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Abstract

We consider the problem of defining the significance
of an itemset. We say that the itemset is significant if
we are surprised by its frequency when compared to the
frequencies of its sub-itemsets. In other words, we esti-
mate the frequency of the itemset from the frequencies
of its sub-itemsets and compute the deviation between
the real value and the estimate. For the estimation we
use Maximum Entropy and for measuring the deviation
we use Kullback-Leibler divergence.

A major advantage compared to the previous meth-
ods is that we are able to use richer models whereas the
previous approaches only measure the deviation from
the independence model.

We show that our measure of significance goes to
zero for derivable itemsets and that we can use the rank
as a statistical test. Our empirical results demonstrate
that for our real datasets the independence assumption
is too strong but applying more flexible models leads to
good results.

1 Introduction

How significant is a given itemset? Itemsets are pop-
ular and well-studied patterns in binary data mining.
The major drawback is that, given a dataset, there are
exponential number of itemsets. Hence, we need to
rank itemsets in order to prune the uninteresting ones.

Traditionally, the frequency of an itemset is used as
a rank measure. The higher the frequency, the more
significant is the itemset. Frequency has many virtues:
It is easy to interpret and because of its property of
anti-monotonicity there exist efficient algorithms for
finding all frequent itemsets [2, 3]. There are, how-
ever, major drawbacks. First, a frequent itemset may
be insignificant: An itemset AB may be frequent just

because itemsets A and B are frequent. Second, an in-
frequent itemset may be significant: If itemsets A and
B are frequent, the infrequency of AB is interesting
information.

Alternative methods for ranking itemsets are sug-
gested in [1, 6, 12]. These methods are discussed in
more detail in Section 4. A common feature to these
methods is that they compare the frequency of an item-
set to an estimate obtained from the independence
model. That is, the more the itemset deviates from the
independence model, the more surprising, and thus the
more significant, the itemset is.

Our proposal for ranking itemsets resembles the
aforementioned approaches. We estimate the frequency
of a given itemset from the frequencies of some se-
lected sub-itemsets. Namely, we use Maximum En-
tropy for the estimation. This approach is more flex-
ible than the independence model, since the indepen-
dence model uses only the margins (the frequencies of
itemsets of size 1) for prediction whereas our approach
allows to use the information available from the item-
sets of larger size. While our ranking method is based
on well-known tools, no similar framework has been
suggested previously.

Unlike the frequency, our measure is not decreasing
with respect to set inclusion. Hence we cannot mine
significant itemsets in a level-wise fashion. However, it
turns out that in some cases we can prune a large set of
uninteresting itemsets (w.r.t. the measure). Namely, if
the itemset is derivable [7], then the measure is equal
to 0. We also point out that can be used as a statis-
tical test, thus providing a clear interpretation for the
measure.

The rest of the paper is organized as follows: Prelim-
inaries are given in Section 2. The definition and the
properties of the measure are given in Section 3. We
present related work in Section 4. Section 5 is devoted
to experiments and finally we provide conclusions in
Section 6.
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2 Preliminaries and Notation

In this section we review briefly theory of itemsets
and also introduce some notation that will be used later
on.

A binary dataset D is a collection of M binary vec-
tors, transactions, having length K. Such dataset can
be naturally represented as a matrix of size M × K.
We denote the number of transactions by |D| = M .
To each column of the matrix we assign an attribute
ai. Let A = {a1, . . . , aK} be the collection of all at-
tributes. An itemset X ⊆ A is a set of attributes.

We say that a transaction (binary vector) ω covers
an itemset X if ai ∈ X implies ωi = 1. Given a dataset
D, a frequency of an itemset X is a proportion of the
transaction in D covering X . Note that if an itemset
Y is a subset of X , then the frequency of Y is larger
than or equal to the frequency of X . In other words,
frequency is decreasing with respect to set inclusion.

A sample space Ω is the set of all binary vectors
of length K. We take a simplistic approach in defining
distributions: A distribution p : Ω → [0, 1] is a function
from a sample space Ω to a real number between 0 and
1 such that

∑
ω∈Ω p(ω) = 1. Given an itemset X , a

frequency of X calculated from a distribution p is the
probability of binary vector covering X . We denote
this by

p(X = 1) = p(ω covers X).

