
Noname manuscript No.
(will be inserted by the editor)

Beyond rankings: comparing directed acyclic graphs

Eric Malmi · Nikolaj Tatti ·
Aristides Gionis

Received: date / Accepted: date

Abstract Defining appropriate distance measures among rankings is a classic
area of study which has led to many useful applications. In this paper, we
propose a more general abstraction of preference data, namely directed acyclic
graphs (DAGs), and introduce a measure for comparing DAGs, given that a
vertex correspondence between the DAGs is known. We study the properties
of this measure and use it to aggregate and cluster a set of DAGs. We show
that these problems are NP-hard and present efficient methods to obtain
solutions with approximation guarantees. In addition to preference data, these
methods turn out to have other interesting applications, such as the analysis
of a collection of information cascades in a network. We test the methods on
synthetic and real-world datasets, showing that the methods can be used to,
e.g., find a set of influential individuals related to a set of topics in a network
or to discover meaningful and occasionally surprising clustering structure.

Keywords directed acyclic graphs · aggregation · clustering · preferences ·
information cascades

1 Introduction

Rankings and partial rankings are used in real-life applications to model asso-
ciations in data. Examples include ranking documents for information-retrieval
applications, ranking user preferences for modeling users and making rec-
ommendations, ranking experts for learning applications, and many more.

E. Malmi
HIIT, Aalto University, Espoo, Finland
E-mail: eric.malmi@aalto.fi

N. Tatti
E-mail: nikolaj.tatti@aalto.fi

A. Gionis
E-mail: aristides.gionis@aalto.fi



2 Eric Malmi et al.

Defining appropriate distance measures among rankings is a classic area of
study [18, 26, 27] and it provides useful tools to analyze datasets that contain
rankings.

The problems of aggregating and clustering rankings are motivated by many
application scenarios and they have been widely studied in the literature [2,
6, 31, 32]. For example, the rank-aggregation problem arises in meta-search
engines, where a number of search engines return different rankings over a set of
documents and the goal is to find a new ranking that incorporates the rankings
of the individual search engines in the best possible way. Similarly, the problem
of clustering rankings is encountered when users state their preferences with
respect to a set of items (commercial products, movies, restaurants, etc.) and
one needs to segment the user base so that in each market segment the users
agree as much as possible with respect to their rankings.

A number of authors convincingly argue that rankings encountered in prac-
tical applications are not total orders over the full set of items [1, 13, 14].
Instead, it is more common to be confronted with missing information, and
rankings become partial rankings (rankings with ties) and top-k lists. Conse-
quently, the problem of defining distance measures among partial rankings and
top-k lists was studied in the literature, as well as the problem of aggregating
such rankings with missing information.

In this paper, we go one step further towards modeling and managing data
with missing information. We assume that associations in data are modeled not
just by partial rankings or by top-k lists, but by the more general abstraction of
directed acyclic graphs (DAGs). We view DAGs as a useful abstraction to model
interesting associations between data items in many modern applications. We
thus consider the problem of developing methods that can be used to cope with
data represented as DAGs. We start by addressing the problem of devising a
meaningful distance measure between DAGs, and we then consider the classic
problems of aggregation and clustering on DAG data. We should point out that
in our problem setting, the correspondence between the vertices of different
graphs is known, as will become clear later in the examples and experiments
that we provide. This makes the comparison of two graphs computationally
much cheaper than in methods based on graph edit distances (see e.g. [9,22]).

The notion of a distance between partial orders, that is, transitively closed
DAGs, has been previously introduced by Brandenburg et al. [7, 8]. However,
computing the two distance measures they propose results in an NP or coNP-
complete problem, so more efficient methods are called for.

Before discussing our methods and our contributions in more detail, we
provide further motivation for our approach by giving examples of real-world
datasets modeled as DAGs.

User preferences. Humans are better at making comparative rather than
absolute judgements [29]. In many cases, preferences of users over a set of
items can be recorded via user-feedback mechanisms. For example, when a
user is selecting an item among a small number of choices provided by the
application, the user, implicitly states a preference for that item over the rest.



Beyond rankings: comparing directed acyclic graphs 3

In such applications, a user can be modeled by a preference graph, a directed
graph that represents preferences between pairs of data items. Such preference
graphs are likely to be DAGs, or near-DAGs, as the underlying preference
relation tends to be transitive. The crucial observation here is that since we
are typically recording preferences over small sets of items, a large number of
edges is missing, and thus, the preference graph resembles a DAG rather than
a full or a partial ranking.

Information cascades. Our second example arises in the analysis of infor-
mation cascades in social media [3, 4, 16, 17, 20, 25, 30, 33, 34]. In this case
we consider “actions” performed in a social network. Due to social influence,
copies of such actions are performed by neighboring nodes in the network, e.g.,
retweets in the Twitter network, and thus information cascades are observed.
Due to time ordering, the cascade of an action in a network is a DAG. Analysis
of information cascades is important in understanding dynamic phenomena in
the social network, for example, who are the influential nodes, how informa-
tion propagates, and so on. Therefore, one needs appropriate tools to compare,
aggregate, and cluster cascades (DAGs) of different actions.

Motivated from the above applications, we develop techniques for manag-
ing data represented as DAGs. We first propose a sound distance measure for
comparing DAGs. Our measure extends the Kendall-tau measure for full rank-
ings and partial rankings. Similar to the work of Fagin et al. [13], our measure
uses parameters 0 ≤ p, q ≤ 1 to penalize for pairs of items for which one, or
both, of the two DAGs do not make a clear ordering decision. We study the
proposed distance measure with respect to its metric properties. We are able
to show that the measure satisfies a relaxed version of the triangle inequality,
where the “slackness” factor depends on the penalty parameters p and q.

The proposed distance measure is then used to define the problems of
aggregating and clustering a set of DAGs. We show that the DAG aggregation
and DAG clustering problems are NP-hard and we present efficient methods
to obtain solutions with approximation guarantees. Our solutions rely crucially
on the relaxed triangle inequality property of the proposed distance measure.

We test our methods on synthetic and real-world datasets. Our experiments
show that a simple greedy approach yields good performance. It can be used to
recover ground-truth DAGs when data are inflicted with high levels of noise,
as well as to identify meaningful clusters in real-world applications where data
are represented with DAGs.

The rest of the paper is organized as follows. In Section 2 we discuss basic
concepts and we introduce our notation. Our distance measure is presented in
Section 3. Sections 4 and 5 discuss the problems of aggregating and clustering
DAGs. In Section 6 we discuss other work related to the problems we consider.
Our experimental evaluation on synthetic and real datasets are presented in
Section 7, while Section 8 is a short conclusion.



4 Eric Malmi et al.

2 Preliminaries and Notation

We will discuss basic concepts and we establish the notation that we will use
throughout the remaining paper.

A directed graph G = (V,E) is a tuple of vertices V and edges E, which
is a set of ordered pairs (i, j) ∈ V × V . A directed acyclic graph (DAG) is a
directed graph that has no directed cycles.

