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Abstract. The problem of selecting a small, yet high quality subset of
patterns from a larger collection of itemsets has recently attracted a lot
of research. Here we discuss an approach to this problem using the notion
of decomposable families of itemsets. Such itemset families define a prob-
abilistic model for the data from which the original collection of itemsets
was derived. Furthermore, they induce a special tree structure, called a
junction tree, familiar from the theory of Markov Random Fields. The
method has several advantages. The junction trees provide an intuitive
representation of the mining results. From the computational point of
view, the model provides leverage for problems that could be intractable
using the entire collection of itemsets. We provide an efficient algorithm
to build decomposable itemset families, and give an application exam-
ple with frequency bound querying using the model. An empirical study
show that our algorithm yields high quality results.

1 Introduction

Frequent itemset discovery has been a central research theme in the data mining
community ever since the idea was introduced by Agrawal et. al [1]. Over the
years, scalability of the problem has been the most studied aspect, and several
very efficient algorithms for finding all frequent itemsets have been introduced,
Apriori [2] or FP-growth [3] among others. However, it has been argued recently
that while efficiency of the mining task is no longer a bottleneck, there is still a
strong need for methods that derive compact, yet high quality results with good
application properties [4].

In this study we propose the notion of decomposable families of itemsets to
address this need. The general idea is to build a probabilistic model of a given
dataset D using a small well-chosen subset of itemsets G from a given candidate
family F . The candidate family F may be generated from D using some frequent
itemset mining algorithm. A special aspect of a decomposable family is that it
induces a type of tree, called a junction tree, a well-known concept from the
theory of Markov Random Fields [5].

As a simple example, consider a dataset D with six attributes a, . . . , f , and
a family G = {bcd, bcf , ab, ce, bc, bd, cd, bf , cf , a, b, c, d, e, f}. The family G
can be represented as the junction tree shown in Figure 1 such that the nodes in
the tree are the maximal itemsets in G. Furthermore, the junction tree defines a
decomposable model of the dataset D.
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Fig. 1. An example of a junction tree and the corresponding distribution decomposi-
tion.

Using decomposable itemset families has several notable advantages. First of
all, the following junction tree graphs provide an extremely intuitive representa-
tion of the mining results. This is a significant advantage over many other itemset
selection methods, as even small mining results of, say 50 itemsets, can be hard
for humans to grasp as a whole, if just plainly enumerated. Second, from the
computational point of view, decomposable families of itemsets provide leverage
for accurately solving problems that could be intractable using the entire result
set. Such problems include, for instance, querying for frequency bounds of arbi-
trary attribute combinations. Third, the statistical nature of the overall model
enable to incorporated regularization terms, like BIC, AIC, or MDL to select
only itemsets that reflect true dependencies between attributes.

In this study we provide an efficient algorithm to build decomposable itemset
families while optimizing the likelihood of the model. We also demonstrate how
to use decomposable itemset families to execute frequency bound querying, an
intractable problem in the general case. We provide empirical results showing
that our algorithm works well in practice.

The rest of the paper is organized as follows. Preliminaries are given in Sec-
tion 2 and the concept of decomposable models are defined in Section 3. A greedy
search algorithm is given in Section 4. Section 6 is devoted to experiments. We
present the related work in Section 7 and conclude the paper with discussion in
Section 8. The proofs for the theorems in this paper are provided in [6].

2 Preliminaries and Notations

In this section we describe the notation and the background definitions that are
used in the subsequent sections.

A binary dataset D is a collection of N transactions, binary vectors of length
K. The dataset can be viewed as a binary matrix of size N ×K. We denote the
number of transactions by |D| = N . The ith element of a random transaction is
represented by an attribute ai, a Bernoulli random variable. We denote the collec-
tion of all the attributes by A = {a1, . . . , aK}. An itemset X = {x1, . . . , xL} ⊆ A
is a subset of attributes. We will often use the dense notation X = x1 · · ·xL.

Given an itemset X and a binary vector v of length L, we use the notation
p (X = v) to express the probability of p (x1 = v1, . . . , xL = vL). If v contains
only 1s, then we will use the notation p (X = 1).

Given a binary dataset D we define qD to be an empirical distribution,

qD (A = v) = |{t ∈ D; t = v}|/|D|.