A family of itemsets F is called anti-monotonic or
downward closed if every subset of each member of F
is also a member of F . Note that a collection of σ-
frequent itemsets, that is, itemsets having frequency
larger than some given threshold σ, is downward closed.
We are interested in three particular families:

• I, the family containing only itemsets of size 1.

• C, the family containing itemsets of size 1 and 2.

• A, the family containing all itemsets.

Given a dataset D, we say that an itemset X is
derivable if by knowing the frequencies (calculated from
D) of each proper subset of X we can deduce the fre-
quency of X . For example, if some subset of X has a
frequency 0, then we know that X must also have fre-
quency 0. Thus, in this case, X is derivable. An itemset
that is not derivable is called non-derivable. A family
of all non-derivable itemsets is downward closed [7].

3 Maximum Entropy Ranking

In this section we introduce our ranking method and
discuss its theoretical properties. The fundamental

idea behind our approach is to measure how surpris-
ing an itemset is compared to its subsets. In other
words, we estimate the itemset frequency by using the
frequencies of its subsets and compare how close is our
estimation to the actual value. The estimation is done
using Maximum Entropy method and the comparison
is done using Kullback-Leibler divergence.

3.1 Definition

Let D be a binary dataset and let {a1, . . . , aK} be
its attributes. The number of columns in D is K. As-
sume that we are given G, an itemset we wish to rank.
We define a projected dataset DG by keeping only the
attributes included in G.

Let ΩG = {0, 1}|G| be a space of binary vectors of
length |G|. We define an empirical distribution qG :
ΩG → [0, 1] to be

qG(ω) =
Number of samples in DG equal to ω

|DG| .

Our goal is to compare the distribution qG to a dis-
tribution obtained by using Maximum Entropy [20], a
method that we will describe next.

Assume now that we are given a family of itemsets
F ⊆ A and let θX be the frequency of X ∈ F calculated
from D. Our next step is to define an approximative
distribution using only the itemsets in F . In defining
qG we projected out the attributes outside G. Simi-
larly, we are only interested in subsets of G. Hence we
define a projected family FG to be

FG = {X ∈ F | X ⊂ G, X �= G, X �= ∅} .

Note that FG may contain 2|G| − 2 itemsets, at maxi-
mum. This is the case if F = A.

We say that a distribution p : ΩG → [0, 1] satisfies
the itemsets FG if for each itemset X ∈ FG and its
frequency θX we have

p(X = 1) = θX .

Let P be the set of all distributions satisfying the item-
sets FG. This set is not empty since qG ∈ P. We select
the distribution from P maximizing the entropy

−
∑

ω∈ΩG

p(ω) log p(ω).

We denote this distribution by pME . Note that pME

depends on G, F , and θ but we have omitted these
variables from the notation for the sake of clarity.

We define the rank measure r (G;F , D) to be the
divergence between qG and pME , that is,

r (G;F , D) =
∑

ω∈ΩG

qG(ω) log
qG(ω)

pME(ω)
.
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We omit D from the notation when the dataset is clear
from the context.

Example 1. Assume the simplest case where G = a
is an itemset of size 1. Let θG be the frequency of G.
Note that FG = ∅, hence there are no constraints on
selecting pME . This means that pME is the uniform
distribution, that is, pME(0) = pME(1) = 1/2. In this
case the measure is

r (a;F) = (1 − θG) log (2(1 − θG)) + θG log (2θG)

obtaining its minimum when θG = 1/2 and is at its
maximum when θG = 0 or θG = 1.

We are mainly interested in three kinds of measures:
The first is r (G; I) in which I is the family of itemsets
of size 1. In this case the Maximum Entropy distribu-
tion is equal to the independence model.

The second case is r (G; C), where C contains the
itemsets of size 1 and 2. We can show that there exists
a matrix B such that for the non-zero entries of pME

we have
pME(ω) ∝ exp

(
ωT Bω

)
.

Hence, r (G; C) can be seen as the measure of the de-
viation from the discrete Gaussian model.

Our third type of measure is r (G;A) in which pME

is predicted from all the proper sub-itemsets of G. In
this case we can prove that for a certain set of real
numbers ri we have for the non-zero entries of pME

pME(ω) ∝
∏

Xi∈AG

exp (riI (ω covers Xi)) ,

where I is the indicator function. We discuss the eval-
uation of our approach in Section 3.3.

