
Nikolaj Tatti. 2006. Safe projections of binary data sets. Acta Informatica, volume 42,
numbers 89, pages 617638.

© 2006 by author and © 2006 Springer Science+Business Media

Preprinted with kind permission of Springer Science and Business Media.

Acta Informatica manuscript No.
(will be inserted by the editor)

Nikolaj Tatti

Safe Projections of Binary Data Sets

January, 2006

Abstract Selectivity estimation of a boolean query based on frequent item-
sets can be solved by describing the problem by a linear program. How-
ever, the number of variables in the equations is exponential, rendering the
approach tractable only for small-dimensional cases. One natural approach
would be to project the data to the variables occurring in the query. This
can, however, change the outcome of the linear program.

We introduce the concept of safe sets: projecting the data to a safe set
does not change the outcome of the linear program. We characterise safe sets
using graph theoretic concepts and give an algorithm for finding minimal
safe sets containing given attributes. We describe a heuristic algorithm for
finding almost-safe sets given a size restriction, and show empirically that
these sets outperform the trivial projection.

We also show a connection between safe sets and Markov Random Fields
and use it to further reduce the number of variables in the linear program,
given some regularity assumptions on the frequent itemsets.

Keywords Itemsets · Boolean Query Estimation · Linear Programming

Mathematics Subject Classification (2000) 68R10 · 90C05

CR Subject Classification G.3

1 Introduction

Consider the following problem: given a large, sparse matrix that holds
boolean values, and a boolean formula on the columns of the matrix, ap-
proximate the probability that the formula is true for a random row of the
matrix. A straightforward exact solution is to evaluate the formula on each

HIIT Basic Research Unit, Laboratory of Computer and Information Science,
Helsinki University of Technology, Finland. E-mail: ntatti@cc.hut.fi

2

row. Now consider the same problem using instead of the original matrix a
family of frequent itemsets, i.e., sets of columns where true values co-occur
in a large fraction of all rows [1,2]. An optimal solution is obtained by ap-
plying linear programming in the space of probability distributions [11,19,3],
but since a distribution has exponentially many components, the number of
variables in the linear program is also large and this makes the approach in-
feasible. However, if the target formula refers to a small subset of the columns,
it may be possible to remove most of the other columns without degrading
the solution; somewhat surprisingly, it is not safe to remove all columns that
do not appear in the formula. In this paper we investigate the question of
which columns may be safely removed. Let us clarify this scenario with the
following simple example.

Example 1 Assume that we have three attributes, say a, b, and c, and a data
set D having five transactions

D = {(1, 0, 1) , (0, 0, 1) , (0, 1, 1) , (1, 1, 0) , (1, 0, 0)} .
Let us consider five itemsets, namely a, b, c, ab, and ac. The frequency of an
itemset is the fraction of transactions in which all the attributes appearing
in the itemset occur simultaneously. This gives us the frequencies θa = 3

5 ,
θb = 2

5 , θc = 3
5 , θab = 1

5 , and θac = 1
5 . Let θ = [θa, θb, θc, θab, θac]

T . Let us now
assume that we want to estimate the frequency of the formula b∧c. Consider
now a distribution p defined on these three attributes. We assume that the
distribution satisfies the frequencies, that is, p(a = 1) = θa, p(a = 1, b = 1) =
θab, etc. We want to find a distribution minimising/maximising p(b∧ c = 1).
To convert this problem into a linear program we consider p as a real vector
having 23 = 8 elements. To guarantee that p is indeed a distribution we
must require that p sum to 1 and that p ≥ 0. The requirements that p must
satisfy the frequencies can be expressed in a form Ap = θ for a certain A. In
addition, p(b ∧ c = 1) can be expressed as cT p for a certain c. Thus we have
transform the original problem into a linear program

min cT p s.t.
∑
p = 1, p ≥ 0, Ap = θ.

Solving this program (and also the max-version of the program) gives us an
interval I =

[
1
5 ,

2
5

]
for possible frequencies of p(b ∧ c = 1). This interval

has the following property: A rational frequency η ∈ I if and only if there
is a data set having the frequencies θ and having η as the fraction of the
transactions satisfying the formula b∧ c. If we, however, delete the attribute
a from the data set and evaluate the boundaries using only the frequencies
θb and θc, we obtain a different interval I ′ =

[
0, 2

5

]
.

The problem is motivated by data mining, where fast methods for com-
puting frequent itemsets are a recurring research theme [10]. A potential new
application for the problem is privacy-preserving data mining, where the data
is not made available except indirectly, through some statistics. The idea
of using itemsets as a surrogate for data stems from [16], where inclusion-
exclusion is used to approximate boolean queries. Another approach is to

3

assume a model for the data, such as maximum entropy [21]. The linear
programming approach requires no model assumptions.

The boolean query scenario can be seen as a special case for the following
minimisation problem: Let K be the number of attributes. Given a family F
of itemsets, frequencies θ for F , and some function f that maps any distribu-
tion defined on a set {0, 1}K to a real number find a distribution satisfying
the frequencies θ and minimising f . To reduce the dimension K we assume
that f depends only on a small subset, say B, of items, that is, if p is a
distribution defined on {0, 1}K and pB is p marginalised to B, then we can
write f(p) = f(pB). The projection is done by removing all the itemsets from
F that have attributes outside B.

The question is, then, how the projection to B alters the solution of
the minimisation problem. Clearly, the solution remains the same if we can
always extend a distribution defined on B satisfying the projected family of
itemsets to a distribution defined on all items and satisfying all itemsets in F .
We describe sufficient and necessary conditions for this extension property.
This is done in terms of a certain graph extracted from the family F . We
call the set B safe if it satisfies the extension property.

If the set B is not safe, then we can find a safe set C containing B.
We will describe an efficient polynomial-time algorithm for finding a safe
set C containing B and having the minimal number of items. We will also
show that this set is unique. We will also provide a heuristic algorithm for
finding a restricted safe set C having at maximum M elements. This set is
not necessarily a safe set and the solution to the minimisation problem may
change. However, we believe that it is the best solution we can obtain using
only M elements.

The rest of the paper is organised as follows: Some preliminaries are
described in Section 2. The concept of a safe set is presented in Section 3 and
the construction algorithm is given in Section 4. In Section 5 we explain in
more details the boolean query scenario. In Section 6 we study the connection
between safe sets and MRFs. Section 7 is devoted to restricted safe sets. We
present empirical tests in Section 8 and conclude the paper with Section 9.
Proofs for the theorems are given in Appendix.

2 Preliminaries

We begin by giving some basic definitions. A 0–1 database is a pair 〈D,A〉,
where A is a set of items {a1, . . . , aK} and D is a data set, that is, a multiset
of subsets of A.

A subset U ⊆ A of items is called an itemset. We define an itemset
indicator function SU : {0, 1}K → {0, 1} such that

SU (z) =
{

1, zi = 1 for all ai ∈ U
0, otherwise .

Throughout the paper we will use the following notation: We denote a random
binary vector of length K by X = XA. Given an itemset U we define XU

4

to be the binary vector of length |U | obtained from X by taking only the
elements corresponding to U .