We define the frequency of an itemset to be fr(X) = qD (X = 1). The entropy
of an itemset X = x1 · · ·xL given D, denoted by H(X;D), is defined as

H(X;D) = −
∑

v∈{0,1}L

qD (X = v) log qD (X = v) , (1)

where the usual convention 0 log 0 = 0 is used. We often omit D.
We say that a family F of itemsets is downward closed if each subset of a

member of F is also included in F . An itemset X ∈ F is maximal if there is no
Y ∈ F such that X ⊂ Y . We define m(F) = {|X|;X ∈ F} to be the maximal
number of attributes in a single itemset.

3 Decomposable Families of Itemsets

In this section we define the concept of decomposable families. Itemsets of a
decomposable family form a junction tree, a concept from the theory of Markov
Random Fields [5].

Let G = {G1, . . . , GM} be a downward closed family of itemsets covering
the attributes A. Let H be a graph containing M nodes where the ith node
corresponds to the itemset Gi. Nodes Gi and Gj are connected if Gi and Gj

have a common attribute. The graph H is called the clique graph and the nodes
of H are called cliques.

We are interested in spanning trees of H having a running intersection prop-
erty. To define this property let T be a spanning tree of H. Let Gi and Gj be
two sets having a common attribute, say, a. These sets are connected in T by a
unique path. Assume that a occurs in every Gk along the path from Gi to Gj .
If this holds for any Gi, Gj , and any common attribute a, then we say that the
tree has a running intersection property. Such a tree is called a junction tree.

We should point out that the clique graph can have multiple junction trees
and that not all spanning trees are junction trees. In fact, it may be the case
that the clique graph does not have junction trees at all. If, however, the clique
graph has a junction tree, we call the original family G decomposable.

We label edge (Gi, Gj) of a given junction tree T with a set of mutual at-
tributes Gi ∩ Gj . This label set is called a separator. We denote the set of all
separators by S(T ). Furthermore, we denote the cliques of the tree by V (T ).

Given a junction tree T and a binary vector v, we define the probability of
A = v to be

p (A = v; T ) =
∏

X∈V (T )

qD (X = vX)
/ ∏

Y ∈S(T )

qD (Y = vY ) . (2)

It is a known fact that the distribution given in Eq. 2 is actually the unique
maximum entropy distribution [7, 8]. Note that p (A = v; T ) can be computed
from the frequencies of the itemsets in G using the inclusion-exclusion principle.

It can be shown that the family G is decomposable if and only if the maximal
sets of G is decomposable and that Eq. 2 for the maximal sets of G and the



whole G. Hence, we usually construct the tree using only the maximal sets of G.
However, in some cases it is convenient to have non-maximal sets as the cliques.
We will refer to such cliques as redundant. For a tree T we define a family of
itemsets, s(T ) to be the downward closure of its cliques, V (T ). To summarize,
G is decomposable if and only if there is a junction tree T such that G = s(T ).

Calculating the entropy of the tree T directly from Eq. 2 gives us

H(T ) =
∑

X∈V (T )

H(X)−
∑

Y ∈S(T )

H(Y ) .

A direct calculation from Eqs. 1–2 reveals that log p (D; T ) = −|D|H(T ).
Hence, maximizing the log-likelihood of the data given T (whose components
are derived from the same data), is equivalent to minimizing the entropy.

We can define the maximum entropy distribution for any cover F via linear
constraints [8]. The downside of this general approach is that solving such a
distribution is a PP-hard problem [9].

The following definition will prove itself useful in subsequent sections. Given
two downward closed covers G1 and G2. We say that G1 refines G2, if G1 ⊆ G2.

Proposition 1. If G1 refines G2, then H(G1) ≥ H(G2).

4 Finding Trees with Low Entropy

In this section we describe the algorithm for searching decomposable families. To
be more precise, given a candidate set, a downward closed family F covering the
set of attributes A, our goal is to find a decomposable downward closed family
G ⊆ F . Hence our goal is to find a junction tree T such that s(T ) ⊆ F .

4.1 Definition of the Algorithm

We search the tree in an iterative fashion. At the beginning of each iteration
round we have a junction tree Tn−1 whose cliques have at most n attributes,
that is m(s(T )) = n. The first tree is T0 containing only single attributes and
no edges. During each round the tree is modified so that in the end we will have
Tn, a tree with cliques having at most n+ 1 attributes.