Without loss of generality, we assume that graphs share the same set of
vertices. Indeed, if two graphs have different set of vertices, the missing vertices
for each graph can be added as singletons. Furthermore, as we will see, our
DAG-comparison measure penalizes appropriately for such missing vertices
added as singletons. Consequently, we assume that when comparing two DAGs
we can just compare their edges. Given two DAGs G1 = (V,E1) and G2 =
(V,E2) we say that a vertex pair (i, j) is a discordant if (i, j) ∈ E1 and (j, i) ∈
E2. On the other hand, if (i, j) ∈ E1 and (i, j) ∈ E2, then we say that the pair
is concordant.

A special case of DAG is a total order, in which the vertices are assumed
to have an order and the edge set E consists of

(|V |
2

)
edges, so that (i, j) ∈ E

if and only if i occurs before j in the total order. We should point out that we
do not assume that our graphs are transitively closed. This means that while
we can apply our distance to a partial order, which is essentially a transitively
closed DAG, we also consider DAGs that are not partial orders.

Given two total orders G1 and G2, a Kendall-tau distance K(G1, G2) be-
tween the two orders is the number of all discordant vertex pairs between them.
Kendall-tau is a distance measure that takes values between 0 and

(|V |
2

)
.1 It

becomes 0 when the two orders are the same, and it becomes
(|V |

2

)
when G1 is a

reversed version of G2. Kendall-tau is a distance measure that is widely used to
compare rankings. Fagin et al. [13] extend the Kendall-tau distance (as well as
other ranking distances) for partial rankings, that is, rankings with ties. Their
work is not only theoretically interesting but of great practical importance,
since orders (rankings) encountered in practice are rarely total orders (full
rankings). In this paper, we take one further step on the problem of devising
measures to compare rankings: we extend the Kendall-tau distance to general
DAGs. Consequently, our methods provide a basis to deal with datasets in
which DAGs is the appropriate data abstraction.

3 Measuring DAG distance

Our goal is to develop a meaningful and well-founded distance measure be-
tween DAGs. We first define such a distance measure as a generalization of
Kendall-tau, and then study its properties. In particular we show that the
proposed measure satisfies a relaxed version of the triangle inequality. This

1 Most often the Kendall-tau distance is defined to be a value between 0 and 1 by nor-

malizing with the total number of vertex pairs
(|V |

2

)
.



Beyond rankings: comparing directed acyclic graphs 5

near-metric property is particularly useful as it allows to develop approxima-
tion algorithms for aggregation and clustering tasks.

3.1 Generalization of Kendall-tau for DAGs

As with the Kendall-tau distance, we consider a measure defined over pairs
of vertices in the two DAGs. As opposed to full rankings (total orders), in
DAGs a pair of vertices may not be directly comparable. As a result, given
two directed acyclic graphs, a pair of vertices may be neither concordant nor
discordant. Thus, a distance measure that considers pairs of vertices in two
DAGs, should consider the following two cases of assigning a penalty:

Discordant pairs: We should penalize an edge (i, j) if i precedes j in one graph
while j precedes i in the other graph.

Potentially discordant pairs: If one or both of the input DAGs are not fully
connected then there is a pair of vertices (i, j) for which we do not know if
i precedes j or vice versa, so we have a potentially discordant pair, which
should be penalized less heavily than a pure discordant pair.

The proposed DAG distance measure satisfies the above two requirements. Our
approach is similar to the approach by Fagin et al. [13], where they generalize
the Kendall-tau distance to partial rankings by assigning a penalty 0 < p < 1
to pairs for which the two partial rankings do not have clear agreement or
disagreement. In a similar way, our DAG distance measure is defined with
respect to partial penalty parameters p and q, where 0 ≤ p, q ≤ 1. As it will
become clear below we also assume q ≤ p.

For our definition, we also assume an arbitrary ordering of the vertices
of the two DAGs. Such an ordering is only assumed for notational simplicity
and is not related to the concept of a total order. This ordering is only used
to ensure that each pair of vertices i and j is considered only once, so any
arbitrary bijection from the set of vertices V to {1, . . . , |V |} can be used. We
should stress that even though the definition of the DAG distance is based on
an ordering of vertices, the final result does not depend on it.

Let G1 = (V,E1) and G2 = (V,E2) be two DAGs and let 0 ≤ p, q ≤ 1
be fixed parameters. Let i and j be two vertices of V such that i < j. Let

e = (i, j) and f = (j, i) be e with reversed direction. We define K
(p,q)
ij (G1, G2)

to be a penalty associated to vertices i and j for the DAGs G1 and G2 with
respect to the parameters p and q. We consider four cases:

Case 1: (e ∈ E1 and e ∈ E2) or (f ∈ E1 and f ∈ E2). In this case, G1 and G2

agree on e, and we set the distance to be Kij(G1, G2) = 0.
Case 2: (e ∈ E1 and f ∈ E2) or (e ∈ E2 and f ∈ E1). In this case, G1 and G2

completely disagree on e, and we set the distance to be Kij(G1, G2) = 1.
Case 3: (e or f ∈ E1 and e, f /∈ E2) or (e or f ∈ E2 and e, f /∈ E1). In this

case, an edge between i and j exists in one graph but not in the other. We
set Kij(G1, G2) = p.



6 Eric Malmi et al.

a
b

c
d

(a) G1

a
b

c
d

(b) G2

a
b

(c) H1

a
b

(d) H2

a
b

(e) H3

Fig. 1 Toy graphs related to Examples 1–2

Case 4: e, f /∈ E1 and e, f /∈ E2. In this last case there is no edge between
i and j in either of the graphs. We set Kij(G1, G2) = q. The motivation
for setting q > 0 is that otherwise two empty DAGs are as similar as two
identical complete DAGs even though one might argue that the latter two
have much more in common than the empty DAGs.

We are now ready to define our DAG distance measure.

Definition 1 Let G1 = (V,E1) and G2 = (V,E2) be two DAGs and let
0 ≤ p, q ≤ 1 be fixed parameters. We define the DAG distance K(p,q)(G1, G2)
to be the sum of distances over pairs of vertices (i, j) ∈ V ×V such that i < j,

K(p,q)(G1, G2) =
∑

(i,j)∈V×V
i<j

K
(p,q)
ij (G1, G2) .

Whenever clear from the context, we will drop p and q from the notation and
write K (G1, G2) instead of K(p,q)(G1, G2).

Example 1 Let us compute the distance K(p,q)(G1, G2) of the graphs given in
Figure 1. There is one concordant edge, namely (a, b), one discordant pair,
(c, d), one pair of type Case 3, (a, d), and the remaining three pairs are of
Case 4. Hence, the distance is equal to

K(p,q)(G1, G2) = 0 + 1 + p + 3q.

A few observations are in order: First, it is easy to see that in the case that
the two DAGs are total orders, Definition 1 reduces to the standard Kendall-
tau.

Second, it is reasonable to assume that Case 3, when an edge exists in one
graph but not the other, is a case of stronger or equal disagreement compared
to Case 4, when an edge is missing from both graphs. Therefore, we will assume
that the penalty associated to Case 3 is greater than or equal to the penalty
associated to Case 4, that is, q ≤ p. In fact, the case q > p has undesirable
consequences. For example, for the problem of DAG aggregation, which we
discuss in the next section, q > p implies that the optimal centroid of two
empty DAGs will be a complete DAG.