The frequency of the itemset U taken with respect ofD, denoted by U (D),
is the mean of SU taken with respect D, that is, U (D) = 1

|D|
∑

z∈D SU (z).
For more information on itemsets, see e.g. [1].

An antimonotonic family F of itemsets is a collection of itemsets such
that for each U ∈ F each subset of U also belongs to F . We define straightfor-
wardly the itemset indicator function SF = {SU | U ∈ F} and the frequency
F (D) = {U (D) | U ∈ F} for families of itemsets.

If we assume that F is an ordered family, then we can treat SF as an
ordinary function SF : {0, 1}K → {0, 1}L, where L is the number of elements
in F . Also it makes sense to consider the frequencies F (D) as a vector
(rather than a set). We will often use θ to denote this vector. We say that a
distribution p defined on {0, 1}K satisfies the frequencies θ, if Ep [SF] = θ.

Given a set of items C, we define a projection operator in the following
way: A data set DC is obtained from D by deleting the attributes outside C.
A projected family of itemsets FC = {U ∈ F | U ⊆ C} is obtained from F by
deleting the itemsets that have attributes outside C. The projected frequency
vector θC is defined similarly. In addition, if we are given a distribution p
defined on {0, 1}K , we define a distribution pC to be the marginalisation of
p to C. Given a distribution q over C we say that p is an extension of q if
pC = q.

3 Safe Projection

In this section we define a safe set and describe how such sets can be char-
acterised using certain graphs.

We assume that we are given a set of items A = {a1, . . . , aK} and an
antimonotonic family F of itemsets and a frequency vector θ for F . We define
P to be the set of all probability distributions defined on the set {0, 1}K . We
assume that we are given a function f : P → R mapping a distribution to a
real number. Let us consider the following problem:

Problem P:
Minimise f(p)
subject to p ∈ P

Ep [SF] = θ.

(1)

That is, we are looking for the minimum value of f among the distributions
satisfying the frequencies θ. Generally speaking, this is a very difficult prob-
lem. Each distribution in P has 2K entries and for largeK even the evaluation
of f(p) may become infeasible. This forces us to make some assumptions on
f . We assume that there is a relatively small set C such that f does not
depend on the attributes outside C. In other words, we can define f by a
function fC such that fC(pC) = f(p) for all p. Similarly, we define PC to be
the set of all distributions defined on the set {0, 1}|C|. We will now consider

5

the following projected problem:

Problem PC :
Minimise fC(q)
subject to q ∈ PC

Eq [SFC] = θC .

Let us denote the minimising distribution of Problem P by p̂ and the min-
imising distribution of Problem PC by q̂. It is easy to see that f(p̂) ≥ fC(q̂).
In order to guarantee that f(p̂) = fC(q̂), we need to show that C is safe as
defined below.

Definition 1 Given an antimonotonic family F and frequencies θ for F , a
set C is θ-safe if for any distribution q ∈ PC satisfying the frequencies θC ,
there exists an extension p ∈ P satisfying the frequencies θ. If C is safe for
all θ, we say that it is safe.

Example 2 Let us continue Example 1. We saw that the outcome of the linear
program changes if we delete the attribute a. Let us now show that the set
C = {b, c} is not a safe set. Let q be a distribution defined on the set C such
that q(b = 0, c = 0) = 0, q(b = 1, c = 0) = 2

5 , q(b = 0, c = 1) = 3
5 , and

q(b = 1, c = 1) = 0. Obviously, this distribution satisfies the frequencies θb
and θc. However, we cannot extend this distribution to a such that all the
frequencies are to be satisfied. Thus, C is not a safe set.

We will now describe a sufficient condition for safeness. We define a de-
pendency graph G such that the vertices of G are the items V (G) = A
and the edges correspond to the itemsets in F having two items E(G) =
{{ai, aj} | aiaj ∈ F}. The edges are undirected. Assume that we are given a
subset C of items and select x /∈ C. A path P = (ai1 , . . . , aiL) from x to C
is a graph path such that x = ai1 and only aiL ∈ C. We define a frontier of
x with respect of C to be the set of the last items of all paths from x to C

front (x,C) = {aiL | P = (ai1 , . . . , aiL) is a path from x to C} .
Note that front (x,C) = front (y, C), if x and y are connected by a path
not going through C. The following theorem gives a sufficient condition for
safeness.

Theorem 1 Let F be an antimonotonic family of itemsets. Let C be a set
of items C ⊆ A such that for each x /∈ C the frontier of x is in F , that is,
front (x,C) ∈ F . It follows that C is a safe set.

The vague intuition behind Theorem 1 is the following: x has influence
on C only through front (x,C). If front (x,C) ∈ F , then the distributions
marginalised to front (x,C) are fixed by the frequencies. This means that x
has no influence on C and hence it can be removed.

We saw in Examples 1 and 2 that the projection changes the outcome if
the projection set is not safe. This holds also in the general case:

Theorem 2 Let F be an antimonotonic family of itemsets. Let C be a set
of items C ⊆ A such that there exists x /∈ C whose frontier is not in F , that
is, front (x,C) /∈ F . Then there are frequencies θ for F such that C is not
θ-safe.

6

Safeness implies that we can extend every satisfying distribution q in Problem
PC to a satisfying distribution p in Problem P. This implies that the optimal
values of the problems are equal:

Theorem 3 Let F be an antimonotonic family of itemsets. If C is a safe
set, then the minimum value of Problem P is equal to the minimum value of
Problem PC for any query function and for any frequencies θ for F .

If the condition of being safe does not hold, that is, there is a distribution q
that cannot be extended, then we can define a query f resulting 0 if the input
distribution is q, and 1 otherwise. This construction proves the following
theorem:

Theorem 4 Let F be an antimonotonic family of itemsets. If C is not a
safe set, then there is a function f and frequencies θ for F such that the
minimum value of Problem P is strictly larger than the minimum value of
Problem PC .

Example 3 Assume that we have 6 attributes, namely, {a, b, c, d, e, f}, and
an antimonotonic family F whose maximal itemsets are ab, bc, cd, ad, de, ce,
and af . The dependency graph is given in Fig. 1.

a

b
c

d
e

f

Fig. 1 An example of dependency graph.

Let C1 = {a, b, c}. This set is not a safe set since front (d, C1) = ac /∈ F .
On the other hand the set C2 = {a, b, c, d} is safe since front (f, C2) = a ∈ F
and front (e, C2) = cd ∈ F .

The proof of Theorem 1 reveals also an interesting fact:

Theorem 5 Let F be an antimonotonic family of itemsets and let θ be fre-
quencies for F . Let C be a safe set. Let pME be the maximum entropy dis-
tribution defined on A and satisfying θ. Let qME be the maximum entropy
distribution defined on C and satisfying the projected frequencies θC . Then
qME is pME marginalised to C.

The theorem tells us that if we want to obtain the maximum entropy distribu-
tion marginalised to C and if the set C is safe, then we can remove the items
outside C. This is useful since finding maximum entropy using Iterative Fit-
ting Procedure requires exponential amount of time [7,12]. Using maximum
entropy for estimating the frequencies of itemsets has been shown to be an
effective method in practice [21]. In addition, if we estimate the frequencies of
several boolean formulae using maximum entropy distribution marginalised
to safe sets, then the frequencies are consistent. By this we mean that the
frequencies are all evaluated from the same distribution, namely pME .