3.2 Properties

In this section we discuss various properties of r (G).
We will first point the connection between r (G) and
derivable itemsets and then discuss the use of r (G) as
a statistical test.

Theorem 2. Let G be a derivable itemset. Then

r (G;A) = 0.

Proof. We can argue that if we know the frequencies of
all sub-itemsets of G, we can derive the distribution qG

and vice versa. This implies that there is one-to-one
correspondence between the distribution p ∈ P satisfy-
ing the itemsets AG and the frequency p(G = 1). Since
we can derive the frequency of G from AG, it follows
that P = {qG}, and hence pME = qG.

We can reformulate the previous theorem in a
stronger form by pointing out that we need to know
only non-derivable itemsets.

Theorem 3. Let F be a family of all non-derivable
itemsets. Let G be outside of F . Then r (G;F) = 0.

Proof. Since all unknown sub-itemsets of G are deriv-
able from FG, the argument of Theorem 2 holds.

The following theorem provides the interpretation
to the value of r (G) and points out that we can use
r (G) as a statistical test.

Theorem 4. Let G be a non-derivable itemset. Under
the 0-hypothesis that G is distributed according to pME,
the quantity 2 |D| r (G;A) is distributed asymptotically
as χ2 with degree 1 of freedom.

Theorem 4 is a special case of the following more
general statement.

Theorem 5. Let G be a non-derivable itemset and let
F be an itemset family. Define H to be

H = {X ∈ A | X ⊆ G, X �= ∅, X /∈ FG} ,

that is, H is a family of sub-itemsets of G not belong-
ing to FG. Under the 0-hypothesis that the itemsets
in H are distributed according to pME, the quantity
2 |D| r (G;F) is distributed asymptotically as χ2 with
degree |H| = 2|G| − 1 − |FG| of freedom.

Theorem 5 is stated (but not proven) in a more gen-
eral form in [20]. A rather technical proof is provided
in Appendix A.

3.3 Computing Rank

Evaluating the measure requires computing pME

distribution and comparing it to the empirical dis-
tribution. Both distributions have |ΩG| = 2|G| en-
tries. Solving pME distribution can be done using
Iterative Scaling algorithm [10, 18]. The algorithm
consists of consecutive steps. One such step requires
O (|ΩG|) = O

(
2|G|) time. Hence computing the mea-

sure requires exponential time but it is doable for item-
sets of reasonable size.

Note that in defining the measure we only use item-
sets that are subsets of the query itemset G. This prun-
ing guarantees that the number of entries in the distri-
butions is 2|G| and not, at worst, 2K , where K is the
number of columns in the dataset. We can show that
in the general case solving pME is an NP-complete
problem [25, 8]; hence pruning attributes is essential.
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4 Related Work

Our work resembles approach of [6] in which the
authors defined the significance of an itemset by com-
paring the distribution qG against the independence
model. The authors used χ2 statistical test as a mea-
sure, that is, if p is the distribution related to the in-
dependence model, the rank measure is

rb (G) =
∑

ω∈ΩG

(qG(ω) − p(ω))2

p(ω)
. (1)

In [12] the authors also compare the frequency of an
itemset against the independence model but in addition
they use Bayes screening to smooth the values. Also,
in [1] the authors proposed the collective strength as
a measure of significance. To be more specific, we say
that a transaction ω ∈ ΩG is good if it contains only
0s or only 1s. Let p be the distribution related to the
independence model. Then the measure is

rcs (G) =
qG (ω is good)
p (ω is good)

p (ω is bad)
qG (ω is bad)

. (2)

This measure obtains small values when data obeys
the independence model. In a related work presented
in [11] the authors define an itemset to be interesting
if its frequency increases significantly from one dataset
to another. In [15] the authors order itemsets based on
their p-values. In [17] the authors used entropy of tree
models for ranking itemsets.

The authors in [24] showed empirically that Max-
imum Entropy model provides excellent estimates for
itemsets. Rank can be used for pruning a large family
of itemsets by picking the itemsets having the largest
rank. Other pruning methods are proposed in [4, 7, 23].
The authors in [27] suggest a generic framework for dis-
covering significant rules. In addition, a relevant frame-
work is described in [21]; the authors define a pattern
ordering given an estimation algorithm and a loss func-
tion. In [22] the authors use information component
analysis to find patterns in a drug safety database.