In order to fully describe the algorithm we need the following definition: X
and Y are said to be n− 1-connected in a junction tree T , if there is a path in
T from X to Y having at least one separator of size n− 1. We say that X and
Y are 0-connected, if X and Y are not connected.

Each round of the algorithm consists of three steps. The pseudo-code of the
algorithm is given in Algorithm 1–2.

1. Generate: We construct a graph Gn whose nodes are the cliques of size
n in Tn−1. We add all the edges to Gn having the form (X,Y ) such that
|X ∩ Y | = n− 1 and X ∪ Y ∈ F . We also set Tn = Tn−1. The weight of the
edge is set to

w (e) = H(X) +H(Y )−H(X ∩ Y )−H(X ∪ Y ) .



2. Augment: We select the edge, say e = (X,Y ), having the largest weight and
remove it from Gn. If X and Y are n− 1 -connected in Tn we add Tn with a
new clique V = X∪Y . Furthermore, for each v ∈ V , we consider W = V −v.
If W is not in Tn, it is added into Tn. Next, W and V are connected in Tn.
At the same time, the node W is also added into Gn and the edges of Gn

are added using the same criteria as in Step 1 (Generate). Finally, a possible
cycle is removed from Tn by finding an edge with separator of size n − 1.
Augmenting is repeated as long as Gn has no edges.

3. Purge: The tree V (Tn) contains redudant cliques after augmentation. We
remove these redudant cliques from Tn.

To illustrate the algorithm we provide a toy example.

Example 1. Consider that we have a family

F = {a, b, c, d, e, ab, ac, ad, bc, bd, cd, ce, abc, acd, bcd} .

Assume that we are at the beginning of the second round and we already
have the junction tree T1 given in Figure 2(a). We form G2 by taking the edges
(ab, bc) and (bc, cd).

Consider that we pick ab and bc for joining. This will spawn ac and abc in T2
(Figure 2(c)) and ac in G2 (Figure 2(d)). Note that we also add the edge (ac, cd)
into G2. Assume that we continue by picking (ac, cd). This will spawn acd and
cd into T2. Note that (bc, cd) is removed from T2 in order to break the cycle.

The last edge (bc, cd) is not added into T2 since bc and cd are not n − 1-
connected. The final tree (Figure 2(f)) is obtained by keeping only the maximal
sets, that is, purging the cliques bc, ab, ac, ad, and cd. The corresponding de-
composable family is G = F − bcd.

The next theorem states that the Augment step does not violate the running
intersection property.

Theorem 1. Let T be a junction tree with cliques of size n+1, at maximum, that
is, m(s(T )) = n + 1. Let X,Y ∈ V (T ) be cliques of size n such that |X ∩ Y | =
n − 1. Set B = X ∪ Y . Then the family s(T ) ∪ {C;C ⊆ B} is decomposable if
and only if X and Y are n− 1-connected in T .

Theorem 2. ModifyTree decreases the entropy of Tn by w(e).

Theorems 1–2 imply that SearchTree algorithm is nothing more than a
greedy search. However, since we are adding cliques in rounds we can state that
under some conditions the algorithm returns an optimal cover for each round.

Theorem 3. Assume that the members of F of size n + 1 are added to Gn at
the beginning of the nth round. Let U be a junction tree such that s(Tn) ⊆ s(U)
and m(s(U)) = n+ 1. Then H(Tn+1) ≤ H(U).

Corollary 1. The tree T1 is optimal among the families using the sets of size
2.

Corollary 1 states that G1 is the Chow-Liu tree [10].
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Fig. 2. Example of graphs during different stages of SearchTree algorithm.

Algorithm 1 SearchTree algorithm. The input is a downward closed cover
F , the output is a junction tree T such that V (T ) ⊆ F .
V (T0)← {x;x ∈ A} {T0 contains the single items.}
n← 0.
repeat
n← n+ 1.
Tn ← Tn−1.
V (Gn)← {X ∈ V (Tn) ; |X| = n}.
E(Gn)← {(X,Y ) ;X,Y ∈ V (Gn) , |X ∩ Y | = n− 1, X ∪ Y ∈ F}.
repeat
e = (X,Y )← arg maxx∈E(Gn) w(x).
E(Gn)← E(Gn)− e.
if X and Y are n− 1-connected in Tn then

Call ModifyTree.
end if

until E(Gn) = ∅
Delete nodes marked by ModifyTree from Tn, connect the incident nodes.

until Gn is empty
return T

4.2 Model Selection

Theorem 1 reveals a drawback in the current approach. Consider that we have
two independent items a and b and that F = {a, b, ab}. Note that F is itself
decomposable and G = F . However, a more reasonable family would be {a, b} to
reflect the fact that a and b are independent. To remedy this problem we will use
model selection techniques such as BIC [11], AIC [12], and Refined MDL [13].
All these methods score the model by adding a penalty term to the likelihood.