7

4 Constructing a Safe Set

Assume that we are given a function f that depends only on a set B, not
necessarily safe. In this section we consider a problem of finding a safe set
C such that B ⊆ C for a given B. Since there are usually several safe sets
that include B, for example, the set of all attributes A is always a safe set,
we want to find a safe set having the minimal number of attributes. In this
section we will describe an algorithm for finding such a safe set. We will also
show that this particular safe set is unique.

The idea behind the algorithm is to augment B until the safeness con-
dition is satisfied. However, the order in which we add the items into B
matters. Thus we need to order the items. To do this we need to define a few
concepts: A neighbourhood N (x | r) of an item x of radius r is the set of the
items reachable from x by a graph path of length at most r, that is,

N (x | r) = {y | ∃P : x→ y, |P | ≤ r} . (2)

In addition, we define a restricted neighbourhood NC (x | y) which is similar
to N (x | r) except that now we require that only the last element of the path
P in Eq. 2 can belong to C. Note that NC (x | r)∩C ⊆ front (x,C) and that
the equality holds for sufficiently large r.

The rank of an item x with respect of C, denoted by rank (x | C), is a
vector v of length |A| − 1 such that vi is the number of elements in C to
whom the shortest path from x has the length i, that is,

vi = |C ∩ (NC (x | i) −NC (x | i− 1))|.
We can compare ranks using the bibliographic order. In other words, if we
let v = rank (x | C) and w = rank (y | C), then rank (x | C) < rank (y | C) if
and only if there is an integer M such that vM < wM and vi = wi for all
i = 1, . . . ,M − 1.

We are now ready to describe our search algorithm. The idea is to search
the items that violate the assumption in Theorem 1. If there are several can-
didates, then items having the maximal rank are selected. Due to efficiency
reasons, we do not look for violations by calculating front (x,C). Instead, we
check whether NC (x | r) ∩ C ∈ F . This is sufficient because

NC (x | r) ∩ C /∈ F =⇒ front (x,C) /∈ F .
This is true because NC (x | r) ∩ C ⊆ front (x,C) and F is antimonotonic.
The process is described in full detail in Algorithm 1.

We will refer to the safe set Algorithm 1 produces as safe (B | F). We will
now show that safe (B | F) is the smallest possible, that is,

|safe (B | F)| = min {|Y | | B ⊆ Y, Y is a safe set} .
The following theorem shows that in Algorithm 1 we add only necessary
items into C during each iteration.

Theorem 6 Let C be a set of items during some iteration of Algorithm 1
and let Z = {x ∈W | rank (x | C) = v} be the set of items as it is defined in
Algorithm 1. Let Y be any safe set containing C. Then it follows that Z ⊆ Y .

8

Algorithm 1 The algorithm for finding a safe set C. The required input is
B, the set that should be contained in C, and an antimonotonic family F of
itemsets. The graph G is the dependency graph evaluated from F .

C ⇐ B.
repeat

r ⇐ 1.
V ⇐ {x | ∃y ∈ C, xy ∈ E(G)} − C {V contains the neighbours of C.}
repeat

For each x ∈ V , Ux ⇐ NC (x | r) ∩ C.
if there exists Ux such that Ux /∈ F then

Break {A violation is found.}
end if
r ⇐ r + 1.

until no Ux changed
if there is a violation then

W ⇐ {x ∈ V | Ux /∈ F} {W contains the violating items.}
v ⇐ max {rank (x | C) | x ∈ W}.
Z ⇐ {x ∈ W | rank (x | C) = v}
C ⇐ C ∪ Z {Augment C with the violating items having the largest rank.}

end if
until there are no violations.

Corollary 1 A safe set containing B containing the minimal number of
items is unique. Also, this set is contained in each safe set containing B.

Corollary 2 Algorithm 1 produces the optimal safe set.

Example 4 Let us continue Example 3. Assume that our initial set B is
{a, b, c}. We note that front (d,B) = front (e,B) = ac /∈ F . Therefore, B
is not a safe set. The ranks are rank (d | B) = 2 and rank (e | B) = [1, 1]T

(the trailing zeros are removed). It follows that the rank of d is larger than the
rank of e and therefore d is added into B during Algorithm 1. The resulting
set C = {a, b, c, d} is the minimal safe set containing B.

5 Frequencies of Boolean Formulae.

A boolean formula f : {0, 1}K → {0, 1} maps a binary vector to a binary
value. Given a family F of itemsets and frequencies θ for F we define a
frequency interval, denoted by fi (f | F , θ), to be

fi (f | F , θ) = {Ep [f] | Ep [SF] = θ} ,
that is, a set of possible frequencies coming from the distribution satisfying
given frequencies. For example, if the formula f is of form a1∧ . . .∧aM , then
we are approximating the frequency of a possibly unknown itemset.

Note that this set is truly an interval and its boundaries can be found
using the optimisation problem given in Eq. 1. It has been shown that finding
the boundaries can be reduced to a linear programming [11,19,3]. However,
the problem is exponential in K and therefore it is crucial to reduce the
dimension. Let us assume that the boolean formula depends only on the
variables coming from some set, say B. We can now use Algorithm 1 to find
a safe set C including B and thus to reduce the dimension.

9

Example 5 Let us continue Example 3. We assign the following frequencies
to the itemsets: θx = 0.5 where x ∈ {a, b, c, d, e, f}, θbd = 0.5, θcd = 0.4, and
the frequencies of the rest itemsets in F are equal to 0.25. We consider the
formula f = b ∧ c. In this case f depends only on B = {b, c}. If we project
directly to B, then the frequency is equal to fi (f | FB, θB) = [0, 0.5].

The minimal safe set containing B is C = {a, b, c, d}. Since θbd = 0.5 it
follows that b is equivalent to d. This implies that the frequency of f must
be equal to fi (f | FC , θC) = θcd = 0.4.

There exists many problems similar to ours: A well-studied problem is
called PSAT in which we are given a CNF-formula and probabilities for
each clause asking whether there is a distribution satisfying these proba-
bilities. This problem is NP-complete [9]. A reduction technique for the
minimisation problem where the constraints and the query are allowed to
be conditional is given in [14]. However, this technique will not work in
our case since we are working only with unconditional queries. A general
problem where we are allowed to have first-order logic conditional sentences
as the constraints/queries is studied in [15]. This problem is shown to be
NP-complete. Though these problems are of more general form they can be
emulated with itemsets [4]. However, we should note that in the general case
this construction does not result an antimonotonic family.

There are many alternative ways of approximating boolean queries based
on statistics: For example, the use of wavelets has been investigated in [17].
Query estimation using histograms was studied in [18] (though this approach
does not work for binary data). We can also consider assigning some prob-
ability model to data such as Chow-Liu tree model or mixture model (see
e.g. [22,21,6]). Finally, if B is an itemset and we know all the proper sub-
sets of B and B is safe, then to estimate the frequency of B we can use
inclusion-exclusion formulae given in [5].

