets allow for very short encoding of

the data, which inherently shows that the most important

patterns in the data are captured. As the number of item-

sets are small, we can easily expose the resulting itemsets

to further analysis, either by hand or by machine.

The rest of this paper is as follows. After the covering

preliminaries in Section 2, we discuss how to use decision

trees to optimally encode the data succinct in Section 3.

Next, in Section 4, we explain the connection between de-

cision trees and itemsets. Section 5 introduces our method

with which good itemsets can be selected by weighing these

through our decision tree encoding. Related work is dis-

cussed in Section 6, after which we present the experiments

on our methods in Section 7. We round up with discussion

and conclusions in Sections 8 and 9.

2 Preliminaries and Notation

In this section we introduce preliminaries and notations

used in subsequent sections.

A binary dataset D is a collection of |D| transactions,

binary vectors of length K . The ith element of a random

transaction is represented by an attribute ai, a Bernoulli ran-

dom variable. We denote the collection of all the attributes

by A = {a1, . . . , aK}. An itemset X = {x1, . . . , xL} ⊆ A
is a subset of attributes. We will often use the dense notation

X = x1 · · ·xL.

Given an itemset X and a binary vector v of length L,

we use the notation p(X = v) to express the probability of

p(x1 = v1, . . . , xL = vL). If v contains only 1s, then we

will use the notation p(X = 1), if v contains only 0s, then

we will use the notation p(X = 0).
Given a binary dataset D we define qD to be an empirical

distribution,

qD(A = v) = |{t ∈ D | t = v}|/|D|.

We define the frequency of an itemset X to be fr(X) =
qD(X = 1).

In the paper we use the common convention 0 log 0 = 0.

All logarithms in the paper are of base 2.

In the subsequent sections we will need some knowledge

of graphs. All the graphs in the paper are directed. Given

a graph G we denote by V (G) the set of vertices and by

E(G) the edges of G. A directed graph is said to be acyclic

(DAG) if there is no cycle in the graph. A directed graph is

said to be directed spanning tree if each node (except one

special node) has exactly one outgoing edge. The special

node has no outgoing edge and is called sink.

3 Packing Binary Data with Decision Trees

In this section we present our model for packing the data

and a greedy algorithm for searching good models.

3.1 The Definition of the Model

Our goal in this section is to define a model that is used to

transmit a binary dataset D from a transmitter to a receiver.

We do this by transmitting one transaction at the time, the

order of which does not matter. Within a single transaction

we transmit the items one at the time.

Assume that we are transmitting an attribute at. As the

attribute may have two values, we need to have two codes

to indicate its value. We define the table in which these two

codes are stored to be a coding table. Obviously, the codes

need to be optimal, that is, as short as possible. From infor-

mation theory [10], we have the optimal Shannon codes of

length− log(p(x)). Here, the optimal code lengths are thus

− log qD(at = 1) and − log qD(at = 0). We need to trans-

mit the attribute |D| times. The cost of these transmissions

is

−|D|
∑

v={0,1}

qD(at = v) log qD(at = v) .

This is the simplest case of encoding at. Note that we are

not interested in the actual codes, but only in their lengths:

they allow us to determine the complexity of a model.

A more complex and more interesting approach to en-

code at succinct is to have several coding tables from which

the transmitter chooses one for transmission. Choosing the

coding table is done via a decision tree that branches on the

values of other attributes in the same transaction. That is,

we have a decision tree used for encoding at in which each

leaf node is associated with a different coding table of at.

The leaf is selected by testing the values of other attributes

within the same transaction.

Example 1. Assume that we have three attributes, a, b, and

c and consider the trees given in Figure 1. In Figure 1(a) we

have the simplest tree, a simple coding table with no depen-

dencies at all. A more complex tree is given in Figure 1(b)

where the transmitter chooses from two coding table for a
based on the value of c. Similarly in, Figure 1(d) we have

2

p(a = 1) = 0.5

p(a = 0) = 0.5

(a) T1, Trivial tree encoding a

p(a = 1) = 0.6

p(a = 0) = 0.4

p(a = 1) = 0.8

p(a = 0) = 0.2

c

1 0

(b) T2, Alternative tree for a

p(b = 1) = 0.3

p(b = 0) = 0.7

p(b = 1) = 0.1

p(b = 0) = 0.9

a

1 0

(c) T3, Tree for b

p(c = 1) = 0.6

p(c = 0) = 0.4

p(c = 1) = 0.8

p(c = 0) = 0.2

p(c = 1) = 0.3

p(c = 0) = 0.7

a

1

b

0

1 0

(d) T4, Tree for c

Figure 1. Toy decision trees.

three different coding tables for c. The choice of the coding

table in this case is based on the values of a and b.

Let us introduce some notation. Let T be a tree encoding

at. We use the notation t(T) = at. We set src(T) to be the

set of all items used in T for choosing the coding table.

Example 2. For the tree T3 in Figure 1(c) we have t(T3) =
b and src(T3) = {a} and for T4 in Figure 1(d) we have

t(T4) and src(T4) = {a, b}.