5 Experiments

In this section we present our empirical results. In
the first 3 sections we explain the datasets and the
setup. In our experiments we investigate the signifi-
cance of itemsets, how different measures are related
to each other, and the monotonicity of the ranks.

5.1 Synthetic Datasets

For the testing purposes we created two synthetic
datasets. Each dataset contained 100 attributes and

5000 rows. The first dataset, gen-ind, was generated
such that the attributes were independent. The mar-
gins were sampled uniformly from [0, 1]. In the second
dataset, gen-copy, each column was a copy of the pre-
vious column corrupted by the symmetric white noise.
The amount of noise, that is the probability

p (ai = 1 | ai−1 = 0) = p (ai = 0 | ai−1 = 1) ,

was selected uniformly from [0, 1] for each column ai,
individually. The first column was generated by a coin
flip. Our expectations are that in gen-ind the item-
sets of size 1 are significant and that in gen-copy the
itemsets of size 2 are significant.

5.2 Real Datasets

In our experiments we used the following real-world
datasets. Data in Accidents1 were obtained from the
Belgian “Analysis Form for Traffic Accidents” forms
that is filled out by a police officer for each traffic ac-
cident that occurs with injured or deadly wounded ca-
sualties on a public road in Belgium. In total, 340 183
traffic accident records are included in the dataset [16].
The datasets POS 2, WebView-1 3 and WebView-2 4

were contributed by Blue Martini Software as the KDD
Cup 2000 data [19]. POS contains several years worth
of point-of-sale data from a large electronics retailer.
WebView-1 and WebView-2 contain several months
worth of click-stream data from two e-commerce web
sites. Kosarak5 consists of (anonymized) click-stream
data of a Hungarian on-line news portal. Retail6 is a
retail market basket data supplied by an anonymous
Belgian retail supermarket store [5]. The dataset Pa-
leo7 contains information of species fossils found in spe-
cific paleontological sites in Europe [13], preprocessed
as in [14].

5.3 Setup for the Experiments

In this section we will describe how we conducted
our experiments. We reduced the largest datasets by
selecting the first 10000 rows and 200 most frequent
attributes. From each dataset we computed all almost
non-derivable itemsets. By almost non-derivable we
mean that the difference between the upper bound and

1http://fimi.cs.helsinki.fi/data/accidents.dat.gz
2http://www.ecn.purdue.edu/KDDCUP/data/BMS-POS.dat.gz
3http://www.ecn.purdue.edu/KDDCUP/data/

BMS-WebView-1.dat.gz
4http://www.ecn.purdue.edu/KDDCUP/data/

BMS-WebView-2.dat.gz
5http://fimi.cs.helsinki.fi/data/kosarak.dat.gz
6http://fimi.cs.helsinki.fi/data/retail.dat.gz
7NOW public release 030717 available from [13].
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the lower bound of a given itemset, say G, is at least n
transactions. In other words, if we know the frequen-
cies of all sub-itemsets of G, then we cannot predict the
frequency of G within n transactions. If n = 0, then an
itemset is non-derivable. It is known that the family
of almost non-derivable itemsets is anti-monotonic [7,
Lemma 3.1]. A reason to use almost non-derivable
itemsets instead of frequent itemsets is the statement
of Theorem 3, that is, r (G;A) = 0 if the itemset is
derivable. The other reason is that we want to study
how the measure behaves for infrequent itemsets.

To keep the sizes of the obtained families within rea-
sonable bounds we used different thresholds for differ-
ent datasets: For gen-ind, Retail and WebView-2 we
set n = 5. For POS the threshold n was set to 10 and
for gen-copy and Accidents n was set to 100. For the
rest of the datasets we set n = 0, that is, we mined all
non-derivable itemsets from these datasets.

For each itemset from the obtained itemsets we
queried the following measures:

• Frequency.

• Rank measures r (G; I), r (G; C), r (G;A). We
normalized these measures by applying Theo-
rem 5.

• Measures discussed in Section 4: A χ2 test rb (G)
defined in Eq. 1 and a collective strength rcs (G)
defined in Eq. 2.

The evaluation times and the sizes of the query fam-
ilies are given in Table 1.