6 Safe Sets and Junction Trees

Theorem 1 suggests that there is a connection between safe sets and Markov
Random Fields (see e.g. [13] for more information on MRF). In this section
we will describe how the minimal safe sets can be obtained from junction
trees. We will demonstrate through a counter-example that this connection
cannot be used directly. We will also show that we can use junction trees to
reformulate the optimisation problem and possibly reduce the computational
burden.

6.1 Safe Sets and Separators

Let us assume that the dependency graph G obtained from a family F of
itemsets is triangulated, that is, the graph does not contain chordless circuits
of size 4 or larger. In this case we say that F is triangulated. For simplicity,
we assume that the dependency graph is connected. We need some concepts
from Markov Random Field theory (see e.g. [13]): The clique graph is a

10

graph having cliques of G as vertices and two vertices are connected if the
corresponding cliques share a mutual item. Note that this graph is connected.
A spanning tree of the clique graph is called a junction tree if it has a running
intersection property. By this we mean that if two cliques contain the same
item, then each clique along the path in the junction tree also contains the
same item. An edge between two cliques is called a separator, and we associate
with each separator the set of items mutual to both cliques.

We also make some further assumptions concerning the family F : Let V
be the set of items of some clique of the dependency graph. We assume that
every proper subset of V is in F . If F satisfies this property for each clique,
then we say that F is clique-safe. We do not need to have V ∈ F because
there is no node having an entire clique as a frontier.

Let us now investigate how safe sets and junction trees are connected.
First, fix some junction tree, say T , obtained from G. Assume that we are
given a set B of items, not necessarily safe. For each item b ∈ B we select
some clique Qb ∈ V (T) such that b ∈ Qb (same clique can be associated with
several items). Let b, c ∈ B and consider the path in T from Qb to Qc. We call
the separators along such paths inner separators. The other separators are
called outer separators. We always choose cliques Qb such that the number
of inner separators is the smallest possible. This does not necessarily make
the choice of the cliques unique, but the set of inner separators is always
unique. We also define an inner clique to be a clique incident to some inner
separator. We refer to the other cliques as outer cliques.

Example 6 Let us assume that we have 5 items, namely {a, b, c, d, e}. The
dependency graph, its clique graph, and the possible junction trees are given
in Figure 2.

bc

d

e

a
ab

bcd

bce

ab
bcd bce

ab
bce bcd

Fig. 2 An example of an dependency graph, a corresponding clique graph, and
the possible junction trees.

Let B = {a, d}. Then the inner separator in the upper junction tree is
the left edge. In the lower junction tree both edges are inner separators.

The following three theorems describe the relation between the safe sets
containing B and the inner separators.

Theorem 7 Let F be an antimonotonic, triangulated and clique-safe family
of itemsets. Let T be a junction tree. Let C be a set containing B and all the
items from the inner separators of B. Then C is a safe set.

The following corollary follows from Corollary 1.

11

Corollary 3 Let F be an antimonotonic, triangulated and clique-safe family
of itemsets. Let T be a junction tree. The minimal safe set containing B may
contain (in addition to the set B) only items from the inner separators of B.

Theorem 8 Let F be an antimonotonic, triangulated and clique-safe family
of itemsets. There exists a junction tree such that the minimal safe set is
precisely the set B and the items from the inner separators of B.

Theorem 8 raises the following question: Is there a tree, not depending on B,
such that the minimal safe set is precisely the set B and the items from the
inner separators. Unfortunately, this is not the case as the following example
shows.

Example 7 Let us continue Example 6. Let B1 = {a, d} and B2 = {a, e}.
The corresponding minimal safe sets are C1 = {a, b, d} and C2 = {a, b, e}.
The first case corresponds to the upper junction tree given in Figure 2, and
the latter case corresponds the lower junction tree.

6.2 Reformulation of the Optimisation Problem Using Junction Trees

We have seen that a optimisation problem can be reduced to a problem
having 2|C| variables, where C is a safe set. However, it may be the case
that C is very large. For example, imagine that the dependency graph is a
single path (ai1 , . . . , aiL) and we are interested in finding the frequency for
ai1 ∧ aiL . Then the safe set contains the entire path. In this section we will
try to reduce the computational burden even further.

The main benefit of MRF is that we are able to represent the distribution
as a fraction of certain distributions. We can use this factorisation to encode
the constraints. A small drawback is that we may not be able to express
easily the distribution defined on B, the set of which the query depends.
This happens when B is not contained in any clique. This can be remedied
by adding edges to the dependency graph.

Let us make the previous discussion more rigorous. Let f be a query
function and let B be the set of attributes of which f depends. Let C =
safe (B | F) be the minimal safe set containing B. Project the items outside
C and let G be the connectivity graph obtained from FC . We add some
additional edges to G. First, we make the set B fully connected. Second, we
triangulate the graph. Let T be a junction tree of the resulting graph.

Since B is fully connected, there is a clique Qr such that B ⊆ Qr. For
each clique Qi in T we define pi to be a distribution defined on Qi. Similarly,
for each separator Sj we define qj to be a distribution defined on Sj . Denote
by Si the collection of separators of a clique Qi.

Problem LP:
Minimise f(pr)
subject to For each Qi ∈ V (T),

pi satisfies θQi

pi is an extension of qj
for each Sj ∈ Si.

(3)

12

The following theorem states that the above formulation is correct:

Theorem 9 The problem in Eq. 3 solves correctly the optimisation problem.

Note that we can remove all qj by combining the constraining equations. Thus
we have replaced the original optimisation problem having 2|C| variables with
a problem having

∑
2|Qi| variables. The number of cliques in T is bounded by

|C|, the number of attributes in the safe set. To see this select any leaf clique
Qi. This clique must contain a variable that is not contained in any other
clique because otherwise Qi is contained in its parent clique. We remove Qi

and repeat this procedure. Since there are only |C| attributes, there can be
only |C| cliques. Let M be the size of the maximal clique. Then the number
of variables is bounded by |C|2M . If M is small, then solving the problem is
much easier than the original formulation.

Example 8 Assume that we have a family of itemsets whose dependency
graph G is a path (ai1 , . . . , aiL) and that we want to evaluate the boundaries
for a formula ai1 ∧aiL . We cannot neglect any variable inside the path, hence
we have a linear program having 2L variables.

By adding the edge {ai1 , aiL} to G we obtain a cycle. To triangulate the
graph we add the edges

{
ai1 , aij

}
for 3 ≤ j ≤ L − 1. The junction tree

in consists of L − 2 cliques of the form ai1aijaij+1 , where 2 ≤ j ≤ L − 1.
The reformulation of the linear program gives us a program containing only
(L− 2) 23 variables.

7 Restricted Safe Sets

Given a set B Algorithm 1 constructs the minimal safe set C. However, the
set C may still be too large. In this section we will study a scenario where
we require that the set C should have M items, at maximum. Even if such
a safe set may not exist we will try to construct C such that the solution
of the original minimisation problem described in Eq. 1 does not alter. As
a solution we will describe a heuristic algorithm that uses the information
available from the frequencies.

First, let us note that in the definition of a safe set we require that we can
extend the distribution for any frequencies. In other words, we assume that
the frequencies are the worst possible. This is also seen in Algorithm 1 since
the algorithm does not use any information available from the frequencies.