Algorithm 2 ModifyTree algorithm.
B ← X ∪ Y .
V (Tn)← V (Tn) ∪ {B}. {Add new clique B into Tn.}
for v ∈ B do
W ← B − v.
Mark W .
if W /∈ V (Gn) then
V (Gn)← V (Gn) ∪ {W}.
E(Gn)← E(Gn) ∪ {(W,Z) ;Z ∈ V (Gn) , |X ∩ Z| = n− 1, V 6= X ∪ Z ∈ F}.
V (Tn)← V (Tn) ∪ {W}.

end if
E(Tn)← E(Tn) ∪ (B,W ).

end for
Remove the possible cycle in Tn by removing an edge (U, V ) connecting X and Y
and having |U ∩ V | = n− 1.

We modify the algorithm by considering only the edges in Gn that improve
the score. For BIC this reduces to considering only the edges satisfying

|D|w(e) ≥ 2n−2 log |D|,

where n is the current level of SearchTree algorithm. Using AIC leads to the
considering only the edges for which

|D|w(e) ≥ 2n−1.

Refined MDL is more troublesome. The penalty term in MDL is known
as stochastic complexity. In general, there is no known closed formula for the
stochastic complexity, but it can be computed for the multinomial distribution
in linear time [14]. However, it is numerically unstable for data with large num-
ber of transactions. Hence, we will apply often-used asympotic estimate [15] and
define the penalty term

CMDL(k) =
k − 1

2
log |D| − 1

2
log π − log Γ (k/2)

for k-multinomial distribution.
There are no known exact or approximative solution in a closed form of

stochastic complexity for junction trees. Hence we propose the penalty term for
the tree to be ∑

X∈V (T )

CMDL

(
2|X|

)
−

∑
Y ∈S(T )

CMDL

(
2|Y |

)
.

Here we think that a single clique X is a 2|X|-multinomial distribution and we
compensate the possible overlaps of the cliques by subtracting the complexity of
the separators. Using this estimate leads to a selection criteria

|D|w(e) ≥ CMDL

(
2|n+1|

)
− 2CMDL

(
2|n|
)

+ CMDL

(
2|n−1|

)
.



4.3 Computing Multiple Decomposable Families

We can use SearchTree algorithm for computing multiple decomposable covers
from a single candidate set F . The motivation behind this approach is that we
get a sequence of covers, each cover holding partial information of the original
cover F . We will show empirically in Section 6.4 that the by exploiting the
union information of these covers we are able to improve significantly bounds
for boolean queries (see Section 5).

The idea is as follows. Set F1 = F and let G1 be the first decomposable
family constructed from F1 using SearchTree algorithm. We define

F2 = F1 − {X ∈ F1; there is Y ∈ G1, |Y | > 1, Y ⊆ X} .

We compute G2 from F2 and continue in the iterative fashion until Gk contains
nothing but individual items.

5 Boolean Queries with Decomposable Families

One of our motivations for constructing decomposable families is that some
computational problems that are hard for general families of itemsets reduce
to tractable if the underlying family is decomposable. In this section we will
show that the computational burden of a boolean query, a classic optimization
problem [16, 17], reduces significantly, if we are using decomposable families of
itemsets.

Assume that we are given a set of known itemsets G and a query itemset Q /∈
G. We wish to find fr(Q;G), the possible frequencies for Q given the frequencies
of G. It is easy to see that the frequencies form an interval, hence it is sufficient
to find the maximal and the minimal frequencies. We can express the problem
of finding the maximal frequency as a search for the distribution p solving

max p (Q = 1)
s.t. p (X = 1) = fr(X) , for each X ∈ G.

p is a distribution over A.
(3)

We can solve Eq. 3 using Linear Programming [16]. However, the number of
variables in the program is 2|A| and makes the program tractable only for small
datasets. In fact, solving Eq. 3 is an NP-hard problem [9].