Data n # of queries max |G| Time

gen-ind 5 156699 6 414s
gen-copy 100 111487 4 29s

Accidents 100 354399 6 316s
Kosarak 5 223734 5 8s

Paleo 0 166903 5 23s
POS 10 246640 6 20s

Retail 0 818813 6 32s
WebView-1 5 226313 5 7s
WebView-2 0 715398 6 58s

Table 1. The evaluation times and the sizes
of the query families. The second column
is the threshold used in mining almost non-
derivable itemsets. The fourth column is the
maximal size of a query itemset. The evalua-
tion time includes the calculation of all mea-
sures but not the mining process itself.

5.4 Significant Itemsets

Our first experiment is to study how many of the
itemsets are significant. We did this by comparing the
P-values of our measures with risk level 0.05. The re-
sults are given in Tables 2–4. We also provide a typical
example of box plots in Figure 1.

itemset size

Data 1 2 3 4 5 6 All

gen-ind .92 .05 .04 .03 .02 .01 .03
gen-copy .08 .14 .24 .03 – – .07

Accidents .99 .60 .95 1 1 1 .97
Kosarak 1 .62 .99 1 1 – .96

Paleo 1 .30 .81 .99 1 – .88
POS 1 .45 .99 1 1 1 .95

Retail 1 .14 .30 .93 1 1 .45
WebView-1 1 .70 1 1 1 – .97
WebView-2 1 .20 .69 1 1 1 .85

Table 2. The percentages of significant item-
sets according to r (G; I). Each entry is a
fraction of itemsets of specific size calcu-
lated from a specific dataset. Significance is
measured using χ2 distribution with 0.05 risk
level.

itemset size

Data 1 2 3 4 5 6 All

gen-ind .92 .05 .06 .05 .04 .03 .05
gen-copy .08 .14 .06 .03 – – .03

Accidents .99 .60 .21 .45 .62 .60 .45
Kosarak 1 .62 .32 .50 .38 – .37

Paleo 1 .30 .12 .15 .21 – .15
POS 1 .45 .09 .21 .43 .66 .17

Retail 1 .14 .04 .08 .12 .38 .05
WebView-1 1 .70 .48 .32 .52 – .48
WebView-2 1 .20 .11 .20 .88 1 .17

Table 3. The percentages of significant item-
sets according to r (G; C). Each entry is a
fraction of itemsets of specific size calcu-
lated from a specific dataset. Significance is
measured using χ2 distribution with 0.05 risk
level.

Let us first study gen-ind, a synthetic dataset with
independent columns. We see from Table 2 that ac-
cording to r (G; I) a large portion of itemsets of size

316316316316316



itemset size

Data 1 2 3 4 5 6 All

gen-ind .92 .05 .06 .06 .06 .07 .06
gen-copy .08 .14 .06 .05 – – .05

Accidents .99 .60 .21 .07 .06 .11 .12
Kosarak 1 .62 .32 .10 .06 – .33

Paleo 1 .30 .12 .21 .64 – .18
POS 1 .45 .09 .06 .08 .41 .11

Retail 1 .14 .04 .49 .61 .75 .15
WebView-1 1 .70 .48 .10 .26 – .45
WebView-2 1 .20 .11 .55 .79 1 .36

Table 4. The percentages of significant item-
sets according to r (G;A). Each entry is a
fraction of itemsets of specific size calcu-
lated from a specific dataset. Significance is
measured using χ2 distribution with 0.05 risk
level.

1 2 3 4 5

0.5

0.95

r(
G

, I
)

Size of itemset

1 2 3 4 5

0.5

0.95

r(
G

, C
)

Size of itemset

1 2 3 4 5

0.5

0.95

r(
G

, A
)

Size of itemset

Figure 1. Box plots of the rank measures
computed from Paleo.

1 are significant but only a small portion of itemsets
having size larger than 1 is significant. This is an ex-
pected result since the frequencies obey the indepen-
dence model. In Tables 3 and 4 we have similar results
for r (G; C) and for r (G;A). However, the values of
r (G; C) and for r (G;A) tend to be larger than the
values of r (G; I). The reason for this is a type of over-
learning: Since the frequencies of itemsets are calcu-
lated from the datasets, they are imprecise. Hence, the
itemsets with larger size mislead us during prediction,
because the resulting Maximum Entropy distribution
is not an independent model (although close to one).