Let us now consider how we can use the frequencies. Assume that we
are given a family F of itemsets and frequencies θ for F . Let C be some
(not necessarily a safe) set. Let x /∈ C be some item violating the safeness
condition. Assume that each path from x to C has an edge e = (u, v) having
the following property: Let θuv, θu, and θv be the frequencies of the itemsets
uv, u, and v, respectively. We assume that θuv = θuθv and that the itemset
uv is not contained in any larger itemset in F . We denote the set of such
edges by E.

Let W be the set of items reachable from x by paths not using the edges
in E. Note that the set W has the same property than x. We argue that

13

we can remove the set W . This is true since if we are given a distribution
p defined on A − W , then we can extend this distribution, for example,
by setting p(XA) = pME(XW)p(XA−W), where pME(XW) is the maximum
entropy distribution defined on W . Note that if we remove the edges E, then
Algorithm 1 will not include W .

Let us now consider how we can use this situation in practice. Assume
that we are given a function w which assign to each edge a non-negative
weight. This weight represents the correlation of the edge and should be 0
if the independence assumption holds. Assume that we are given an item
x /∈ C violating the safeness condition but we cannot afford adding x into
C. Define H to be the subgraph containing x, the frontier front (x,C) and
all the intermediate nodes along the paths from x to C. We consider finding
a set of edges E that would cut x from its frontier and have the minimal
cost

∑
e∈E w(e). This is a well-known min-cut problem and it can be solved

efficiently (see e.g. [20]). We can now use this in our algorithm in the following
way: We build the minimal safe set containing the set B. For each added item
we construct a cut with a minimal cost. If the safe set is larger than a constant
M , we select from the cuts the one having the smallest weight. During this
selection we neglect the items that were added before the constraint M was
exceeded. We remove the edges and the corresponding itemsets and restart
the construction. The algorithm is given in full detail in Algorithm 2.

Algorithm 2 The algorithm for finding a restricted safe set C. The required
input is B, the set that should be contained in C, an antimonotonic family
F of itemsets, a constant M which is an upper bound for |C|, and a weight
function w for the edges. The graph G is the dependency graph evaluated
from F .

C ⇐ B.
repeat

Find a violating item x having the largest rank.
if |C| + 1 > M then

Let H be the graph containing x, front (x,C) and all the intermediate nodes.
Let Ex be the min-cut of H cutting x and front (x,C) from each other.
Let vx be the cost of Ex.

end if
C ⇐ C + x.

until there are no violations.
if |C| > M then

Let x be the item such that vx is the smallest possible.
Remove the edges Ex from the dependency graph.
Remove the itemsets corresponding to the edges from F .
Remove also possible higher-order itemsets to preserve the antimonotonicity
of F .
Restart the algorithm.

end if

Example 9 We continue Example 5. As a weight function for the edges we use
the mutual information. This gives us wbd = 0.6931 and wcd = 0.1927. The
rest of the weights are 0. Let B = {b, c}. We set the upper bound for the size
of the safe set to be M = 3. The minimal safe set is C = {a, b, c, d}. The min

14

cuts are Ea = {(a, b) , (a, c)} and Ed = {(d, b) , (d, c)}. The corresponding
weights are va = 0 and vd = wbd + wcd > 0. Thus by cutting the edges Ea

we obtain the set Cr = {b, c, d}. The frequency interval for the formula b∧ c
is fi (f | FCr , θCr) = 0.4 which is the same as in Example 5.

8 Empirical Tests

We performed empirical tests to assess the practical relevance of the restricted
safe sets, comparing it to the (possibly) unsafe trivial projection. We mined
itemset families from two data sets, and estimated boolean queries using
both the safe projection and the trivial projection. The first data set, which
we call Paleo1, describes fossil findings: the attributes correspond to genera
of mammals, the transactions to excavation sites. The Paleo data is sparse,
and the genera and sites exhibit strong correlations. The second data set,
which we call Mushroom, was obtained from the FIMI repository2. The data
is relatively dense.

First we used the Apriori [2] algorithm to retrieve some families of item-
sets. A problem with Apriori was that the obtained itemsets were concen-
trated on the attributes having high frequency. A random query conducted
on such a family will be safe with high probability — such a query is trivial
to solve. More interesting families would the ones having almost all variables
interacting with each other, that is, their dependency graphs have only a
small number of isolated nodes. Hence we modified APriori: Let A be the
set containing all items and for each a ∈ A letm(a) be the frequency of a. Let
m be the smallest frequency m = mina∈Am(a) and define s(a) = m(a)/m.
Let U be an itemset and let θU be its frequency. Define ηU =

∏
a∈U s(a). We

modify Apriori such that the itemset U is in the output if and only if the
ratio θU/ηU is larger than given threshold σ. Note that this family is anti-
monotonic and so Apriori can be used. By this modification we are trying
to give sparse items a fair chance and in our tests the relative frequencies did
produce more scattered families.

For each family of itemsets we evaluated 10000 random boolean queries.
We varied the size of the queries between 2 and 4. At first, such queries seem
too simple but our initial experiments showed that these queries do result
large safe sets. A few examples are given in Figure 3. In most of the queries
the trivial projection is safe but there are also very large safe sets. Needless
to say that we are forced to use restricted safe sets.

Given a query f we calculated two intervals i1(f) = fi (f | FB, θB) and
i2(f) = fi (f | FC , θC) where B contains the attributes of f and C is the
restricted safe set obtained from B using Algorithm 2. In other words, i1(f)
is obtained by using the trivial projection and i2(f) is obtained by projecting
to the restricted safe set. As parameters for Algorithm 2 we set the upper
bound M = 8 and the weight function w to be the mutual information.

We divided queries into two classes. A class Trivial contained the queries
in which the trivial projection and the restricted safe set were equal. The rest

1 Paleo was constructed from NOW public release 030717 available from [8].
2 http://fimi.cs.helsinki.fi

15

0 20 40 60 80
0

500

1000

1500

2000

2500

3000
Paleo, σ = 3 x 10−3

th
e

nu
m

be
r

of
 q

ue
rie

s

the size of a safe set
0 20 40 60 80

0

500

1000

1500

2000

2500

3000
Mushroom, σ = 0.8 x 10−6

the size of a safe set

th
e

nu
m

be
r

of
 q

ue
rie

s

Fig. 3 Distributions of the sizes of safe sets. The left histogram is obtained from
Paleo data by using σ = 3×10−3 as the threshold parameter for modified APriori.
The right histogram is obtained from Mushroom data with σ = 0.8 × 10−8.

of the queries were labelled as Complex. We also defined a class All that
contained all the queries.

As a measure of goodness for a frequency interval we considered the differ-
ence between the upper and the lower bound. Clearly i2(f) ⊆ i1(f), so if we
define a ratio r(f) = ‖i2(f)‖

‖i1(f)‖ , then it is always guaranteed that 0 ≤ r(f) ≤ 1.
Note that the ratio for the queries in Trivial is always 1.

The ratios were divided into appropriate bins. The results obtained from
Paleo data are shown in the contingency table given in Tables 1 and 2 and
the results for Mushroom data are given in Tables 3 and 4.