To define the cost of transmitting at we first define

lvs(T) to be the set of all leaves in T . Let L ∈ lvs(T)
be a leaf and qD(L) be the probability of L being chosen.

Further, qD(at = v | L) is the probability of at = v given

that L is chosen. We now know that the optimal cost, de-

noted by cD(T), is

−|D|
∑

L∈lvs(T)

∑

v={0,1}

qD(at = v, L) log qD(at = v | L) .

Example 3. The number of bits needed by T1 in Figure 1(a)

to transmit a in a random transaction is

−0.5 log 0.5− 0.5 log 0.5 = 1.

Similarly, if we assume that qD(a = 1) = qD(a = 0) =
0.5, the number of bits needed by T3 to transmit c in a ran-

dom transaction is

0.5 (−0.3 log 0.3− 0.7 log 0.7)+

0.5 (−0.1 log 0.1− 0.9 log 0.9) = 0.62.

In order for the receiver to decode the attribute at he

must know what coding table was used. Thus, he must be

able to use the same decision tree that the transmitter used

for encoding at. To ensure this, the transmitter must know

src(T) when decoding at. So, the attributes must have an

order in which they are sent and the decision trees may only

use the attributes that have already been transmitted.

The aforementioned requirement is easily characterized

by the following construction. Let G be a directed graph

with K nodes, each node corresponding to an attribute. The

graph G contains all the edges of form (at, as) where as ∈
src(T), where T is the tree encoding at. We call G the

dependency graph. It is easy to see that there exists an order

of the attributes if and only if G is an acyclic graph (DAG).

If G constructed from a set of trees T = {T1, . . . , TK} is

indeed DAG we call the set T a decision tree model.

Example 4. Consider a graph given in Figure 2(a) con-

structed from the trees T2, T3, and T4 (Figure 1). We cannot

use this combination of trees for encoding since there is a

cycle in the graph. On the other hand if we use trees T1,

T3, and T4, then the resulting graph (given in Figure 2(b))

is acyclic and thus these trees can be used for the transmis-

sion.

c

a

b

(a) Dependency graph with cycles

c

a

b

(b) Dependency acyclic graph

Figure 2. Dependency graphs constructed
from the trees given in Figure 1.

3.2 Encoding the Data

In order for the receiver to be able to decode the at-

tributes, he must know both the coding tables and the trees.

Hence, we need to transmit both of these. First, we cover

how the coding tables, the leafs of the decision trees, are

transmitted.

To transmit the coding tables we use the concept of Re-

fined MDL [13]. Refined MDL is an improved version of

the more traditional two-part MDL (sometimes referred to

as the crude MDL). The basic idea of the refined variant is

that instead of transmitting the coding tables, the transmit-

ter and the receiver use so called universal codes. Universal

codes are the cornerstone of Refined MDL. As these are

codes can be derived without any further shared informa-

tion, this allows for a good weighing of the actual complex-

ity of the data and model, with virtually no overhead. While

the practicality of applying such codes depends on the type

of the model, our decision trees are particularly well-suited.

3

These universal codes provide a cost called the complex-

ity of the model. This cost can be calculated as follows: let

L be a leaf in the decision tree (i.e. coding table), and M
be the number of transactions for which L is used. Then the

complexity of this leaf, denoted by cMDL(L), is

cMDL(L) = log
M
∑

k=0

(

M

k

) (

k

M

)k (

M − k

M

)M−k

.

In general, there is no known closed formula for the com-

plexity of the model. Hence estimates are usually em-

ployed [29]. However, for our tree models we can apply

an existing linear-time algorithm that solves the complexity

for multinomial models [21]. We should also point out that

the Refined MDL is asymptotically equivalent to Bayes In-

formation Criteria (BIC) if the number of transactions goes

to infinity and the number of free parameters stays fixed.

However, for moderate numbers of transactions there may

be significant differences [13].

Now that the coding tables can be transmitted, we need

to know how to transmit the actual tree T . To encode the

tree we simply transmit the nodes of the tree in a sequence.

We use one bit to indicate whether the node is a leaf, or an

intermediate node N ∈ intr(T). For an intermediate node

we additionally use log K bits, where K is the number of

attributes in D, to indicate the item that is used for the split.

The combined cost of a tree T , denoted by c(T), is

c(T) =
∑

N∈intr(T)

(

1 + log K
)

+ cD(T) +
∑

L∈lvs(T)

(

1 + cMDL(L)
)

,

that is, the cost c(T) is the number of bits needed to transmit

the tree and the attribute at in each transaction of D.

Example 5. Assume that we have a dataset with 100 trans-

actions and 3 items. Assume also that qD(a = 0) =
qD(a = 1) = 0.5. We know that the complexity of the leaves

in this case is cMDL(L) = 3.25. The cost of the tree T3 (Fig-

ure 1(c) is

c(T3) =1 + log 3

+ 1 + 3.25 + 50 (−0.3 log 0.3− 0.7 log 0.7)

+ 1 + 3.25 + 50 (−0.1 log 0.1− 0.9 log 0.9)

=69.8.