Beyond rankings: comparing directed acyclic graphs 7

3.2 Relaxed triangle inequality

Our next step is to examine whether the proposed distance measure K is
a metric. We remind that for a distance measure d : X × X → R to be
a metric, the following properties should hold: (i) non-negativity: d(x, y) ≥
0; (ii) symmetry: d(x, y) = d(y, x); (iii) identity: d(x, y) = 0 if and only if
x = y; and (iv) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). The reason
for undertaking this study is twofold: First, satisfying the metric properties
provides additional evidence that our distance measure is meaningful and well
founded. Second, many algorithms have been designed to take advantage of
metric properties with respect to efficiency, e.g., via effective pruning rules,
or with respect to satisfying certain quality guarantees. Indeed, after we show
that the proposed distance measure K satisfies relaxed metric properties, we
are able to exploit those properties in order to obtain high-quality solutions
for the problems of aggregating and clustering DAGs.

Back to the question whether the proposed distance K satisfies the metric
properties, it is immediate that the distance is non-negative and symmetric. If
q = 0, then the distance satisfies the identity property, namely, K (G,G) = 0,
however this property does not hold for q > 0 as penalty q is induced by edges
that are missing from both input graphs. Note that this was done by design as
we want to punish potential discordant pairs. The most important property
with respect to designing approximation algorithms is the triangle inequality.
Our next result shows that the distance measure K satisfies a relaxed version
triangle inequality, meaning that for any directed acyclic graphs G1, G2, G3

it holds K (G1, G2) ≤ c(K (G1, G3) + K (G3, G2)), for some constant c ≥ 1,
which depends on the parameters p and q.

Proposition 1 Let 0 ≤ q ≤ p ≤ 1 and 0 < p. Then distance measure K
satisfies relaxed triangle inequality,

K (G1, G2) ≤ c(K (G1, G3) + K (G2, G3)),

where c = max
(
4p2, q + max(2p, 1)

)
/2p.

Proof We will prove the result by upper bounding the distance K (G1, G2) and
lower bounding the distance measures K (G1, G3) and K (G2, G3).

Consider K (G1, G2), and let ki be the number of Case i edges as defined
in Section 3.1. The distance is equal to

K (G1, G2) = k2 + pk3 + qk4.

Define also n1, . . . , n4 for K (G1, G3) and m1, . . . ,m4 for K (G2, G3).
Consider a set D = (E1 \ E2) ∪ (E2 \ E1). For every Case 2 edge, say

e = (i, j), there are two edges (i, j) ∈ D and (j, i) ∈ D. The remaining edges
in D correspond to Case 3 edges possibly with a reversed direction. This implies
that |D| = 2k2 + k3. Let k = 2k2 + k3, n = 2n2 + n3, and m = 2m2 + m3.
The previous argument shows that k is the number of directed edges where
G1 and G2 disagree. This is a known metric and it follows that k ≤ n + m.



8 Eric Malmi et al.

Note that any edge of Case 4 in K (G1, G2) can only be Case 3 or Case 4
edge in K (G1, G3). Hence, k4 ≤ n3 + n4 and similarly k4 ≤ m3 + m4.

We consider three cases, depending on values of p and q.
First, let us assume that p ≤ 1/2. Since k2 ≤ k/2 we can upper bound

K (G1, G2) by

K (G1, G2) = k2 + pk3 + qk4 = k2 + p(k − 2k2) + qk4

= (1− 2p)k2 + pk + qk4

≤ (1− 2p)k/2 + pk + qk4 = k/2 + qk4.

Define x = p/(1 + q). Note that x + qx = p and x ≤ 1/2. Consequently,

K (G1, G3) = n2 + pn3 + qn4 = n2 + xn3 + q(n4 + xn3)

= n2 + x(n− 2n2) + q(n4 + xn3)

= (1− 2x)n2 + xn + q(n4 + xn3)

≥ xn + q(n4 + xn3).

Define c = (1 + q)/(2p). Note that cx = 1/2 and that c ≥ 1/2. Multiplying
the previous inequality with c gives us

cK (G1, G3) ≥ cxn + cq(n4 + xn3) = n/2 + q(cn4 + n3/2)

≥ n/2 + q/2(n4 + n3).

Similarly, we can lower bound the distance K (G2, G3) by

cK (G2, G3) ≥ m/2 + q/2(m4 + m3).

We can now combine the inequalities,

K (G1, G2) ≤ k/2 + qk4

≤ (n + m)/2 + q/2(m3 + m4 + n3 + n4)

≤ c(K (G2, G3) + K (G1, G3)).

Assume now that p ≥ 1/2. We can upper bound K (G1, G2) by setting
k2 = 0,

K (G1, G2) = (1− 2p)k2 + pk + qk4 ≤ pk + qk4.

Assume that 4p2 − q ≤ 2p. Let z = p/(q + 2p) and x = p− qz = 2p2/(q + 2p).
Note that the assumption implies that x ≤ 1/2, which allows us to lower bound

K (G1, G3) = (1− 2x)n2 + xn + q(n4 + zn3)

≥ xn + q(n4 + zn3).

Let c = (q + 2p)/2p. Then cx = p and cz = 1/2. Since c ≥ 1/2, we have

cK (G1, G3) ≥ pn + q/2(n4 + n3).

Combining the inequalities, similar to the first case, proves the proposition for
the second case.



Beyond rankings: comparing directed acyclic graphs 9

Finally, assume that 4p2 − q ≥ 2p. Let z = 1/(4p) and set x = p − qz =
(4p2 − q)/(4p2). Since x ≥ 1/2, we obtain a lower bound

K (G1, G3) = (1− 2x)n2 + xn + q(n4 + zn3)

≥ n/2 + q(n4 + zn3).

Let c = 2p. Then c/2 = p and cz = 1/2. Since c ≥ 1/2,

cK (G1, G3) ≥ pn + q/2(n4 + n3).

Combining the inequalities, similar to the first case, proves the proposition for
the third case.

By setting c = max
(
4p2, q + max(2p, 1)

)
/2p, we are able to handle all three

cases simultaneously. ut

Note that if we set p = 1/2 and q = 0, then the distance satisfies the
triangle inequality. In fact, K(1/2,0)(G1, G2) is a half of symmetric difference
between edge sets E1 and E2,

K(1/2,0)(G1, G2) =
1

2
|(E1 \ E2) ∪ (E2 \ E1)|.

If we set p = q = 0, then we are penalizing only Case 1 edges, that is,
discordant pairs. Proposition 1 holds only when p > 0, but it suggests that
when p = 0, K does not satisfy even a relaxed version of the triangle inequality.
In order to prove this intuition, we show a simple example.

Example 2 Consider H1, H2, and H3 given in Figure 1. If we set p = 0, then
K (H1, H2) = 1 but K (H1, H3) = 0 K (H2, H3) = 0. Consequently, there is no
c > 0 such that

K (H1, H2) ≤ c(K (H1, H3) + K (H2, H3)).

4 DAG aggregation

We now consider the problem of DAG aggregation, that is, summarizing a
set of DAGs with a single DAG. We define the problem and demonstrate
that it is computationally intractable. We then propose two different methods
for solving the DAG-aggregation problem, and we show that both methods
provide approximations to the optimal solution. While one method provides a
better theoretical bound than the other, a simple heuristic based on the second
approach is shown to be the algorithm that works best in practice.