σ × 10−3

Class r ≥ r < 3 3.25 3.5 3.75 4

Complex 0 0.2 1 0 0 0 0
0.2 0.4 0 1 1 0 0
0.4 0.6 15 11 10 5 4
0.6 0.8 74 53 50 55 45
0.8 1 238 173 124 99 68

1 3289 1931 1353 1116 868
Trivial 1 6383 7831 8462 8725 9015

Table 1 Counts of queries obtained from Paleo data and classified according to
the ratio r(f), giving the relative tightness of the bounds from restricted safe sets
compared to the trivial projections. A column represents a family of itemsets used
as the constraints. The parameter σ is the threshold given to the modified APriori.
The class Trivial contains the queries in which the projections were equal; Com-
plex contains the remaining queries. For example, there were 15 complex queries
having the ratios between 0.4 − 0.6 in the first family.

By examining Tables 1 and 2 we conclude the following: If we conduct
a random query of form f , then in 97% − 99% of the cases the frequency
intervals are equal i1(f) = i2(f). However, if we limit ourselves to the cases
where the projections differ (the class Complex), then the frequency interval

16

σ × 10−3

Class 3 3.25 3.5 3.75 4

Complex 91.0% 89.0% 88.0% 87.5% 88.1%
All 96.7% 97.6% 98.1% 98.4% 98.8%

Table 2 Probability of r(f) = 1 among the complex queries and among all queries.
The queries were obtained from Paleo data. A column represents a family of item-
sets used as the constraints. The parameter σ is the threshold given to the modified
APriori.

σ × 10−6

Class r ≥ r < 0.8 0.9 1

Complex 0.0 0.2 46 38 42
0.2 0.4 96 81 80
0.4 0.6 302 261 260
0.6 0.8 96 86 69
0.8 1 168 118 109

1 4738 4146 3993
Trivial 1 4554 5270 5447

Table 3 Counts of queries obtained from Mushroom data and classified according
to the ratio r(f), giving the relative tightness of the bounds from restricted safe
sets compared to the trivial projections. A column represents a family of itemsets
used as the constraints. The parameter σ is the threshold given to the modified
APriori. The class Trivial contains the queries in which the projections were
equal; Complex contains the remaining queries.

σ × 10−6

Class 0.8 0.9 1

Complex 87.0% 87.7% 87.7%
All 92.9% 94.2% 94.4%

Table 4 Probability of r(f) = 1 among the complex queries and among all queries.
The queries were obtained from Mushroom data. A column represents a family of
itemsets used as the constraints. The parameter σ is the threshold given to the
modified APriori.

is equal only in about 90% of the cases. In addition, the probability of i1(f)
being equal to i2(f) increases as the threshold σ grows.

The same observations apply to the results for Mushroom data (Ta-
bles 3 and 4): In 93% − 94% of the cases the frequency intervals are equal
i1(f) = i2(f), but if we consider only the cases where projections differ, then
the percentage drops to 88%. The percentages are slightly smaller than those
obtained from Paleo data and also there are relatively many queries whose
ratios are very small.

The computational burden of a trivial query is equivalent for both triv-
ial projection and restricted safe set. Hence, we examine complex queries
in which there is an actual difference in the computational burden. The re-
sults suggest that in abt. 10% of the complex queries the restricted safe sets
produced tighter interval.

17

9 Conclusions

We started our study by considering the following problem: Given a family F
of itemsets, frequencies for F , and a boolean formula find the bounds of the
frequency of the formula. This can be solved by linear programming but the
problem is that the program has an exponential number of variables. This
can be remedied by neglecting the variables not occurring in the boolean
formula and thus reducing the dimension. The downside is that the solution
may change.

In the paper we defined a concept of safeness: Given an antimonotonic
family F of itemsets a set C of attributes is safe if the projection to C
does not change the solution of a query regardless of the query function and
the given frequencies for F . We characterised this concept by using graph
theory. We also provided an efficient algorithm for finding the minimal safe
set containing some given set.

We should point out that while our examples and experiments were fo-
cused on conjunctive queries, our theorems work with a query function of
any shape

If the family of itemsets satisfies certain requirements, that is, it is trian-
gulated and clique-safe, then we can obtain safe sets from junction trees. We
also show that the factorisation obtained from a junction tree can be used
to reduce the computational burden of the optimisation problem.

In addition, we provided a heuristic algorithm for finding restricted safe
sets. The algorithm tries to construct a set of items such that the optimisation
problem does not change for some given itemset frequencies.

We ask ourselves: In practice, should we use the safe sets rather than the
trivial projections? The advantage is that the (restricted) safe sets always
produce outcome at least as good as the trivial approach. The downside
is the additional computational burden. Our tests indicate that if a user
makes a random query then in abt. 93% − 99% of the cases the bounds are
equal in both approaches. However, this comparison is unfair because there
is a large number of queries where the projection sets are equal. To get the
better picture we divide the queries into two classes Trivial and Complex,
the first containing the queries such that the projections sets are equal, and
the second containing the remaining queries. In the first class there is no
improvement in the outcome but there is no additional computational burden
(checking that the set is safe is cheap comparing to the linear programming).
If a query was in Complex, then in 10% of the cases projecting on restricted
safe sets did produce more tight bounds.

Acknowledgements The author wishes to thank Heikki Mannila and Jouni Sep-
pänen for their helpful comments.

References

1. Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association
rules between sets of items in large databases. In Peter Buneman and Sushil

18

Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data, pages 207–216, Washington, D.C., 26–28 1993.

2. Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
Aino Inkeri Verkamo. Fast discovery of association rules. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 307–328. AAAI Press/The MIT
Press, 1996.

3. Artur Bykowski, Jouni K. Seppänen, and Jaakko Hollmén. Model-independent
bounding of the supports of Boolean formulae in binary data. In Pier Luca
Lanzi and Rosa Meo, editors, Database Support for Data Mining Applications:
Discovering Knowledge with Inductive Queries, LNCS 2682, pages 234–249.
Springer Verlag, 2004.

4. Toon Calders. Computational complexity of itemset frequency satisfiability.
In Proceedings of the 23nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database System, 2004.

5. Toon Calders and Bart Goethals. Mining all non-derivable frequent itemsets.
In Proceedings of the 6th European Conference on Principles and Practice of
Knowledge Discovery in Databases, 2002.

6. C. K. Chow and C. N. Liu. Approximating discrete probability distributions
with dependence trees. IEEE Transactions on Information Theory, 14(3):462–
467, May 1968.

7. J. Darroch and D. Ratchli. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

8. Mikael Forselius. Neogene of the old world database of fossil mammals (NOW).
University of Helsinki, http://www.helsinki.fi/science/now/, 2005.

9. George Georgakopoulos, Dimitris Kavvadias, and Christos H. Papadimitriou.
Probabilistic satisfiability. Journal of Complexity, 4(1):1–11, March 1988.

10. Bart Goethals and Mohammed Javeed Zaki, editors. FIMI ’03, Frequent Item-
set Mining Implementations, Proceedings of the ICDM 2003 Workshop on Fre-
quent Itemset Mining Implementations, 19 December 2003, Melbourne, Florida,
USA, volume 90 of CEUR Workshop Proceedings, 2003.

11. Theodore Hailperin. Best possible inequalities for the probability of a logical
function of events. The American Mathematical Monthly, 72(4):343–359, Apr.
1965.