Given a decision tree model T = {T1, . . . , TK} we de-

fine the cost c(T) =
∑

i c(Ti). The cost c(T) is the number

of bits needed to transmit the trees, one for each attribute,

and the complete dataset D.

We should point out that for data with many items, the

term log K grows and hence the threshold increases for se-

lecting an attribute into any decision tree. This is an inter-

esting behavior, as due to the finite number of transactions,

for datasets with many items there is an increased proba-

bility that two items will correlate, even though they are

independent according to the generative distribution.

3.3 Greedy Algorithm

Our goal is to find the decision tree model with the lowest

complexity cost. However, since many problems related to

the decision trees are NP-complete [26] we will resort to a

greedy heuristic to approximate the decision tree model T
with the lowest c(T). It is based on the ID3 algorithm.

To fully introduce the algorithm we need some notation:

By TRIVIALTREE(at) we mean the simplest tree packing at

without any other attributes (see Figure 1(a)). Given a tree

T , a leaf L ∈ lvs(T), and an item c not occurring in the path

from L to the root of T , we define SPLITTREE(T, L, c) to

be a new tree where L is replaced by a non-leaf node testing

the value of c and having two leaves as the branches.

The algorithm GREEDYPACK starts with a tree model

consisting only of trivial trees. The algorithm finds the tree

which saves the most bits by splitting. To ensure that the

decision tree model is valid, GREEDYPACK builds a de-

pendency graph G describing the dependencies of the trees

and makes sure that G is acyclic. The algorithm terminates

when no further split can be made that saves any bits.

Algorithm 1 GREEDYPACK algorithm constructs a deci-

sion tree model T = {T1, . . . , TK} from a binary data D.

1: V ← {v1, . . . , vK}, E ← ∅.
2: G← (V, E).
3: Ti ← TRIVIALTREE(ai) , for i = 1, . . . , K .

4: while there are changes do

5: for i = 1, . . . , K do

6: Oi ← Ti.

7: for L ∈ lvs(Ti), j = 1, . . . , K do

8: if E∪(vi, vj) is acyclic and aj /∈ path(L) then

9: U ← SPLITTREE(Ti, L, aj).
10: if c(U) < c(Oi) then

11: Oi ← U , si ← j.

12: end if

13: end if

14: end for

15: end for

16: k ← arg mini {c(Oi)− c(Ti)}.
17: if c(Ok) < c(Tk) then

18: Tk ← Ok.

19: E ← E ∪ (vk, vsk
).

20: end if

21: end while

22: return {T1, . . . , TK}.

4

4 Itemsets and Decision Trees

So far we have discussed how to transmit binary data by

using decision trees. In this section we present how to select

the itemsets representing the dependencies implied by the

decision trees. We will use this link in Section 5. A similar

link between itemsets and decision trees is explored in [27]

although our setup and goals are different.

Given a leaf L, the dependency of the item at is captured

in the coding table of L. Hence we are interested in finding

itemsets that carry the same information. That is, itemsets

from which we can compute the coding table. To derive the

codes for the leaf L it is sufficient to compute the probability

qD(at = 1 | L) = qD(at = 1, L) /qD(L) . (1)

Our goal is to express the probabilities on the right side

of the equation using itemsets. In order to do that let P
be the path from L to its root. Let pos(L) be the items

along the path P which are tested positive. Similarly, let

neg(L) be the attributes which are tested negative. Using

the inclusion-exclusion principle we see that

qD(L) = qD(pos(L) = 1, neg(L) = 0)

=
∑

V ⊆neg(L)

(−1)|V |fr(pos(L) ∪ V) . (2)

We compute qD(at = 1, L) in a similar fashion. Let us de-

fine sets(L) for a given leaf L to be

sets(L) = {V ∪ pos(L) | V ⊆ neg(L)}

∪ {V ∪ pos(L) ∪ {at} | V ⊆ neg(L)} .

Combining Eqs. 1–2 we see that the collection sets(L) sat-

isfies our goal.

Proposition 6. The coding table associated with the leaf L
can be computed from the frequencies of sets(L).

Example 7. Let L1, L2, and L3 be the leaves (from left

to right) of T4 in Figure 1(d). Then the corresponding

families of itemsets are sets(L1) = {a, ac}, sets(L2) =
{b, ab, bc, abc}, and sets(L3) = {∅, a, b, ab, c, ac, bc, abc}.

We can easily see that the family sets(L) is essentially

the smallest family of itemsets from which the coding table

can be derived uniquely.

Proposition 8. Let G 6= sets(L) be a family of itemsets.

Then there are two data sets, say D1 and D2, for which

qD1
(at = 1 | L) 6= qD2

(at = 1 | L) but fr(G; D1) =
fr(G; D2).

Given a tree T we define sets(T) to be sets(T) =
⋃

L∈lvs(T) sets(L). We also define sets(T) =
⋃

i sets(Ti)

where T = {T1, . . . , TK} is a decision tree model.