10 Eric Malmi et al.

4.1 Problem definition

We formulate the problem of aggregating DAGs as the following median-type
optimization problem.

Problem 1 (DAG Aggregation) Given a set of M directed graphs G1, . . . ,
GM , find a DAG C minimizing

M∑
i=1

K(p,q)(Gi, C) .

We can view DAG Aggregation as an extension of Rank Aggrega-
tion, if we view ranks as graphs. It is known that Rank Aggregation is
NP-hard [11], however this does not imply directly that DAG Aggregation
is also NP-hard, since in DAG Aggregation the output is not required to
be a full ranking.

In order to prove hardness we reduce a known NP-hard problem called
Feedback Arc Set, where the goal is to construct a DAG with least amount
of edges.

Problem 2 (Feedback Arc Set (FAS)) Given a directed graph G = (V,E),
find the smallest set of edges F ⊂ E such that (V,E \ F ) is a DAG.

The NP-hardness of FAS [24] implies the following result.

Proposition 2 DAG Aggregation is NP-hard.

Proof We will prove the hardness by reducing FAS to DAG Aggregation.
Fix p, q > 0.

Assume that we are given a directed graph G = (V,E). We can safely
assume that there are no 2-cycles in G, otherwise we can modify G by splitting
edge into two edges by adding at most |E| vertices.

Our first step is to split G into two DAGs. In order to do that select and
fix an arbitrary order over the vertices. Define E1 = {(i, j) ∈ E | i < j} and
E2 = E \ E1. Clearly E1 ∩ E2 = ∅ and E1 ∪ E2 = E. Set G1 = (V,E1) and
G2 = (V,E2). Both G1 and G2 are DAGs.

Let C = (V,H) be the solution for DAG Aggregation for G1, G2. We
claim that F = E \H solves FAS.

In order to prove this, let us first show that H ⊆ E. Assume otherwise
and let e ∈ H \ E. Then this edge contributes either 2p or p + 1 to the cost,
depending whether the reversed edge is in E. However, if we delete e from H,
then the cost is either 2q or p + q. Consequently, we can always decrease the
cost by deleting e. Thus, we can safely assume that H ⊆ E.

Since we have no 2-cycles in E, an edge e ∈ H contributes p to the cost of
DAG Aggregation because e ∈ E1 and e /∈ E2, or vice versa. On the other
hand, an edge e ∈ E \H contributes p+q to the cost. Hence, the cost of DAG
aggregation is equal to

K (G1, C) + K (G2, C) = q(|V |(|V | − 1)− 2|E|) + p|H|+ (p + q)|E \H|
= q(|V |(|V | − 1)− 2|E|)− q|H|+ (p + q)|E|.



Beyond rankings: comparing directed acyclic graphs 11

Consequently, minimizing the cost is equal to maximizing |H| which is equal
to minimizing |E \H|. ut

Proposition 2 implies that solving DAG Aggregation optimally is com-
putationally intractable. Hence, in the rest of this section we consider two
approximation algorithms.

4.2 Approximating DAG aggregation by a median centroid

Our first approach to select a centroid is simply picking the centroid from the
input graphs instead of constructing it from scratch. Remarkably, the fact that
the distance is almost a metric gives us an approximation ratio guarantee.

More formally, assume that we are given G1, . . . , GM . We select the cen-
troid from the input graphs G1, . . . , GM minimizing the distance, that is,

Median(G1, . . . , GM ) = arg min
Gj

M∑
i=1

K(p,q)(Gi, Gj) .

Since K satisfies a relaxed triangle inequality, we can achieve a constant
approximation ratio. The proof of the following proposition is standard and it
is omitted for lack of space.

Proposition 3 Assume a set of DAGs G1, . . . , GM . For 0 ≤ q ≤ p ≤ 1 with
0 < p, Median(G1, . . . , GM ) yields an approximation ratio of 2c, where c is
a constant as defined in Proposition 1.

4.3 Greedy approximation of DAG aggregation

Our next approach is based on the fact that we can express DAG Aggrega-
tion as an instance of Weighted Feedback Arc Set problem.

In order to do that, assume that we are given G1, . . . , GM DAGs and let
C = (V,E) be a candidate centroid. Let b(i, j) define the cost of not having
(i, j) as an edge in the centroid,

b(i, j) =

M∑
m=1

Kij(Gm, Hempty) , (1)

where Hempty is a graph with no edges. Similarly, define w(i, j) to be the cost
of having (i, j) as an edge in the centroid,

w(i, j) =

M∑
m=1

Kij(Gm, Hfull) , (2)

where Hfull is a full directed graph. This gives us

M∑
m=1

K (Gm, C) =
∑
e∈E

w(e) +
∑
e/∈E

b(e).



12 Eric Malmi et al.

a
b

c
d

(a) G1

a
b

c
d

(b) G2

a
b

c
d

(c) G3

a
b

c
d

7/12

7/12

1/6

7/12
1/6

(d) (V, P )

a
b

c
d

7/12

7/12

1/6

7/12

(e) C

Fig. 2 Toy graphs related to Example 3

Let us now define P = {e ∈ V × V | w(e) < b(e)} to be the set of edges
that ideally we would like to have in the centroid. We can safely assume that
the centroid edges are all in P , E ⊆ P . However, since P may contain cycles,
we cannot have all of these edges. For each edge e not included in the centroid,
we define regret r(e) = b(e)−w(e) to be the difference we need to pay for not
having the edge in C. We can write the cost as

M∑
m=1

K (Gm, C) =
∑
e∈P

w(e) +
∑
e/∈P

b(e) +
∑

e∈P\E

r(e).

Since the first two terms do not depend on C, we see that for selecting opti-
mal centroid we need to minimize the third sum. This is in fact an instance
of weighted feedback arc set (WFAS) problem, with an input graph
(V, P, r).

Example 3 Consider G1, G2, and G3 given in Figure 2. Set p = 1/3 and
q = 1/4 and let us compute the optimal centroid. In order to do that, let us
compute P . The regret for an edge (a, b) is equal to

r(a, b) = 2/3 + 1/4− 1/3 = 7/12.

Similarly, r(a, c) = r(c, d) = 7/12. The regret for (a, d) and (b, d) is

r(a, d) = r(b, d) = 1/3 + 2/4− 2/3 = 1/6.

Finally, the regret for (b, c) is

r(b, c) = 2/3 + 1/4− 1/3− 1 = −5/12

which is negative and hence (b, c) is not included in P . The rest of the vertex
pairs also have negative regrets, and are not included in P . The graph (V, P )
is given in Figure 2(d). This graph has a cycle and the optimal DAG, C, is
obtained by removing the weakest edge (b, d). The optimal centroid is given
in Figure 2(e).

We can estimate WFAS with O(log |V | log log |V |) with an algorithm based
on Linear Programming techniques [12].

Proposition 4 AggrFas yields an approximation ratio of O(log |V | log log |V |).