12. Radim Jiroušek and Stanislav Přeušil. On the effective implementation of the
iterative proportional fitting procedure. Computational Statistics and Data
Analysis, 19:177–189, 1995.

13. Michael I. Jordan, editor. Learning in graphical models. MIT Press, 1999.
14. Thomas Lukasiewicz. Efficient global probabilistic deduction from taxonomic

and probabilistic knowledge-bases over conjunctive events. In Proceedings of
the sixth international conference on Information and knowledge management,
pages 75–82, 1997.

15. Thomas Lukasiewicz. Probabilistic logic programming with conditional con-
straints. ACM Transactions on Computational Logic (TOCL), 2(3):289–339,
July 2001.

16. Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and con-
densed representations (extended abstract). In Knowledge Discovery and Data
Mining, pages 189–194, 1996.

17. Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based histograms
for selectivity estimation. In Proceedings of ACM SIGMOD International Con-
ference on Management of Data, pages 448–459, 1998.

18. M. Muralikrishna and David DeWitt. Equi-depth histograms for estimating
selectivity factors for multi-dimensional queries. In Proceedings of ACM SIG-
MOD International Conference on Management of Data, pages 28–36, 1988.

19. Nils Nilsson. Probbilistic logic. Artificial Intelligence.
20. Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization

Algorithms and Complexity. Dover, 2nd edition, 1998.
21. Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Beyond independence:

Probabilistic models for query approximation on binary transaction data. IEEE
Transactions on Knowledge and Data Engineering, 15(6):1409–1421, 2003.

19

22. Dmitry Pavlov and Padhraic Smyth. Probabilistic query models for transaction
data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 164–173, 2001.

A Appendix

This section contains the proofs for the theorems presented in the paper.

A.1 Proof of Theorem 1

Let θ be any consistent frequencies for F . Let H = FC . To prove the theorem we
will show that any distribution defined on items C and satisfying the frequencies θC

can be extended to a distribution defined on the set A and satisfying the frequencies
θ.

Let W = A − C. Partition W into connected blocks Wi such that x, y ∈ Wi

if and only if there is a path P from x to y such that P ∩ C = ∅. Note that the
items coming from the same Wi have the same frontier. Therefore, front (Wi, C) is
well-defined. We denote front (Wi, C) by Vi.

Let pME be the maximum entropy distribution defined on the items A and
satisfying θ. Note that there is no chord containing elements from Wi and from
C − Vi at the same time. This implies that we can write pME as

pME(XA) = pME(XC)
∏

i

pME (XWi ,XVi)

pME (XVi)
.

Let p be any distribution defined on C and satisfying the frequencies θC . Note that
pME (XVi) = p (XVi), and hence we can extend p to the set A by defining

p(XA) = p(XC)
∏

i

pME (XWi ,XVi)

pME (XVi)
.

To complete the proof we will need to prove that p satisfies the frequencies θ. Select
any itemset U ∈ F . There are two possible cases: Either U ⊆ C, which implies that
U ∈ H and since p satisfies θC it follows that p also satisfies θU .

The other case is that U has elements outside C. Note that U can have elements
in only one Wi, say, Wj . This in turn implies that U cannot have elements in
C− front (Wj , C), that is, U ⊆ Wj ∪Vi. Note that pME (XWi ,XVi) = p (XWi ,XVi).
Since pME satisfies θ, p satisfies θU . This completes the theorem.

A.2 Proof of Theorem 2

Assume that we are given a family F of itemsets and a set C such that there exists
x /∈ C such that front (x,C) /∈ F . Select Y ⊆ front (x,C) to be some subset of the
frontier such that Y /∈ F and each proper subset of Y is contained in F . We can
also assume that paths from x to Y are of length 1. This is done by setting the
intermediate attributes lying on the paths to be equivalent with x. We can also
set the rest of the attributes to be equivalent with 0. Therefore, we can redefine
C = Y , the underlying set of attributes to consist only of Y and x, and F to be

F = {Z | Z ⊂ C,Z �= C} ∪ {yx | y ∈ C} .

20

Let θ = {θZ | Z ∈ F} be the frequencies for the itemset family F such that

θZ = 0.5−|Z| if Z ⊂ C
θZ = 0.5 if Z = x
θZ = c if Z = xy for y ∈ C,

(4)

where c is a constant (to be determined later).
Define n to be the number of elements in C. Let k be the number of ones in

the random bit vector XC . Let us now consider the following three distributions
defined on C:

p1(XC) =

{
2−n+1 , n− k is even
0 , n− k is odd

p2(XC) = 2−n

p3(XC) =

{
2−n+1 , n− k is odd
0 , n− k is even

.

Note that all three distributions satisfy the first condition in Eq. 4. Note also that
pi(XC) depends only on the number of ones in XC . We will slightly abuse the
notation and denote pi(k) = pi(XC), where XC is a random vector having k ones.

Assume that we have extended pi(XC) to pi(XC ,Xx) satisfying θ. We can
assume that pi(XC ,Xx) depends only on the number of ones in XC and the value
of Xx. Define ci(n, k) = pi(XC ,Xx = 1), where XC is a random vector having k
ones. Note that

0.5 = pi(Xx = 1) =
n∑

k=0

(
n

k

)
ci(n, k).

If we select any attribute z ∈ C, then

c = pi(Xz = 1,Xx = 1) =

n∑
k=1

(
n− 1

k − 1

)
ci(n, k).

If we now consider the conditions given in Eq. 4 and require that pi(Xx = 1) =
θx = 0.5 and also require that pi(Xz = 1, Xx = 1) = c is the largest possible, then
we get the following three optimisation problems:

Problem Pi :
Maximise ci(n) =

∑n
k=1

(
n−1
k−1

)
ci(n, k)

subject to ci(n, k) ≥ 0
ci(n, k) ≤ pi(k)

0.5 =
∑n

k=0

(
n
k

)
ci(n, k)

(5)

If we can show that the statement

c1(n) = c2(n) = c3(n)

is false, then by setting c = max(c1(n), c2(n), c3(n)) in Eq. 4 we obtain such fre-
quencies that at least one of the distributions pi cannot be extended to x. We will
prove our claim by assuming otherwise and showing that the assumption leads to
a contradiction.

Note that
(

n−1
k−1

)
/
(

n
k

)
= k/n. This implies that the maximal solution c2(n) has

the unique form

c2(n, k) =

2−n , k > n
2

2−n−1 , k = n
2

and n is even
0 , otherwise.

(6)

Define series b(n, k) = 1
2

(c1(n, k) + c3(n, k)). Note that b(n, k) is a feasible solution
for Problem P2 in Eq. 5. Moreover, since we assume that c2(n) = c1(n) = c3(n),

21

it follows that b(n, k) produces the optimal solution c2(n). Therefore, b(n, k) =
c2(n, k). This implies that c1(n, k) and c3(n, k) have the forms

c1(n, k) =

{
2c2(n, k) , n− k is even
0 , n− k is odd (7)

c3(n, k) =

{
2c2(n, k) , n− k is odd
0 , n− k is even . (8)

Assume now that n is odd. The conditions of Problems P1 and P3 imply that

n∑
k=0

(
n

k

)
c1(n, k) = 0.5 =

n∑
k=0

(
n

k

)
c3(n, k).