5 Choosing Good Itemsets

The connection between itemsets and decision trees

made in the previous section allows us to consider an or-

thogonal approach to identify good itemsets. Informally,

our goal is to construct decision trees from a family of item-

sets F , selecting the subset from F that provides the best

compression of the data. More formally, our new approach

is as follows: given a downward closed family of itemsets

F , we build a decision tree model T = {T1, . . . , TK} pro-

viding a good compression of the data, with sets(T) ⊆ F .

Before we can describe our main algorithm, we

need to introduce some further notation. Firstly, given

two trees Tp and Tn not using attribute c, we define

JOINTREE(c, Tp, Tn) to be the join tree with c as the root

node, Tp as the positive branch of c, and Tn as the negative

branch of c. Secondly, to define our search algorithm we

need to find the best tree

bt(at; S,F) = argmin
T
{c(T) | t(T) = at,

src(T) ⊆ S, sets(T) ⊆ F} ,

that is, bt(at; S,F), returns the best tree for at for which

the related sets are in F and only splits on attributes in S.

To compute the optimal tree bt(at; S,F), we use the ex-

haustive method (presented originally in [27]) given in Al-

gorithm 2. The algorithm is straightforward: it tests each

valid item as the root and recurses itself on both branches.

Algorithm 2 GENERATE algorithm for calculating

bt(at; S,F), that is, the best tree T for at using only S as

source and having sets(T) ⊆ F .

1: B ← S ∩ (
⋃

F).
2: C ← TRIVIALTREE(at).

3: for b ∈ B do

4: G ← {X − b | b ∈ X ∈ F}.
5: (Dp, Dn)← SPLIT(D, b).
6: Tp ← GENERATE(at,G, S, Dp).
7: Tn ← GENERATE(at,G, S, Dn).
8: C ← C ∪ JOINTREE(b, Tp, Tn).

9: end for

10: return argminT {c(T) | T ∈ C}.

We can now describe the actual algorithm for construct-

ing decision tree models with a low cost. Our method au-

tomatically discovers the order in which the attributes can

be transmitted most succinct. For this, it needs to find sets

of attributes Si for each attribute ai such that these should

be encoded before ai. The collection S = {S1, . . . , SK}
should define an acyclic graph and the actual trees are

bt(ai; Si,F). We use c(S) as a shorthand for the total com-

plexity
∑

i c(bt(ai; Si,F)) of the best model built from S.

5

We construct the set S iteratively. At the beginning of

the algorithm we have Si = ∅ and we increase the sets Si

one attribute at a time. We allow ourselves to mark the at-

tributes. The idea is that once the attribute ai is marked,

then we are not allowed to augment Si any longer. At the

beginning none of the nodes are marked.

To describe a single step in the algorithm we consider

a graph H = (v0, . . . , vK), where v1, . . . , vK represent

the attributes and v0 is a special auxiliary node. We start

by adding edges (vi, v0) having the weight c(bt(ai; Si,F)),

thus the cost of the best tree possible from F using only

the attributes in Si. Then, for each unmarked node vi we

find out what other extra attribute will help most to encode

it succinct. To do this, we add the edge (vi, vj) for each vj

with the weight c(bt(ai; Si ∪ {aj} ,F)). Now, let U be the

minimum directed spanning tree of H having v0 as the sink.

Consider an unmarked node vi such that (vi, v0) ∈ E(U).
That node is now the best choice to be fixed, as it helps to

encode the data best. We therefore mark attribute ai and add

ai to each Sj for each ancestor vj of vi in U . This process

is repeated until all attributes are marked. The details of the

algorithm are given in Algorithm 3.

Algorithm 3 The algorithm SETPACK constructs a deci-

sion tree model T given a family of itemsets F such that

sets(T) ⊆ F . Returns a DAG, a family S = (S1, . . . , SK)
of sets of attributes. The trees are Ti = bt(ai, Si,F).

1: S = (S1, . . . , SK)← (∅, . . . , ∅).
2: r = (r1, . . . , rK)← (false, . . . , false).
3: V ← {v0, . . . , vK}.
4: while there exists ri = false do

5: E ← ∅.
6: for i = 1, . . . , K do

7: E ← E ∪ (vi, v0).
8: w(vi, v0)← c(bt(ai; Si,F)).
9: if ri = false then

10: for j = 1, . . . , K do

11: T ← bt(ai; Si ∪ {aj} ,F).
12: if c(T) ≤ w(vi, v0) then

13: E ← E ∪ (vi, vj), w(vi, vj)← c(T).
14: end if

15: end for

16: end if

17: end for

18: U ← dmst(V, E) {Directed Min. Spanning Tree.}
19: for (vi, v0) ∈ E(U) and ri = false do

20: ri ← true.

21: for vj is a parent of vi in U do

22: Sj ← Sj + ai.

23: end for

24: end for

25: end while

26: return S.

The marking of the attributes guarantees that there can

be no cycles in S. In fact, the marking order also tells us a

valid order for transmitting the attributes. Further, as at least

one attribute is marked at each step, this guarantees that the

algorithm terminates in K steps.

Let S be the collection of sources. The following propo-

sition tells us that the augmentation performed by SETPACK

does not compromise the optimality of collections next to S.