Beyond rankings: comparing directed acyclic graphs 13

Algorithm 1: AggrFas, solves DAG Aggregation problem using
Feedback arc set solver

compute w and b for each pair (i, j) using Eqs. 1–2;
P ← {e ∈ V × V | w(e) < b(e)};
r(e)← b(e)− w(e) for all e ∈ P ;
F ←WFAS(V, P, r);
return (V, P \ F );

Algorithm 2: Greedy, estimates optimal centroid given a set of DAGs
G1, . . . , GM

Q←
{⋃M

i=1 Ei

}
;

compute w and b for each edge e ∈ Q using Eqs. 1–2;
P ← {e ∈ Q | w(e) < b(e)};
r(e)← b(e)− w(e) for all e ∈ P ;
E ← ∅;
foreach e ∈ P sorted by regret do

if e ∪ E has no cycle then
add e to E;

return (V,E);

Proof Let G1, . . . , Gm be the input graphs and let r be the regret. We showed
earlier that we can write the cost function as

M∑
m=1

K (Gm, C) = const +
∑

e∈P\E

r(e),

for any graph C = (V,E), where const ≥ 0 is a constant and does not depend
on C. Let OPT be the optimal solution of the second term and let Q be the
cost of a solution of weighted FAS found by an algorithm given in [12]. Then
since const ≥ 0 and Q ≥ OPT , we have

const + Q

const + OPT
≤ Q

OPT
.

The solver in [12] has an approximation ratio guarantee of

Q/OPT ∈ O(log |V | log log |V |)

which proves the result. ut

As approximation algorithms based on LP-approaches are rarely practical,
we consider a significantly simpler but efficient approach, given in Algorithm 2.

The idea behind this algorithm is straightforward. We order the edges based
on regret, edges with smallest regret first. Note that we only need to consider
edges that have appeared in at least one of the input DAGs since w(e) < b(e)
can not hold for the other edges. Then we keep adding edges into a centroid
in an order, ignoring the edges that create cycles. Even though this is a very



14 Eric Malmi et al.

simple approach, in our experiments it outperforms Median, an algorithm for
which we have a constant approximation guarantee.

Computational complexity: Calculating the proposed distance measure K
between DAGs G1 = (V,E1) and G2 = (V,E2) only requires counting the
number of concordant and discordant pairs as the potentially discordant pairs
can be computed based on these two numbers and the number of vertices
|V |. If we store edges in a hash table as a preprocessing step, this yields a
complexity of O(min(|E1|, |E2|)).

Assume that we are given M input DAGs. Let k be the total number of
edges in the input graphs, k =

∑M
i=1 |E(Gi)|. Computing the cost of a centroid

can be done in O(k) time. Hence, the complexity cost for Median is O(Mk).

In Greedy, we first need to form sets Q =
{⋃M

i=1 Ei

}
and P = {e ∈

Q such that w(e) < b(e)}. Taking the union of all edges for Q takes O(k) steps.
We can see that |P | ≤ |Q|. Second, we need to detect cycles in an incrementally

increasing graph. This can be done in O(min(|P |
1
2 , |V |

2
3 )|P |) steps using the

method described by Bender et al. [5], which gives us a running time of O(k+

min(|P |
1
2 , |V |

2
3 )|P |). However, in our experiments, we implemented the cycle

detection simply by keeping track of the transitive closure of the centroid while
adding new edges to it since term O(k) seemed to be the bottleneck of the
algorithm.

Finally, we would like to point out that the main computational challenge in
DAG Aggregation is due to the requirement of having an acyclic centroid.
Indeed, if we ignored the acyclicity constraint, we could compute the optimal
centroid in polynomial time by taking all edges for which it holds that w(e) <
b(e). Nevertheless, in some cases it is useful to have a DAG centroid, for
example, if you want to also get a topological ordering of the vertices. Such a
scenario is exemplified by our last experiment on clustering preference data.

5 Clustering DAGs

A natural application for distance measure is clustering. More formally, con-
sider the following problem.

Problem 3 Given a set of DAGs G1, . . . , GM and a number k, find k clusters
P1, . . . , Pk and centroids C1, . . . , CK such that

k∑
i=1

∑
G∈Pi

K(p,q)(G,Ci)

is minimized.

Note that since we require to discover centroids along with the clusters, the
clustering problem becomes automatically NP-hard. In fact, if we set k = 1,
then the problem reduces into finding a single centroid for all input graphs,



Beyond rankings: comparing directed acyclic graphs 15

a DAG Aggregation problem. This contrasts standard clustering problems
where finding the centroid is typically a straightforward computation.

We approach this problem by running a k-means type algorithm. Given
a set of centroids, we group the input DAGs into clusters minimizing the
distance. Once the groups are selected, we then select a centroid from each
cluster. In order to select a centroid, we use Median and Greedy algorithms
introduced in the previous section.

6 Related work

DAG Aggregation is an extension of the rank aggregation problem. The
latter task arises typically from aggregating search engine results. However,
this optimization problem has been studied in the context of voting, centuries
before first computers, see for example [6]. When using Kendall-tau distance,
the rank aggregation problem is also known as Kemeny-Young rank aggre-
gation problem. The problem is NP-hard [11], however it admits a PTAS
scheme [28]. Extensions of rank aggregations have suggested such as partial
rankings, that is, rankings with ties [1, 13], and top-k rankings [1, 14], where
only top-k elements are ranked and the remaining objects are left unranked.

Extensions of rank aggregation to DAGs have been considered by Bran-
denburg et al. [7,8]. Here the extension is done by representing a DAG with a
set of linear extensions. This allows to use set distances with Kendall-tau or
Spearman footrule as a base distance. Unfortunately, the number of extensions
may be exponential and indeed the problem of computing certain set distances
becomes NP-hard.

In case the vertex correspondence between the graphs to be compared is
unknown, the main computational challenge is to find an alignment between
vertices. Several studies are based on this premise (see e.g. [9, 22]). However,
since our starting point is rankings, it is natural to assume that the vertex
correspondence is known. Thus we focus on the problem of defining a mean-
ingful distance measure given the correspondence, which makes the distance
measure evaluation computationally much cheaper.

As we have seen in previous sections, finding the optimal solution for DAG
Aggregation is intimately related to the feedback arc set (FAS) prob-
lem. The reduction of NP-hardness is done by reducing FAS to DAG Ag-
gregation and one we can get an approximation algorithm by using a solver
given in [12]. FAS is known to be APX-hard with a known coefficient of
c = 1.3606 [10, 23], that is, given that P 6= NP there is no approximation
algorithm with a constant approximation guarantee of c. On the other hand,
selecting a centroid from the input graphs gives us a guarantee ratio of (1+q)/p.
Solving FAS for tournaments, graphs having edges for each vertex pair, is sub-
stantially easier as this problem admits a PTAS scheme [28]. Note that in order
to get a tournament graph we need to have dense input graphs. This hints that
DAG Aggregation may be easier to solve if the input graphs are dense.



16 Eric Malmi et al.

7 Experimental evaluation

7.1 Experiments on synthetic data

In this section, we present our experiments with synthetic datasets. The ob-
jective is to test the ability of the K distance measure to distinguish DAGs
generated from different distributions, and also to study the sensitivity of
the distance measure with respect to its parameters. For the aggregation and
clustering tasks, knowing the ground truth in the generated data allows to
compare the Median and the Greedy algorithms against baselines. We start
our discussion by describing how we generate the data.