By applying Eqs. 6– 8 to this equation we obtain, depending on n, either the
identity

(
n

n

)
+

(
n

n− 2

)
+ . . . +

(
n

n+1
2

)
=

(
n

n− 1

)
+

(
n

n− 3

)
+ . . . +

(
n

n+3
2

)

or

(
n

n

)
+

(
n

n− 2

)
+ . . . +

(
n

n+3
2

)
=

(
n

n− 1

)
+

(
n

n− 3

)
+ . . . +

(
n

n+1
2

)
.

Both of these identities are false since the series having the term
(

n
n+1

2

)
is always

larger. This proves our claim for the cases where n is odd.
Assume now that n is even. The assumption c1(n) = c3(n) together with Eqs. 6–

8 implies the identity

(
n− 1

n− 1

)
+

(
n− 1

n− 3

)
+ . . . +

1

2

(
n− 1
n
2
− 1

)
=

(
n− 1

n− 2

)
+

(
n− 1

n− 4

)
+ . . . +

(
n− 1

n
2

)
.

We apply the identity (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(9)

to this equation and cancel out the equal terms from both sides. This gives us the
identity

1

2

(
n− 1
n
2
− 1

)
=

(
n− 2
n
2
− 1

)
.

By applying again Eq. 9 we obtain

(
n− 2
n
2
− 2

)
=

(
n− 2
n
2
− 1

)
.

This is true for no n and thus we have proved our claim.

22

A.3 Proof of Theorem 5

Denote by E (p) the entropy of a distribution p. We know that E (qME
) ≥ E (pME

C

)
.

Assume now that q is a distribution satisfying the frequencies θC . Let us extend q
as we did in the proof of Theorem 1:

p(XA) = q(XC)
∏

i

pME (XWi ,XVi)

pME (XVi)
.

The entropy of this distribution is of the form E (p) = E (q) + c, where

c =
∑

i

E
(
pME

Wi∪Vi

)
− E

(
pME

Vi

)

is a constant not depending on q. This characterisation is valid because pME
Vi

= qVi .

If we let q = qME , it follows that

E
(
pME

)
≥ E (p) = E

(
qME

)
+ c ≥ E

(
pME

C

)
+ c.

If we now let q = pME
C , it follows that p = pME and this implies that E (pME

)
=

E (pME
C

)
+ c. Thus E (qME

)
= E (pME

C

)
. The distribution maximising entropy is

unique, thus pME
C = qME .

A.4 Proof of Theorem 6

Assume that there is x ∈ Z such that x /∈ Y . Let Ux = {u1, . . . , uL} be as it is
defined in Algorithm 1. Let Pi be the shortest path from x to ui and define vi to
be the first item on Pi belonging to Y . There are two possible cases: Either vi = ui

which implies that ui ∈ front (x, Y), or ui is blocked by some other element in Y .
If Ux ⊆ front (x, Y), then the safeness condition is violated. Therefore, there exists
uj such that vj �= uj .

We will prove that vj outranks x, that is, rank (vj | C) > rank (x | C). It is
easy to see that it is sufficient to prove that rank (vj | Ux) > rank (x | Ux). In order
to do this note that {v1, . . . , vL} ⊆ front (x, Y) ∈ F . Therefore, because of the
antimonotonic property of F , there is an edge from vj to each vi. This implies
that there is a path Ri from vj to ui such that |Ri| ≤ |Pi|, that is, the length
of Ri is smaller or equal than the length of Pi. Also note, that since vj lies on
Pj , there exists a path Rj from vj to uj such that |Rj | < |Pj |. This implies that
rank (vj | Ux) > rank (x | Ux).

Also, note that Ux ⊂ N (vj | r), where r is the search radius defined in Algo-
rithm 1. This implies that vj is discovered during the search phase, that is, vj is
one of the violating nodes.

To complete the proof we need to show that vj is a neighbour of C. Since x is
a neighbour of C, there is uk such that there is an edge between x and uk. This
implies that vk = uk. Since there is an edge between vj and vk, it follows that vj

is neighbour of C.

A.5 Proof of Theorem 7

Let a be some item belonging to some inner clique Q but not belonging in any
inner separator. The clique Q is unique and the only reachable items of C from
a are the inner separators incident to Q. Since Q is a clique, it follows from the
clique-safeness assumption that the frontier of a is included in F .

Let now a be any item that is not included in any inner clique. There exists a
unique inner clique Q such that all the paths from a to C go through this clique.
This implies that the frontier of a is again the inner separators incident to Q.

23

A.6 Proof of Theorem 8

We will prove that if we have an item a coming from some inner separator and
not included in the minimal safe set, then we can alter the junction tree such that
the item a is no longer included in the inner separators. For the sake of clarity, we
illustrate an example of the modification process in Figure 4.

ab

bcx

behx deefx

gh

hix

ab

behx

bcx

efx

hix

de

gh

Fig. 4 Two equivalent junction trees. Our goal is to find the minimal safe set for
B = {a, d, g}. The left junction tree is before the modification and the right is after
the modification. We see that the attribute x is not included in the inner separators
in the right tree. The sets appearing in the proof are as follows: The minimal safe
set C is adgbeh. I consists of 3 separators bx, ex, and hx. The other separators
belong to J . V consists of 4 cliques bcx, efx, hix, and behx. The clique Q is behx.

Let G be the dependency graph and T the current junction tree. Let C be the
minimal safe set containing B and let a /∈ C be an item coming from some inner
separator. Let us consider paths (in G) from a to its frontier. For the sake of clarity,
we prove only the case where the paths from a to C are of length 1. The proof for
the general case is similar.

Let I be the collection of inner separators containing a. Let V be the collection of
(inner) cliques incident to the inner separators included in I . The pair (V, I) defines
a subtree of T . Let J be the set of inner separators incident to some clique in V but
not included in I . Note that each item coming from the inner separators included
in J must be included in C because otherwise we have violated the assumption
that the paths from a to its frontier are of length 1.

The frontier of a consists of the items of the inner separators in J and of possibly
some items from the set B. By the assumption the frontier is in F and thus it is
fully connected. It follows that there is a clique Q containing the frontier. If Q /∈ V ,
a clique from V closest to Q also contains the frontier. Hence we can assume Q ∈ V .

Select a separator E ∈ J . Let U /∈ V be the clique incident to E. We modify the
tree by cutting the edge E and reattaching U to Q. The procedure is performed to
each separator in J . The obtained tree satisfies the running intersection property
since Q contains the items coming from each inner separators included in J . If the
frontier contained any items included in B, then Q contains these items. It is easy
to see that each clique in V , except for the clique Q, becomes outer. Therefore, a
is no longer included in any inner separator.

A.7 Proof of Theorem 9

Let p̂ be the optimal distribution. Then by marginalising we can obtain p̂i, and q̂j

which produce the same solution for the reduced problem.
To prove the other direction let p̂i, and q̂j be the optimal distributions for the

reduced problem. Since the running intersection property holds, we can define the
joint distribution p̂ by p̂ =

∏
i p̂i/

∏
j q̂j . It is straightforward to see that p̂ satisfies

the frequencies. This proves the statement.