Proposition 9. Assume the collection of sources S =
{S1, . . . , SK}. Let O = {O1, . . . , OK} be the collection

of sources such that Si ⊆ Oi and |Oi| ≤ |Si|+1. Let S′ be

the collection that Algorithm 3 produces from S in a single

step. Then there is a collection S∗ such that S′
i ⊆ S∗

i and

that c(S∗) ≤ c(O).

Proof. Let G be the graph constructed by Algorithm 3 for

the collection S. Construct the following graph W : For

each Oi such that Oi = Si add the edge (vi, v0). For each

Oi 6= Si add the edge (vi, vj), where {aj} = Oi − Si.

But W is a directed spanning tree of G. Let U be the di-

rected minimum spanning tree returned by the algorithm.

Let S∗
i = S′

i if (vi, v0) ∈ E(U) and S∗
i = S′

i ∪ {aj} if

(vi, vj) ∈ E(U). Note that S∗ defines a valid model and

because U is optimal we must have c(S∗) ≤ c(O).

Corollary 10. Assume that F is a family of itemsets having

2 items, at maximum. The algorithm SETPACK returns the

optimal tree model.

Let us consider the complexity of the algorithms. The

algorithm SETPACK runs in a polynomial time. By using

dynamic programming we can show that GENERATE runs

in O(|F |2) time. We also tested a faster variant of the al-

gorithm in which the exhaustive search in GENERATE is re-

placed by the greedy approach similar to the ID3 algorithm.

We call this variant SETPACKGREEDY.

6 Related Work

Finding interesting itemsets is a major research theme

in data mining. To this end, many measures have been

suggested over time. A classic measure for ranking item-

sets is frequency, for which there exist efficient search al-

gorithms [2, 15]. Other measures involve comparing how

much an itemset deviates from the independence assump-

tion [1,3,4,11]. In yet other approaches more flexible mod-

els are used, such as, Bayes networks [17, 18], Maximum

Entropy estimates [24, 31]. Related are also low-entropy

sets: itemsets for which the entropy of the data is low [16].

Many of these approaches suffer from the fact that they

require a user-defined threshold and further that at low

thresholds extremely many itemsets are returned, many of

which convey the same information. To address the latter

6

problem we can use closed [28] or non-derivable [6] item-

sets that provide a concise representation of the original

itemsets. However, these methods deteriorate even under

small amounts of noise.

Alternative to these approaches of describing the pattern

set, there are methods that instead pick groups of itemsets

that describe the data well. As such, we are not the first to

embrace the compression approach to data mining [12]. Re-

cently, Siebes et al. [30] introduced the MDL-based KRIMP

algorithm to battle the frequent itemset explosion at low

support thresholds. It returns small subsets of itemsets that

together capture the distribution of the data well. These

code tables have been successfully applied in classifica-

tion [22], measuring the dissimilarity of data [33], and data

generation [34]. While these applications shows the prac-

ticality of the approach, KRIMP can only describe the pat-

terns between the items that are present in the dataset. On

the other hand, we consider the 0s and the 1s in the data

symmetrically and hence we are able to provide more de-

tailed descriptions of the data; including patterns between

the presence and absence of items.

More different from our methods are the lossy data de-

scription approaches. These strive to describe just part of

the data, and as such may overlook important interactions.

Summarization [7] is a compression approach that identifies

a group of itemsets such that each transaction is summarized

by one set with as little loss of information as possible. Yet

different are pattern teams [20], which are groups of most-

informative length-k itemsets [19], selected through an ex-

ternal interestingness measure. As this approach is compu-

tationally intensive, the number of team members is typi-

cally < 10. Bringmann et al. [5] proposed a similar selec-

tion method that can consider larger pattern sets. However,

it also requires the user to choose a quality measure to which

the pattern set has to be optimized, unlike our parameter-

free and lossless method.

Alternatively we can view the approach in this paper as

building a global model for data and then selecting the item-

sets that describe the model. This approach then allows us

to use MDL as a model selection technique. In a related

work [32] the authors build decomposable models in order

to select a small family of itemsets that model the data well.

The decision trees returned by our methods, and partic-

ularly the DAG that they form, have a passing resemblance

to Bayes networks [9]. However, as both the model con-

struction and complexity weighing differ strongly, so do the

outcomes. To be more precise, in our case the distribu-

tions p(x, par(x)) are modeled and weighted via decision

trees whereas in the Bayes network setup any distribution is

weighted equally. Furthermore, we use the correspondence

between the itemsets and the decision trees to output local

patterns, as opposed to Bayes networks which are tradition-

ally used as global models.

7 Experiments

This section contains the results of the empirical evalua-

tion of our methods using toy and real datasets.

7.1 Datasets

For the experimental validation of the two packing strate-

gies we use a group of datasets with strongly differing statis-

tics. From the LUCS/KDD repository [8] we took a number

of often used databases to allow for comparison to other

methods. To test our methods on real data we used the

Mammals presence database and the Helsinki CS-courses

dataset. The latter contains the enrollment records of stu-

dents taking courses at the Department of Computer Sci-

ence of the University of Helsinki. The mammals dataset

consists of the absence/presence of European mammals [25]

in geographical areas of 50x50 kilometers.1 The details of

these datasets are provided in Table 1.