Synthetic DAG generation. In order to generate synthetic DAGs having
a cluster structure, we use the following approach. We start by generating
a seed DAG, adding edges (i, j), where i < j, with probability pedge. From
this seed we create N corrupted DAGs, by deleting edges with a probability
premove, adding new edges with a probability of padd, and swapping vertices
Nswaps times. The probability padd is determined from pedge and premove so that
the corrupted graphs have on average the same amount of edges as the seed.
This leaves us three parameters, pedge, premove and Nswaps. Increasing premove

and Nswaps will make graphs more corrupt. The parameter pedge determines
the density of the DAGs, so that pedge = 0 will produce an empty DAG while
pedge = 1 will produce a total order. In all experiments with the synthetic data,
we set the number of vertices to 50 and we assume transitivity, thus taking
the transitive closures of the DAGs once all of them have been generated.
Note that transitivity is not required for the proposed distance measure and
algorithms to work. Indeed, in Section 7.2, we present experiments on real-
world information cascade data where transitivity does not hold.

Selecting distance measure parameters. A good distance measure should
be able to differentiate between samples from different distributions while rec-
ognizing the similarity of the samples from the same distribution. In order to
measure the goodness of the distance, we can vary parameters p and q of the
proposed measure K, and see how well K can differentiate two sets of DAGs,
given that they are drawn from two different distributions. To measure the
similarity of the sets, we use the Friedman-Rafsky MST-based runs test [15].
The idea is that we calculate the pairwise distances between all samples from
both sets and find the minimum spanning tree. Test statistic R is the number
of edges that connect samples from different sets, and a low value of R indi-
cates that we can reject the null hypothesis of the sets being from the same
distribution.

Our experimental setting is the following. First, we generate two sets of
DAGs with the same parameters but with different seed DAGs. Then, we
use the Friedman-Rafsky test to see whether these two sets follow the same
distribution, while varying p and q. Since we know that the two sets are from
different distributions, we can simply see how the variation in the parameters
p and q affects the statistics R. The analysis is repeated for sparse DAGs



Beyond rankings: comparing directed acyclic graphs 17

0 0.5 1
0

5

10

15

20

p

T
e
s
t 
s
ta

ti
s
ti
c
 R

Sparse DAGs, q=0.85*p

0 0.5 1
10

15

20

25

30

35

p

T
e
s
t 
s
ta

ti
s
ti
c
 R

Dense DAGs, q=0.45*p

0 0.1 0.2 0.3 0.4
0

5

10

15

20

q

T
e
s
t 
s
ta

ti
s
ti
c
 R

Sparse DAGs, p=0.5

0 0.1 0.2 0.3 0.4
10

15

20

25

30

35

q

T
e
s
t 
s
ta

ti
s
ti
c
 R

Dense DAGs, p=0.5

Fig. 3 Differentiation capability of the proposed measure K with different values of q (top)
and different values of p keeping the ratio of p and q fixed (bottom).

(pedge = 0.03) and dense DAGs (pedge = 0.08) and for different levels of
corruption. Results for a single level of corruption (premove = 0.7, Nswaps = 0)
while varying p and q are shown in Fig. 3. From the top figures, we have
computed the optimal ratios of p and q for sparse DAGs (q/p = 0.85) and for
dense DAGs (q/p = 0.45) when p is fixed. In the bottom figures, these ratios
have been fixed after which we have varied p and q accordingly.

We omit detailed illustration of our results, however, the main conclusions
drawn are the following: (i) When setting p = 0.5, the optimal value of q
depends on the density of the DAGs so that for sparse DAGs q should be
near to p, whereas for denser DAGs q can be smaller in order to be able to
distinguish DAGs from different distributions. (ii) When the ratio of p and q
has been fixed, the distance measure is not sensitive to the value of p. (iii)
The optimal value of q depends on how corrupted the DAGs are.

All in all, these results show that the optimal values of p and q are problem
dependent and it remains an open problem how to best select them. Never-
theless, in our experiments with real-world data, the following simple strategy
proved to be useful: set p = 0.5, q = 0 and increase q until the obtained aggre-
gated centroids become nonempty. Furthermore, an expert might be able to
use his or her domain knowledge to decide how much potentially discordant
pairs should be penalized and select p and q accordingly.

DAG aggregation. Next we evaluate our DAG aggregation methods, by test-
ing how well they are able to uncover an underlying seed DAG. Our methodol-
ogy here is to generate a set of input DAGs from a fixed seed, apply our DAG



18 Eric Malmi et al.

0 0.25 0.5 0.75 1
280

290

300

310

320

330

p
remove

Sparse DAGs, N
swaps

=20

K
(c

e
n

te
r,

s
e

e
d

)

0 5 10 15 20
280

290

300

310

320

330

N
swaps

Sparse DAGs, p
remove

=0

K
(c

e
n

te
r,

s
e

e
d

)

0 0.25 0.5 0.75 1
200

250

300

350

400

p
remove

Dense DAGs, N
swaps

=20

0 5 10 15 20
200

250

300

350

400

N
swaps

Dense DAGs, p
remove

=0

 

 

median greedy empty baseline optimal

Fig. 4 DAG aggregation performance measured as the distance from the planted seed DAG
to the obtained centroid.

aggregation methods to compute a centroid, and then calculate the distance
between the centroid and the seed DAG.

We compare Median and Greedy along with two other methods. The
baseline method uses an empty DAG as the centroid, while the optimal method
outputs the seed DAG itself giving a lower bound for the distance. We set the
parameters of the measure to p = 1

2 and q = 1
4 . The results are shown in Fig. 4

for different values of premove and Nswaps.

From the results we see that in most cases Greedy performs significantly
better than Median. However, the drawback of Greedy is that if the data
generation parameters are increased above a certain point so that the input
DAGs become very diverse, then the centroid converges into an empty DAG.
In our other experiments, we notice that this happens even more easily if the
value of q is decreased.

DAG clustering. In our final experiment with synthetic data we cluster
DAGs. We generate 5 clusters using our synthetic-data generator, each cluster
containing 20 graphs. Furthermore, we make 20 additional vertex index swaps
for each seed creating discordant pairs between clusters, and furthering clusters
away from each other.

Evaluating the performance of a clustering algorithm is generally a difficult
problem due to lack of ground truth but with our synthetic dataset we know
the correct partitioning of the DAGs. Thus we can measure performance using
the Adjusted Rand Index (ARI) [21].

We use k-means type algorithm which updates the cluster centroids using
either Median or Greedy. These approaches are compared to a hierarchi-



Beyond rankings: comparing directed acyclic graphs 19

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

N
swaps

Sparse DAGs, p
remove

=0

A
d
ju

s
te

d
 R

a
n
d
 I
n
d
e
x

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

N
swaps

Dense DAGs, p
remove

=0

A
d
ju

s
te

d
 R

a
n
d
 I
n
d
e
x

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

p
remove

Sparse DAGs, N
swaps

=0

A
d
ju

s
te

d
 R

a
n
d
 I
n
d
e
x

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

p
remove

Dense DAGs, N
swaps

=0

A
d
ju

s
te

d
 R

a
n
d
 I
n
d
e
x

 

 

median

greedy

hierarchical

optimal

Fig. 5 Clustering method comparison for the synthetic data. Higher values are better.

cal clustering method with complete linkage criterion and to optimal method
which sets the seed DAGs as the initial cluster centroids and then assigns
each input DAG to the closest centroid, giving us an upper bound for the
performance. For the k-means approaches, we run ten restarts with random
initial cluster assignments and select the run which minimizes the clustering
cost defined in Problem 3. For all methods, we run ten repetitions with newly
generated datasets and calculate the average ARI. We set the parameters for
the distance measure to p = 1

2 and q = 1
4 . The results are shown in Fig. 5.