In the rest of the section we present a method of solving Eq. 3 with a linear
program containing only 2|Q||G||A| variables, assuming that G is decomposable.
This method is an explicit construction of the technique presented in [18]. The
idea behind the approach is that instead of solving a joint distribution in Eq. 3,
we break the distribution into small component distributions, one for each clique
in the junction tree. These components are forced to be consistent by requiring
that they are equal at the separators. The details are given in Algorithm 3.

To clarify the process we provide the following simple example.



Algorithm 3 QueryTree algorithm for solving a queryQ from a decomposable
cover G. The output is the interval fr(Q;G).
{T1, . . . , TM} ← connected components of a junction tree of G.
for i = 1, . . . ,M do
Qi ← Q ∩ (

⋃
V (Ti)). {Items of Q contained in Ti.}

U ← arg minS⊆Ti {|V (S)|;Qi ⊆
⋃
V (S)}. {Smallest subtree containing Qi.}

while there are changes do
Remove the items outside Qi that occur in only one clique of U .
Remove redundant cliques.

end while
Select one clique, say R from U to be the root.
R← R ∪Qi. {Augment the root with Qi}
Augment the rest cliques in U so that the running intersection property holds.
Let pC be a distribution over each clique C ∈ V (U).
αi ← the solution of a linear program

min pR (Qi = 1)
s.t. pC (X = 1) = fr(X) , for each C ∈ V (U) , X ∈ G, X ⊆ C.

pC1 (C1 ∩ C2) = pC2 (C1 ∩ C2) , for each (C1, C2) ∈ E(U) .

βi ← the solution of the maximum version of the linear program.
end for
fr(Q;G)←

[
max

(∑M
i αi − (M − 1), 0

)
,mini (βi)

]
.

Example 2. Assume that we have G whose junction tree is given in Figure 3(a).
Let query be Q = adg. We begin first by finding the smallest sub-tree containing
Q. This results in purging fh (Figure 3(b)). We further purge the tree by remov-
ing e since it only occurs in one clique (Figure 3(c)). In the next step we pick a
root, which in this case is bc and augment the cliques with the members of Q so
that the root contains Q (Figure 3(d)). We finally remove the redundant cliques
which are ab, cd, fg. The final tree is given in 3(e). Finally, the linear program is
formed using two distributions pabcdg and pcfg. The number of variables in this
program is 25 + 23 = 40 opposed to the original 28 = 256.

ab

bce

cd

cf

fhfg

(a) Original T

ab bce

cd

cf

fg

(b) U

ab bc

cd

cf

fg

(c) Purged U

ab abcdg

cd

cfg

cf

(d) Augmented U

abcdg cfg

(e) Final U

Fig. 3. Junction trees during different stages of solving the query problem.



Note that we did not specify in Algorithm 3 which clique we selected to be
the root R. The linear program depends on the root R and hence we select the
root minimizing the number of variables in the linear program.

Theorem 4. QueryTree algorithm solves correctly the boolean query fr(q;G).
The number of variables occurring in the linear programs is 2|Q||G||A|, at maxi-
mum.

6 Experiments

In this section we will study empirically the relationship between the decompos-
able itemset families and the candidate set, the role of the regularization, and
the performance of boolean queries using multiple decomposable families.

6.1 Datasets

For our experiments we used one synthetic generated dataset, Path, and three
real-world datasets: Paleo, Courses and Mammals. The synthetic dataset, Path,
contained 8 items and 100 transactions. Each item was generated from the pre-
vious item by flipping it with a 0.3 probability. The first item was generated by a
fair coin flip. The dataset Paleo1 contains information of mammal fossils found in
specific paleontological sites in Europe [19]. Courses describes computer science
courses taken by students at the Department of Computer Science of the Univer-
sity of Helsinki. The Mammals2 dataset consists of presence/absence records of
current day European mammals [20]. The basic characteristics of the real-world
data sets are shown in Table 1.

Dataset # of rows # of items # of 1s # of 1s
# of rows

Paleo 501 139 1980 16.0
Courses 3506 98 16086 4.6
Mammals 2183 124 54155 24.8

Table 1. The basic properties of the datasets.