Table 1. Statistics of the datasets used in the
experiments.

Dataset |D| K % of 1’s

anneal 898 71 20.1

breast 699 16 62.4

courses 3506 98 4.6

mammals 2183 40 46.9

mushroom 8124 119 19.3

nursery 12960 32 28.1

pageblocks 5473 44 25.0

tic–tac–toe 958 29 34.5

7.2 Experiments with Toy Datasets

To evaluate whether our method correctly identifies

(in)dependencies, we start our experimentation using two

artificial datasets of 2000 transactions and 10 items. For

both databases, the data is generated per transaction, and

the presence of the first item is based on a fair coin toss.

For the first database, the other items are similarly gener-

ated. However, for the second database, the presence of an

item is 90% dependent on the previous item. As such, both

datasets have item densities of about 50%.

If we apply GREEDYPACK, our greedy decision tree

building method, to these datasets we see that it is unable

to compress the independent database at all. Opposing, the

dependently generated dataset can be compressed into only

1The full version of the dataset is available for research purposes upon

request, http://www.european-mammals.org.

7

Table 2. Compression, number of trees and numbers of extracted itemsets for the greedy algorithm.

GREEDYPACK KRIMP

Dataset c(Tb) (bits) c(T) (bits)
c(T)
c(Tb)

(%) # trees # sets min–sup # sets # bits ratio (%)

anneal 23104 12342 53.4 71 1203 1 102 22154 34.6

breast 8099 2998 37.0 16 17 1 30 4613 16.9

courses 76326 61685 80.8 98 1230 2 148 71019 79.3

mammals 78044 50068 64.2 40 845 200 254 90192 42.3

mushroom 442062 115347 26.1 119 999 1 424 231877 20.9

nursery 337477 180803 53.6 32 3409 1 260 258898 45.5

pageblocks 15280 7611 49.8 44 219 1 53 10911 5.0

tic–tac–toe 25123 14137 56.3 29 619 1 162 28812 62.3

50% of the original number of bits. Inspection of the re-

sulting itemsets show that the resulting model correctly de-

scribes the dependencies in detail: The resulting 19 itemsets

are {a1, . . . , a10, a1a2, . . . , a9a10}.

7.3 The Greedy Method

Recall that our goal is to find high quality descriptions

of the data. Following the MDL principle, the quality of

the found descriptions can objectively be measured by the

compression of the data. We present the compressed sizes

for GREEDYPACK in Table 2. The encoding costs c(T) in-

clude the size of the encoded data and the decision trees.

The initial costs, as denoted by c(Tb), are those of encoding

the data using naı̈ve single-node TRIVIALTREEs. Each of

these experiments required 1–10 seconds runtime, with an

exception of 60s for mushroom.

From Table 2, we see that all models returned by

GREEDYPACK strongly reduce the number of bits required

to describe the data; this implicitly shows that good models

are returned. The quality can be gauged by taking the com-

pression ratios into account. In general, our greedy method

reduces the number of bits to only half of what the inde-

pendent model requires. As two specific examples of the

found dependencies, in the courses dataset the course Data

Mining was packed using Machine Learning, Software En-

gineering, Information Retrieval Methods and Data Ware-

houses. Likewise, AI and Machine Learning were used to

pack the Robotics course.

Like discussed above, our approach and the KRIMP [30]

algorithm have stark differences in what part of the data is

considered. However, as both methods use compression,

and result good itemsets, it is insightful to compare the al-

gorithms. For the latter we here allow it to compress as

well as possible, and thus, consider candidates up to as low

min-sup thresholds as feasible.

Let us compare between the outcomes of either method.

For KRIMP these are itemsets, for ours it is the combina-

tion of the decision trees and the related itemsets. We see

that KRIMP typically returns fewer itemsets than GREEDY-

PACK. However, our method returns itemsets that describe

interactions between both present and absent items.

Next, we observed that especially the initial KRIMP com-

pression requires many more bits than ours, and as such

KRIMP attains better compression ratios. However, if we

disregard the ratios and look at the raw number of bits the

two methods require, we see that KRIMP generally requires

twice as many bits to describe only the 1’s in the data than

GREEDYPACK does to represent all of the data.

7.4 Validation through Classification

To further assess the quality of our models we use a sim-

ple classification scheme [22]. First, we split the training

database into separate class-databases. We pack each of

these. Next, the class labels of the unseen transactions were

assigned according to the model that compressed it best.

We ran these experiments for three databases, viz. mush-

room, breast and anneal. A random 90% of the data was

used to train the models, leaving 10% to test the accuracy

on. The accuracy scores we noted, resp. 100%, 98.0% and

93.4%, are fully comparable to (and for the second, even

better than) the classifiers considered in [22].