When varying premove, Greedy yields the correct clustering up to premove =
0.6 for sparse DAGs, but after this the performance drops. Median and the
hierarchical methods perform comparably. For dense DAGs all methods are
able to find the correct clustering on almost every occasion. On the other
hand, when varying parameter Nswaps and potentially inducing discordant
pairs within a cluster, the differences are more clear. Greedy has the best
overall performance, whereas the hierarchical method performs the worst.

7.2 Experiments on information cascades

In this section, we apply the proposed DAG-aggregation methods to real-
world music-listening data from Last.fm. This type of analysis can provide
valuable insights, e.g., for artists who want to advertise their music to targeted
individuals that are influential among their peers. Our experimental setting
is inspired by the large body of work in social-network analysis, where one
observes information cascades in social networks and the goal is to infer the
underlying influence model [3,4,16,17,19,20,30,33,34]. This line of work focuses



20 Eric Malmi et al.

Table 1 Clustering results for information cascades.

Clustering cost ± std Time (sec) Iterations

Median 73 746 000± 960 166 2.3
Greedy 73 738 430± 350 63 8.3

Table 2 A clustering for artists in the Last.fm dataset.

Cluster #artists Example artists Top tags

1 25 Amy Winehouse, Kelly Rowland,
Evanescence, Linkin Park, Jason Mraz

pop, female vocalists,
rnb, dance, soul

2 24 Pink Floyd, Black Sabbath, Joy Divi-
sion, Led Zeppelin, Duran Duran

rock, classic rock, 80s,
new wave, alternative

3 12 Shakira, Taylor Swift, Lana Del Rey,
Florence + the Machine, Madonna

pop, female vocalists,
rnb, dance, indie

4 16 Feist, La Roux, Mika, Bat for Lashes,
Gossip

indie, alternative, female
vocalists, rock, indie rock

5 119 Johnny Cash, Placebo, Vampire Week-
end, Air, Kiss

rock, alternative, indie,
pop, electronic

on learning influence probabilities on the edges of the social network, but also
the roles of the network users in the information-diffusion process.

Music listening data. The dataset we use is collected from Last.fm, a music
service that tracks user music listening and provides recommendations. The
dataset contains 1 372 users who have listened to a total of 1.2 million tracks
(51 495 unique tracks) from 4 322 different artists between Jan 1, 2010 and Nov
10, 2010. The dataset also includes the social network of the users. Since we
want to analyze information cascades, we study how the listening of different
artists is propagated in the social network. When user A starts listening to
an artist that her friend B is already listening to, we say that A is following
B, and draw an edge (B,A). We note that we do not have complete user
histories, so user A may have listened to the same artist previously (or in
fact from another platform), but as all studies of social influence we ignore
this effect. This process gives us a DAG for each artist whose vertices are the
Last.fm users. We limit ourselves to 196 artists who have at least 100 listeners.

Artist clustering. We apply k-means, using Greedy and Median for se-
lecting centroids, with ten restarts. We set the number of clusters to 5, and
p = 1/2 and q = 0.4.

Greedy outperforms Median both in terms of the average running time
and the average cost of the clustering. The results are shown in Table 1. The
relative differences of the costs are small since the costs mainly consists of the
penalties caused by Case 4 pairs as the DAGs are very sparse. Nevertheless,
Greedy consistently outperforms Median.

The clustering that obtained the lowest cost using Greedy is shown in
Table 2. We can see that different clusters capture different music genres.



Beyond rankings: comparing directed acyclic graphs 21

Clusters 2 and 5 contain mostly rock artists with the difference that the former
is focused on classic rock whereas the latter is more diverse. Cluster 3 captures
female pop artists, whereas in Cluster 4, we have indie artists. Cluster 1 is an
interesting mix of pop artists and alternative metal artists suggesting that
there is a group of users listening to both genres. The results also show that
the pop and rock genres are well represented in the data causing smaller genres
to merge to these.

Influential users. We should note that our approach gives not only a cluster-
ing of artists based on cascades, but it can also help us identify the most influ-
ential users for each cluster. The users who are roots in the centroid DAG of
each cluster and have large subtrees below are the potentially influential ones.
Identifying influential users is very important for viral marking and campaign
design.

7.3 Experiments on preference data

In this section, we apply our methods to analyze preference data of different
users. This analysis shows how the proposed methods can be used to discover
and visualize groups of people with different tastes.

Artist preference data. The data was collected through a Finnish music
related website whose owner allowed us to display a survey for the visitors
of the site for two days. We selected twenty popular Finnish/foreign artists
from five different music genres (pop, rock, rap, metal, and electronic) and
presented the visitors a series of questions of the form “Which artist do you
like more: A or B” where A and B were two randomly selected, distinct artists.
In total, we received data from 3 683 users (=IP addresses) out of whom 960
satisfy the following criteria: (i) answered at least 10 preference questions (ii)
answered questions about their age and gender (iii) country is Finland (iv)
preference graph is acyclic (6% of the graphs contain a cycle).2

User clustering. A preference DAG is formed by taking all the pairwise
preferences of a user and drawing an edge (a, b) if the user prefers artist a to b.
We divide the users into 480 train users and 480 test users and cluster the train
users using the greedy method with 3 clusters and parameters p = 0.50, q =
0.48. The value of q is selected by increasing it until the centroids obtained by
Greedy become nonempty. The results averaged over ten restarts are shown
in Table 3. Again Greedy obtains a better performance than Median in
terms of the clustering cost and the running time even though it uses more
iterations to converge.

The centroids of the clustering with the lowest cost are shown in Fig. 6. An
analysis of the centroids reveals that the clusters capture very different types
of preferences. The bottom cluster contains all metal fans, whereas the top-
left cluster contains all those who like anything but metal. Quite interestingly,

2 The dataset can be downloaded at http://users.ics.aalto.fi/emalmi/artist_

preference_data.zip



22 Eric Malmi et al.

Table 3 Clustering results for preference data.

Clustering cost ± std Time (millisec) Iterations

Median 43 751± 22 650 2.0
Greedy 43 097± 28 260 14.0

Apulanta
Eppu

Normaali

Coldplay

Muse

Metallica

System of
a Down

Children
of Bodom

Kotiteollisuus

PMMP

Lady
Gaga

Isac
Elliot

Miley
Cyrus

Eminem

Cheek Pitbull
Jukka
Poika

Daft
Punk

Avicii
Ellie

Goulding

Armin
van Buuren

Apulanta
Eppu

Normaali
Coldplay

Muse

Metallica
System of
a Down

Children
of Bodom

Kotiteollisuus PMMP

Lady
Gaga

Isac
Elliot

Miley
Cyrus

Eminem

Cheek

Pitbull

Jukka
Poika

Daft
Punk

Avicii

Ellie
Goulding

Armin
van Buuren

Apulanta

Eppu
Normaali

Coldplay

Muse

Metallica
System of
a Down

Children
of Bodom

Kotiteollisuus

PMMP

Lady
Gaga

Isac
Elliot

Miley
Cyrus

Eminem

Cheek

Pitbull

Jukka
Poika

Daft
Punk

Avicii
Ellie

Goulding
Armin

van Buuren

Genre:

Origin:

Metal Rock Pop Rap Electronic

International Finnish

Fig. 6 Centroids for a clustering of the artist preference data.

the users in the top-right cluster seem to be indifferent to genre, however,
preferring Finnish artists over foreign ones. To make the structure of the DAGs
more visible, we removed all edges e = (u, v) if there was an alternative path
from u to v via some intermediate vertices.