Let us continue by studying gen-copy, a synthetic
data in which an attribute is a noisy copy of the pre-
vious attribute. We see that r (G; C) tends to have
smaller ranks than r (G; I) when G has size 3. The
reason for this is that, unlike with gen-ind, the inde-
pendence model cannot explain the dataset. However,
when we predict using also the itemsets of size 2, the
prediction becomes more accurate.

We turn our attention to real datasets. We see that
for these datasets the independence model is too strict:
According to r (G; I) almost all itemsets are significant:
The results change drastically, when we use richer mod-
els. According to r (G; C) or r (G;A) only 5%–50% of
the itemsets are significant, depending on the dataset.
Similar overfitting that occurred with gen-ind also oc-
curs in some but not all real datasets (see Figure 1).
For instance, in Retail r (G;A) tends to produce higher
values than r (G; C) but not in POS.

5.5 The Effect of the Known Itemsets

We continued our experiments by comparing the
measures r (G; I), r (G; C), and r (G;A) against each
other. This was done by calculating the correlations
between the rank measures. The results are given in
Table 5.

r (G; I) r (G; I) r (G; C)
vs. vs. vs.

Data r (G; C) r (G;A) r (G;A)

gen-ind 0.74 0.26 0.40
gen-copy 0.52 0.28 0.53

Accidents 0.17 0.09 0.43
Kosarak 0.15 0.14 0.92

Paleo 0.16 0.22 0.67
POS 0.12 0.10 0.77

Retail 0.62 0.68 0.86
WebView-1 0.15 0.15 0.92
WebView-2 0.43 0.58 0.61

Table 5. Correlations between the measures
r (G; I), r (G; C), and r (G;A).

From the results we see that all correlations are pos-
itive. For the real datasets the correlations between
r (G; C) and r (G;A) are systematically higher than the
correlations between r (G; I) and r (G;A) or between
r (G; C) and r (G;A). This suggests that r (G; I) pro-
duces different ranks whereas r (G; C) and r (G;A) are
more similar. This supports the behavior we have seen
in Section 5.4.
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5.6 Rank vs. Other Methods

We compared our measures against the other rank-
ing methods described in Section 5.3. Namely, we
calculated the correlations of r (G; I), r (G; C), and
r (G;A) against the frequency of G, rb (G), the χ2 test
for independency, and rcs (G), the collective strength
of the itemset G. The results are presented in Table 6.
We also studied the relationships by plotting our mea-
sures as functions of the aforementioned approaches
and such examples are given in Figure 2.

Our first observation is that r (G; I) correlates
strongly with rb (G). This is an expected result since
both test the independency of attributes inside the
itemsets and also because r (G; I) is asymptotically a
χ2 test (see Theorem 5). There is some correlation
between rb (G) and r (G; C) and r (G;A) although this
correlation is much weaker compared to r (G; I).

Apart from WebView-2, there is little correlation be-
tween the measures and the frequency.

The correlation between the measures and the col-
lective strength rcs (G) exists but varies depending on
the method and the dataset. The strongest correla-
tions are obtained when rcs (G) is compared against
r (G; I). This is a natural result since rcs (G) produces
small values when attributes are independent.

5.7 Monotonicity of Rank

In this section we investigate the relationship be-
tween the rank of an itemset and the ranks of its sub-
itemsets. Namely, we tested whether the measures are
monotonic, that is, whether r (G;F) ≥ r (H ;F) for
all H ⊂ G. We deliberately ignored sub-itemsets hav-
ing size 1 since they all have very high rank. We also
tested whether the measures are anti-monotonic, that
is, decreasing w.r.t. set inclusion.

From the results given in Tables 7–8 our first obser-
vation is that r (G; I) are increasing for real datasets
but not for the synthetic datasets. The raw values of
r (G; I) are indeed increasing but this does not hold for
the P-values since the number of degrees varies.

On the contrary, r (G; C) and r (G;A) are increas-
ing for extremely few itemsets. Table 8 suggests that
r (G; C) and r (G;A) satisfies the anti-monotonicity to
some degree. Measures r (G; C) and r (G;A) are anti-
monotonic for relatively high percentage of itemsets of
size 3. Among itemsets of size 4, r (G;A) satisfies the
property of anti-monotonicity for a slightly larger por-
tion of itemsets than r (G; C).