7.5 Choosing Good Itemsets

In this subsection we evaluate SETPACK, our itemset se-

lection algorithm. Recall that this algorithm selects item-

sets such that they allow for building succinct encoding de-

cision trees. The difference with GREEDYPACK is that in

this setup the resulting itemsets should be a subset of a

given candidate family. Here, we consider frequent item-

sets as candidates. We set the support threshold such that

the experiments with SETPACK were finished within 1
2–2

hours, with an exception of 23 hours for considering the

8

Table 3. Compressed sizes and number of extracted itemsets for the itemset selection algorithms.

Candidate Itemsets SETPACK SETPACKGREEDY KRIMP

Dataset min-sup # sets c(T) c(T)
c(Tb)

(%) # sets c(T) c(T)
c(Tb)

(%) # sets # bits # sets

anneal 175 8837 20777 89.9 103 20781 89.9 69 31196 53

breast 1 9920 5175 63.7 42 5172 63.9 49 4613 30

courses 55 5030 64835 84.9 268 64937 85.1 262 73287 93

mammals 700 7169 65091 83.4 427 65622 84.1 382 124737 125

mushroom 1000 123277 313428 70.9 636 262942 59.5 1225 474240 140

nursery 50 25777 314081 93.0 276 314295 93.1 218 265064 225

pageblocks 1 63599 11961 78.3 92 11967 78.3 95 10911 53

tic–tac–toe 7 34019 23118 92.0 620 23616 94.0 277 28957 159

large candidate family for mushroom. For comparison we

use the same candidates for KRIMP. We also compare to

SETPACKGREEDY, which required 1–12 minutes, 7 min-

utes typically, with an exception of 2 1
2 hours for mushroom.

Comparing the results of this experiment (Table 3) with

the results of GREEDYPACK in the previous experiment, we

see that the selection process is more strict: now even fewer

itemsets are regarded as interesting enough. Large candi-

date collections are strongly reduced in number: up to three

orders of magnitude. On the other hand, the compression

ratios are still very good. The reason that GREEDYPACK

produces smaller compression ratios is because it is allowed

to consider any itemset.

Further, the fact alone that even with this very strict se-

lection the compression ratios are generally well below 90%

show that these few sets are indeed of high importance to

describing the major interactions in the data.

If we compare the number of selected sets to KRIMP,

we see that our method returns in the same order as many

itemsets. These descriptions require far less bits than those

found by KRIMP. As such, ours are a better approximation

of the Kolmogorov complexity of the data.

Between SETPACK and SETPACKGREEDY the out-

comes are very much alike; this goes for both the obtained

compression as well as the number of returned itemsets.

However, the greedy search of SETPACKGREEDY allows

for much shorter running times.

8 Discussion

The experimentation on our methods validates the qual-

ity of the returned models. The models correctly detect de-

pendencies in the data while ignoring independencies. Only

a small number of itemsets is returned, which are shown to

provide strong compression of the data. By the MDL prin-

ciple we then know these describes all important regulari-

ties in the data distribution in detail efficiently and without

redundancy. This claim is further supported by the high

classification accuracies our models achieve.

The GREEDYPACK algorithm generally uses more item-

sets and obtains better packing ratios than SETPACK. While

GREEDYPACK is allowed to use any itemset, SETPACK

may only use frequent itemsets. This suggests that we may

able to achieve better ratios if we use different candidates,

for example, low-entropy sets [16].

The running times of the experiments reported in this

work range from seconds to hours and depend mainly on the

number of attributes and rows of the datasets. The exhaus-

tive version SETPACK may be slow on very large candidate

sets, however, the greedy version SETPACKGREEDY can

even handle such families well. Considering that our current

implementation is rather naı̈ve and the fact that both meth-

ods are easily parallelized, both GREEDYPACK and SET-

PACKGREEDY are suited for the analysis of large databases.

The main outcomes of our models are the itemsets that

identify the encoding paths. However, the decision trees

from which these sets are extracted can also be regarded as

interesting as these provide an easily interpretable view on

the major interactions in the data. Further, just considering

the attributes used in such a tree as an itemset also allows

for simple inspection of the main associations.

In this work we employ the MDL criterion to identify

the optimal model. Alternatively, one could consider using

either BIC or AIC, both of which can easily be applied to

judge between our decision tree-based models.

9 Conclusions

In this paper we presented two methods that find com-

pact sets of high quality itemsets. Both methods employ

compression to select the group of patterns that describe all

interactions in the data best. That is, the data is considered

symmetric and thus both the 0s and 1s are taken into account

in these descriptions. Experimentation with our methods

9

showed that high quality models are returned. Their com-

pact size, typically tens to thousands of itemsets, allow for

easy further analysis of the found interactions.

References

[1] C. C. Aggarwal and P. S. Yu. A new framework for

itemset generation. In Proceedings of the ACM SIGACT-

SIGMOD-SIGART symposium on Principles of Database

Systems (PODS), pages 18–24. ACM Press, 1998.
[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.

Verkamo. Fast discovery of association rules. In Advances

in Knowledge Discovery and Data Mining, pages 307–328.