Preference prediction. To obtain further evidence that the obtained clus-
ters are meaningful, we apply them to a music preference prediction problem.
For each test user, we use k randomly selected preferences to determine the
closest cluster centroid c and then predict all the remaining preferences by
taking the majority vote over all train users in cluster c. As a baseline, we use
a majority vote over the train users in all clusters. The results in Fig. 7 show
that we obtain up to an 8% absolute improvement over the baseline method.
Note that further improvements might be attainable using more sophisticated
methods but the purpose of this experiment is merely to show that the pro-
posed clustering method is able to group people with similar preferences.



Beyond rankings: comparing directed acyclic graphs 23

1 3 5 7 9 11 13
0.54

0.56

0.58

0.6

0.62

0.64

# of train preferences

A
c
c
u
ra

c
y

 

 

Majority vote (baseline)

Majority vote within cluster

Fig. 7 Artist preference prediction results.

8 Conclusions

In this paper, we suggested a natural generalization of Kendall-tau distance
to directed acyclic graphs. We showed that this distance is a near-metric, that
is, it satisfies a relaxed version of triangle inequality. We considered two appli-
cations of the distance: DAG aggregation and clustering. We were able to use
the near-metric property to show that we can obtain a constant approximation
guarantee for the DAG aggregation problem using a median approach. DAG
aggregation, in turn, can used to obtain a clustering by running a k-means
type algorithm.

Our measure has potential applications in information-scarce rank analy-
sis, where instead of full rankings we only have partial ranking information.
Interestingly enough, DAGs also arise naturally from information cascades.
The nature of the problem here is different: in rank analysis we have DAGs
because we have missing information while in cascade analysis, DAGs contain
all information that we hope to have. Here clustering and analyzing DAGs
also have many applications, for example, by studying different clusters and
their centroids, we can find the influential users in each cluster.

We run experiments both on synthetic data, measuring how well we are
able to recover a planted clustering, and on real-world data regarding user pref-
erences and information cascades, measuring the clustering cost and running
time. In most cases a simple greedy approach outperformed Median, an al-
gorithm for which we have a constant approximation guarantee. Furthermore,
we showed that the obtained clusterings reveal meaningful and occasionally
surprising information. For instance, a clustering of music preferences showed
that while the preferences of some users are dictated by the genre of the music,
for others they depend on the nationalities of the artists.

Our work opens several lines for future work. First, we could study how to
rank items from a given set of DAGs. Second, we saw that DAG aggregation
and Feedback Arc Set problem are intimately related to each other. The
latter is a well-studied problem and it would be fruitful to see whether this



24 Eric Malmi et al.

connection can be used further to establish new theoretical complexity results
concerning both problems. Third, the standard Kendall-tau coefficient is often
used as a test statistic for studying the dependency between two variables.
Similarly, it would interesting to look into whether the proposed measure could
be used as a test statistic for assessing the dependency between two graphs.

A limitation of the proposed distance measure is that it is not clear how to
find the best values of parameters p and q since these are problem dependent
as our experiments show. In the experiments with real-world datasets, we have
used a simple heuristic proposed in Section 7.1, but it remains an open problem
how to select the parameter values optimally.

Acknowledgements The authors are grateful to Nicola Barbieri for providing the Last.fm
dataset. We also thank the anonymous reviewers for their constructive feedback. This work
was supported by Academy of Finland grant 118653 (ALGODAN).

References

1. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica
57(2) (2010)

2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking
and clustering. Journal of ACM 55(5) (2008)

3. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social net-
works. In: KDD (2008)

4. Barbieri, N., Bonchi, F., Manco, G.: Cascade-based community detection. In: WSDM
(2013)

5. Bender, M.A., Fineman, J.T., Gilbert, S., Tarjan, R.E.: A new approach to incremental
cycle detection and related problems. arXiv:1112.0784 (2011)

6. Borda, J.: Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des
Sciences (1781)

7. Brandenburg, F., Gleißner, A., Hofmeier, A.: Comparing and aggregating partial orders
with kendall tau distances. Discrete Mathematics, Algorithms and Applications 5(2)
(2013)

8. Brandenburg, F., Gleißner, A., Hofmeier, A.: The nearest neighbor Spearman footrule
distance for bucket, interval, and partial orders. Journal of Combinatorial Optimization
26(2), 310–332 (2013)

9. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common sub-
graph. Pattern recognition letters 19(3) (1998)

10. Dinur, I., Safra, S.: On the hardness of approximating vertex cover. Annals of Mathe-
matics 162(1) (2005)

11. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the
web. WWW (2001)

12. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and
multi-cuts in directed graphs. In: IPCO (1995)

13. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings.
SIAM Journal on Discrete Mathematics 20(3) (2006)

14. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top-k lists. SIAM Journal on Discrete
Mathematics 17(1) (2003)

15. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. The Annals of Statistics 7(4) (1979)

16. Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the Temporal Dynamics
of Diffusion Networks. In: ICML (2011)

17. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring Networks of Diffusion and
Influence. ACM Transactions on Knowledge Discovery from Data 5(4) (2012)



Beyond rankings: comparing directed acyclic graphs 25

18. Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications, iv:
Simplification of asymptotic variances. Journal of the American Statistical Association
67(338) (1972)

19. Goyal, A., Bonchi, F., Lakshmanan, L.: Discovering leaders from community actions.
In: CIKM (2008)

20. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM (2010)

21. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1) (1985)
22. Jiang, X., Munger, A., Bunke, H.: An median graphs: properties, algorithms, and ap-

plications. Pattern Analysis and Machine Intelligence 23(10) (2001)
23. Kann, V.: On the approximability of np-complete optimization problems. Ph.D. thesis,

KTH (1992)
24. Karp, R.M.: Reducibility among combinatorial problems. CCC (1972)

25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a
social network. KDD (2003)

26. Kendall, M.: A new measure of rank correlation. Biometrika 30 (1938)
27. Kendall, M.: Rank Correlation Methods, 4th, revised edn. Hodder Arnold (1976)
28. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. STOC (2007)
29. Laming, D.: Human judgment: the eye of the beholder. Cengage Learning EMEA (2003)
30. Macchia, L., Bonchi, F., Gullo, F., Chiarandini, L.: Mining Summaries of Propagations.

In: ICDM (2013)
31. Madden, J.I.: Analyzing and Modeling Rank Data. Chapman & Hall (1995)
32. Murphy, T.B., Martin, D.: Mixtures of distance-based models for ranking data. Comp.

Statistics & Data Analysis 41(3–4) (2003)
33. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for

independent cascade model. Knowledge-Based Intelligent Information and Engineering
Systems (2008)

34. Su, H., Gionis, A., Rousu, J.: Structured prediction of network response. In: ICML
(2014)