6 Conclusions

We have given a definition of a measure for ranking
itemsets. The idea is to predict the frequency of an
itemset from the frequencies of its sub-itemsets and
measure the deviation between the actual frequency
and the prediction. The more the itemset deviates from
the prediction, the more it is significant. We estimated
the frequencies using Maximum Entropy and we used
Kullback-Leibler divergence to measure the deviation.
The measure can be computed in O(2|G|) time, where
|G| is the size of the itemset needed to be ranked.

A clear advantage of our approach to the previous
methods is that the previous solutions calculate the
deviation from the independence model whereas we are
able to use the information available from the itemsets
of larger size, and thus use more flexible models.

Our empirical results for real data show that the in-
dependence is too strict assumption: Almost all item-
sets were significant according to r (G; I). The results
changed when we applied the more flexible models,
r (G; C) and r (G;A). We also observed an interesting
type of overfitting: In some cases we obtain a better
prediction if we do not use all the available information.

We showed that there is a little correlation be-
tween our measures and the other approaches. For
instance, infrequent itemset may be significant and fre-
quent itemset may be insignificant. We also observed
that r (G; I) is monotonic for a large portion of item-
sets, whereas r (G; C) and r (G;A) are anti-monotonic
for a significant portion of itemsets.
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A Asymptotic Behaviour of the Diver-
gence

By asymptotic behaviour we mean the following: We
assume that we have an ensemble of datasets Di such
that |Di| → ∞. We assume that G is non-derivable in
each Di and that the frequencies of FG are all equal.

Define N = |D| and M = |H|. Let P be the set of
distributions satisfying the itemsets FG. It is easy to
see that we can parameterize P with frequencies of H.

In other words, let H = {H1, . . . , HM}. Then for each
p ∈ P, there is a unique frequency vector θ ∈ R

M such
that θi = p(Hi = 1). Let Θ be the set of all possible
frequency vectors. The set Θ is a closed polytope —
the vectors located on the boundary of Θ corresponds
to the distributions in which at least one entry is 0.

Let θME be a frequency vector corresponding to the
Maximum Entropy distribution pME . We need to show
that θME is not a boundary vector. Assume the con-
verse, then pME must have pME(ω) = 0 for some ω.
We know that this implies that p(ω) = 0 for all p ∈ P [9,
Theorem 3.1]. Let Y be the itemset containing the el-
ements for which ω has positive entries. This in turns
(see [7]) implies that for each p ∈ P

p(G = 1) =
∑

Y ⊆Z⊆G

(−1)|G|−|Z|p(Z = 1),

making G derivable and contradicting the statement.
Since θME is an inner point of Θ, let B ⊂ Θ be an

open ball around θME . Assume that θ ∈ B. By taking
the expectation of the second-degree Taylor expansion
of log p(ω;θME)

p(ω;θ) around θ we arrive to

−KL
(
θ‖θME

)
=

1
2
∆θT Eθ [H(ω; η)] ∆θ,

where ∆θ = θME − θ and η is a vector lying between θ
and θME , and H is the Hessian matrix of log p(ω; η).

Let θN be the frequencies of H obtained
from a dataset containing N points. Accord-
ing to 0-hypothesis we have θN � θME and√

N
(
θN − θME

)
� N(0, Σ), where Σ is a covariance

matrix,

Σij =pME(Hi = 1, Hj = 1)

− pME(Hi = 1)pME(Hj = 1).

If θN ∈ B, we let ηN correspond to η in the Taylor
expansion, otherwise we set ηN = 0. We can show that
ηN � θME [26, Theorem 2.7]. Consider a function

g(a, b, c, d) =
{ −aT Ec [H(ω; b)]a, c ∈ B

(2/d)KL
(
c‖θME

)
, c /∈ B

.

This function is continuous in
(
R

M , θME , θME , 0
)
.

Hence, we can apply continuous map theory [26, The-
orem 2.3] to obtain that

2NKL
(
θN‖θME

)
= g

(√
N

(
θN − θME

)
, ηN , θN ,

1
N

)

� −XT EθME

[
H

(
ω; θME

)]
X,

where X is a random variable distributed as N(0, Σ).
We know that EθME

[
H

(
ω; θME

)]
= −Σ−1 [20,

Lemma 4.11]. Theorem follows since XT Σ−1X is dis-
tributed as χ2 with M degrees of freedom [26, Lemma
17.1].

321321321321321