AAAI, 1996.
[3] S. Brin, R. Motwani, and C. Silverstein. Beyond market

baskets: Generalizing association rules to correlations. In

ACM SIGMOD International Conference on Management

of Data, pages 265–276. ACM Press, 1997.
[4] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic

itemset counting and implication rules for market basket

data. In ACM SIGMOD International Conference on Man-

agement of Data, pages 255–264, 1997.
[5] B. Bringmann and A. Zimmermann. The chosen few: On

identifying valuable patterns. In IEEE International Confer-

ence on Data Mining (ICDM), pages 63–72, 2007.
[6] T. Calders and B. Goethals. Mining all non-derivable fre-

quent itemsets. In Proceedings of the 6th European Confer-

ence on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases, pages 74–85, 2002.
[7] V. Chandola and V. Kumar. Summarization - compressing

data into an informative representation. In Proceedings of

the IEEE Conference on Data Mining, pages 98–105, 2005.
[8] F. Coenen. The LUCS-KDD discretised/normalised ARM

and CARM data library. 2003.
[9] G. F. Cooper and E. Herskovits. A Bayesian method for

the induction of probabilistic networks from data. Machine

Learning, 9:309–347, 1992.
[10] T. Cover and J. Thomas. Elements of Information Theory,

2nd ed. John Wiley and Sons, 2006.
[11] W. DuMouchel and D. Pregibon. Empirical bayes screening

for multi-item associations. In ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, pages 67–76,

2001.
[12] C. Faloutsos and V. Megalooikonomou. On data mining,

compression and kolmogorov complexity. In Data Min-

ing and Knowledge Discovery, volume 15, pages 3–20.

Springer, 2007.
[13] P. D. Grünwald. The Minimum Description Length Princi-

ple. MIT Press, 2007.
[14] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern

mining: Current status and future directions. In Data Mining

and Knowledge Discovery, volume 15. Springer, 2007.
[15] J. Han and J. Pei. Mining frequent patterns by pattern-

growth: methodology and implications. SIGKDD Explo-

rations Newsletter, 2(2):14–20, 2000.
[16] H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen,

and J. K. Seppänen. Finding low-entropy sets and trees from

binary data. In ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 350–359, 2007.

[17] S. Jaroszewicz and T. Scheffer. Fast discovery of unexpected

patterns in data, relative to a bayesian network. In ACM

SIGKDD Conference on Knowledge Discovery and Data

Mining, pages 118–127, 2005.
[18] S. Jaroszewicz and D. A. Simovici. Interestingness of

frequent itemsets using bayesian networks as background

knowledge. In ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 178–186, 2004.
[19] A. J. Knobbe and E. K. Y. Ho. Maximally informative k-

itemsets and their efficient discovery. In ACM SIGKDD

Conference on Knowledge Discovery and Data Mining,

pages 237–244, 2006.
[20] A. J. Knobbe and E. K. Y. Ho. Pattern teams. In Proceed-

ings of the 10th European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in

Databases, pages 577–584, 2006.
[21] P. Kontkanen and P. Myllymäki. A linear-time algorithm for

computing the multinomial stochastic complexity. Informa-

tion Processing Letters, 103(6):227–233, 2007.
[22] M.van Leeuwen, J. Vreeken, and A. Siebes. Compression

picks the item sets that matter. In Proceedings of the 10th

European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases, pages

585–592, 2006.
[23] M. Li and P. Vitányi. An Introduction to Kolmogorov Com-

plexity and its Applications. Springer-Verlag, 1993.
[24] R. Meo. Theory of dependence values. ACM Trans.

Database Syst., 25(3):380–406, 2000.
[25] A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz,

B. Krystufek, P. J. H. Reijnders, F. Spitzenberger, M. Stubbe,

J. B. M. Thissen, V. Vohralik, and J. Zima. The Atlas of Eu-

ropean Mammals. Academic Press, 1999.
[26] K. V. S. Murthy. On growing better decision trees from data.

PhD thesis, Johns Hopkins Univ., Baltimore, 1996.
[27] S. Nijssen and É. Fromont. Mining optimal decision trees

from itemset lattices. In ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pages 530–539,

2007.
[28] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discov-

ering frequent closed itemsets for association rules. Lecture

Notes in Computer Science, 1540:398–416, 1999.
[29] J. Rissanen. Fisher information and stochastic complex-

ity. IEEE Transactions on Information Theory, 42(1):40–47,

1996.
[30] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that

compress. In Proceedings of the SIAM Conference on Data

Mining, pages 393–404, 2006.
[31] N. Tatti. Maximum entropy based significance of itemsets.

Knowledge and Information Systems (KAIS), 2008. Ac-

cepted for publication.
[32] N. Tatti and H. Heikinheimo. Decomposable families of

itemsets. In Proceedings of the 12th European Conference

on Machine Learning and Principles and Practice of Knowl-

edge Discovery in Databases, 2008.
[33] J. Vreeken, M. van Leeuwen, and A. Siebes. Characterising

the difference. In ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 765–774, 2007.
[34] J. Vreeken, M. van Leeuwen, and A. Siebes. Preserving

privacy through data generation. In Proceedings of the IEEE

Conference on Data Mining, pages 685–690, 2007.

10