6.2 Generating Decomposable Families

In our first experiment we examined the junction trees that were constructed
for the Path dataset. We calculated a sequence of trees using the technique
1 NOW public release 030717 available from [19].
2 The full version of the mammal dataset is available for research purposes upon

request from the Societas Europaea Mammalogica (www.european-mammals.org)



described in Section 4.3. As input to the algorithm we used an unconstrained
candidate collection of itemsets (minimum support = 0) from Path and BIC as
the regularization method. In Figure 4(a) we see that the first tree corresponds
to the model used to generate the dataset. The second tree, given in Figure 4(b),
tend to link the items that are one gap away from each other. This is a natural
result since close items are the most informative about each other.

BIC = 522.905958, AIC = 503.367182, MDL = 522.333594

5, 6 6, 74, 50, 1 1, 2 2, 3 3, 4

(a) First junction tree of Path data.

BIC = 561.499992, AIC = 543.263801, MDL = 560.355263

7

4, 6 2, 4 3, 5 1, 30, 30, 2

(b) Second junction tree of Path data.

Fig. 4. Junction trees for Path, a syntetic data in which an item is generated from
the previous item by flipping it with 0.3 probability. The junction trees are regularized
using BIC. The tree in Figure 4(b) is generated by ignoring the cliques of the tree in
Figure 4(a).

With Courses data one large junction tree of itemsets is produced with sev-
eral noticeable components. One distinct component at one end of the tree
contains introductory courses like Introduction to Programming, Introduction
to Databases, Introduction to Application design and Java Programming. Re-
spectively, the other end of the tree features several distinct components with
itemsets on more specialized themes in computer science and software engineer-
ing. The central node connecting each of these components in the entire tree is
the itemset node {Software Engineering, Models of Programming and Comput-
ing, Concurrent systems}.

Figure 5 shows about two-thirds of the entire Courses junction tree, with
the component related to introductory courses removed because of the space
constraints. We see a concurrent and distributed systems related component in
the lower left part of the figure, a more software development oriented component
in the lower right quarter and a Robotics/AI component in the upper right corner
of the tree. The entire Courses junction tree can be found in [6].

We continued our experiments by studying the behavior of the model scores
in a sequence of trees induced by a corresponding sequence of decomposable
families. For the Path data the scores of the two first junction trees are shown in
Figure 4, with the first one yielding smaller values. For the real-world datasets,
we computed a sequence of trees from each dataset, again, with the uncon-
strained candidate collection as input and using AIC, BIC, or MDL respectively
as the regularization method. Computation took about 1 minute per tree. The
corresponding scores are plotted as a function of the order of the correspond-
ing junction tree (Figure 6). The scores are increasing in the sequence, which is
expected since the algorithm tries to select the best model and the subsequent
trees are constructed from the left-over itemsets. The increase rate slows down
towards the end since the last trees tend to have only singleton itemsets as nodes.



Fig. 5. A part of the junction tree constructed from the Courses dataset. The tree was
constructed using an unconstrained candidate family (min. support = 0) as input and
BIC as regularization.
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(c) Mammals

Fig. 6. Scores of covers as a function of the order of the cover. Each cover is com-
puted with an unconstrained candidate family (min. support = 0) as input and the
corresponding regularization. The y-axis is the model score divided by 104.

6.3 Reducing itemsets

Our next goal was to study the sizes of the generated decomposable families
compared to the size of the original candidate set. As input for this experiment,
we used several different candidate collections of frequent itemsets resulting from
varying the support threshold, and generated the corresponding decomposable
itemset families (Table 6.3).



First Family, |G1| All Families, |
⋃
Gi|

Dataset σ |F| AIC BIC MDL None AIC BIC MDL None

Mammals .20 2169705 221 213 215 10663 668 625 630 11103
Mammals .25 416939 201 197 197 6820 535 507 509 7106
Paleo .01 22283 339 281 290 5260 993 834 812 6667
Paleo .02 979 254 235 239 376 463 433 429 733
Paleo .03 298 191 190 190 210 231 228 228 277
Paleo .05 157 147 147 147 151 149 149 149 156
Courses .01 16945 217 202 206 4087 565 522 524 4357
Courses .02 2493 185 177 177 625 354 342 342 751
Courses .03 773 176 170 170 276 264 261 261 359
Courses .05 230 136 132 132 158 167 164 164 186

Table 2. Sizes of decomposable families for various datasets. The second column is the
minimum support threshold, the third column is the number of the frequent itemsets
in the candidate set. The columns 4–7 contain the size of the first result family and
the columns 8–11 contain the size of the union of the result families.

From the results we see that the decomposable families are much smaller
compared to the original candidate set, as a large portion of itemsets are pruned
due to the running intersection property. The regularizations AIC, BIC, MDL
prune the results further. The pruning is most effective when the candidate set
is large.

6.4 Boolean Queries

We conducted a series of boolean queries for Paleo and Courses datasets. For
each dataset we pick randomly 1000 queries of size 5. We constructed a sequence
of trees using BIC and the unconstrained (min. support = 0) candidate set as
input. The average computation time for a single query was 0.3s. A portion (abt.
10%) of queries had to be discarded due to the numerical instability of the linear
program solver we used.

A queryQ for a decomposable family Gi produces a frequency interval fr(Q;Gi).
We also computed the frequency interval fr(Q; I), where I is a family containing
nothing but singletons. We studied the ratios r(Q;n) = |

⋂n
1 fr(Q;Gi)|/|fr(Q; I)|

as a function of n, that is, the ratio between the tightness of the bound using n
families and the singleton model.

From the results given in Figure 7 we see that the first decomposable family in
the sequence yields in about 10 % of the queries an improved bound with respect
to the singleton family. As the number of decomposable families increases, the
number of queries with tighter bounds goes from 10% up to 60%. Also, in general
the absolute bounds become tighter for the queries as we increase the number
of decomposable families. For Courses the median of the ratio r(Q; 15) is about
0.5.
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Fig. 7. Boolean query ratios from Paleo and Course datasets. Figure 7(a) contains the
percentage of queries having r(Q;n) < 1, that is, the percentage of queries improved
over the singleton model as a function of the number of decomposable families. Fig-
ures 7(b)–7(c) are box plots of the ratios r(Q;n), where Q is a random query and n is
the number of decomposable families.

7 Related Work

One of the main uses of our algorithm is in reducing itemset mining results
into a smaller and a more manageable group of itemsets. One of the earliest
approaches on itemset reduction include close itemsets [21] and maximal frequent
itemset [22]. Also more recently, a significant amount of interesting research has
been produced on the topic [23–26]. Yan et al. [24] proposed a statistical model
in which k representative patterns are used to summarize the original itemset
family as well as possible. This approach has, however, a different goal to that
of ours, as our model aims to describe the data itself. From this point of view
the work by Siebes et al. [25] is perhaps the most in concordance to ours. Siebes
et al. propose an MDL based method where the reduced group of itemsets aim
to compress the data as well as possible. Yet, their approach is technically and
methodologically quite different and does not provide a probabilistic model of
the data as our model does. Furthermore, non of the above approaches provide a
naturally following tree based representation of the mining results as our model
does.

Traditionally, junction trees are not used as a direct model but rather as a
technique for decomposing directed acyclic graph (DAG) models [5]. However,
there is a clear difference between the DAG models and our approach. Assume
that we have 4 items a, b, c, and d. Consider a DAG model p(a)p(b; a)p(c; a)p(d; bc).
While we can decompose this model using junction trees we cannot express it
exactly. The reason for this is that the DAG model contains the assumption
of independence of b and c given a. This allows us to break the clique abc into
smaller parts. In our approach the cliques are the empirical distributions with no
independence assumptions. DAG models and junction tree models are equivalent
for Chow-Liu tree models [10].

Our algorithm for constructing junction trees is closely related to EFS algo-
rithm [27, 28] in which new cliques are created in a similar fashion. The main



difference between the approaches is that we add new cliques in a level-wise
fashion. This allows a more straightforward algorithm. Another benefit of our
approach is Theorem 3. On the other hand, Corollary 1 implies that our algo-
rithm can be seen also as an extension of Chow-Liu tree model [10].

8 Conclusions and Future Work

In this study we applied the concept of junction trees to create decomposable
families of itemsets. The approach suits well for the problem of itemset selec-
tion, and has several advantages. The naturally following junction trees provide
an intuitive representation of the mining results. From the computational point
of view, the model provides leverage for problems that could be intractable
using generic families of itemsets. We provided an efficient algorithm to build
decomposable itemset families, and gave an application example with frequency
bound querying using the model. Empirical results showed that our algorithm
yields high quality results. Because of the expressiveness and good interpretabil-
ity of the model, applications such as classification using decomposable families
of itemsets could prove an interesting avenue for future research. Even more
generally, we anticipate that in the future decomposable models could prove
computationally useful with pattern mining applications that otherwise could
be hard to tackle.
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