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Abstract
Sequential pattern discovery is a well-studied field in data
mining. Episodes are sequential patterns that describe
events that often occur in the vicinity of each other.
Episodes can impose restrictions on the order of the events,
which makes them a versatile technique for describing com-
plex patterns in the sequence. Most of the research on
episodes deals with special cases such as serial and parallel
episodes, while discovering general episodes is surprisingly
understudied. This is particularly true when it comes to
discovering association rules between them.

In this paper we propose an algorithm that mines
association rules between two general episodes. On top of
the traditional definitions of frequency and confidence, we
introduce two novel confidence measures for the rules. The
major challenge in mining these association rules is pattern
explosion. To limit the output, we aim to eliminate all
redundant rules. We define the class of closed association
rules, and show that this class contains all non-redundant
output. To make the algorithm efficient, we use further
pruning steps along the way. First of all, we generate
only free and closed frequent episodes from which we create
candidate rules, we speed up the evaluation of the rules, and
finally prune the remaining non-closed rules from the output.

1 Introduction

Discovering frequent patterns in an event sequence is an
important field in data mining. Episodes, first defined
by Mannila et al. [14], represent a rich class of sequential
patterns, enabling us to discover events occurring in the
vicinity of each other while at the same time capturing
complex interactions between the events.

More specifically, a frequent episode is traditionally
considered to be a set of events that reoccurs in the
sequence. Gaps are allowed between the events and
the order in which the events are allowed to occur is
specified by the episode. The frequency of an episode
is usually expressed as the number of windows of
specified length in which the episode occurs, but can
also be defined incorporating other concepts, such as
minimal windows that contain the episode. However,
it is important that the frequency is monotonically
decreasing so we can use the well-known level-wise
approach to mine all frequent episodes.

The order restrictions of an episode are described
by a directed acyclic graph (DAG): the set of events

in a sequence covers the episode if and only if each
event occurs only after all its parent events (with respect
to the DAG) have occurred (see the formal definition
in Section 3). Usually, only two extreme cases are
considered. A parallel episode poses no restrictions on
the order of the events, and a window covers the episode
if the events occur in the window, in any order. In such
a case, the DAG associated with the episode contains no
edges. The other extreme case is a serial episode. Such
an episode requires that the events occur in one, and
only one, specific order in the sequence. Clearly, serial
episodes are more restrictive than parallel episodes. If
a serial episode is frequent, then its parallel version is
also frequent.

An association rule between two episodes expresses
the fact that the occurrence of one episode implies, with
a high enough probability, that another episode can be
found nearby. Typically, association rules are defined
such that an occurrence of a smaller episode implies the
occurrence of a greater episode.

The main contribution of this paper is an algorithm
that mines association rules consisting of two episodes
represented by DAGs. On top of that, we introduce two
novel ways to define the confidence of an association
rule, based on more intuitive concepts than the tradi-
tional method using sliding windows of fixed length. To
reduce the size of the output, we adopt the traditional
concept of closed patterns to obtain only non-redundant
association rules. We present a collection of algorithms,
called Marbles, to mine all such rules, handling all
three possible approaches.

So far, very little research has gone into the search
for episodes based on DAGs and even less has gone
into the discovery of association rules between them.
In practice, such episodes have been overshadowed by
parallel and serial episodes. The main reason for this is
the pattern explosion. Consider the case of itemsets,
where a frequent itemset of size k has 2k frequent
subsets. With an episode of size k, described by a DAG,
the number of possible subepisodes is much larger, as we
also have to look at all possible subsets of its edges, the
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number of which grows quadratically with the number
of nodes. On top of that, each association rule consists
of two episodes, so the number of combinations is huge,
as illustrated by the following example.

Example 1. Consider a sequence within which subse-
quence abcd occurs frequently, using a fixed window of
size 4. Assume that, outside these occurrences, events
a, b, c and d never occur. It is easy to see that episodes
G = {a, d} and H = a → b → c → d will have the
same frequency. The same, of course, is also true for
any episode X, such that G ⊆ X ⊆ H. Therefore,
the confidence of all association rules X ⇒ Y , where
G ⊆ X ⊂ Y ⊆ H will be equal to 1. In this case, a
single simple reoccurring pattern in the sequence results
in 158 association rules1. However, just one of those
rules is actually not redundant, namely G ⇒ H, as all
others can be derived from that one.

However, the advantage of episodes based on DAGs
is that they allow us to capture dependencies between
the events while not being too restrictive. The following
example illustrates that parallel and serial episodes may
be insufficient as a means of discovering all interesting
association rules in a dataset.

Example 2. As an example we will use text data,
namely inaugural speeches by presidents of the United
States (see Section 7 for more details). Protocol re-
quires the presidents to address the chief justice and the
vice presidents in their speeches. Hence, we have discov-
ered association rule {chief, justic, vice, president} ⇒
{chief → justic, vice→ president}. This rule tells us
that when these four words appear near each other, then
’chief ’ precedes ’justice’ and ’vice’ precedes ’president’.
Since the actual address order varies from speech to
speech, the pattern does not impose any additional re-
strictions. The discovered rule informs us of the fre-
quent usage of phrases ’chief justice’ and ’vice presi-
dent’ in each others vicinity, something we could never
discover using only parallel or serial episodes.

A popular method of reducing the size of the output
in any pattern mining problem is to discover only
closed patterns. A pattern is closed if there exists
no superpattern with the same frequency. Some work
has gone into the discovery of closed frequent episodes,
but we go a step further, by introducing the concept
of closed association rules. We output only the rules
where the left-hand side is minimal, and the right-hand
side maximal. Defining this class of association rules
is not trivial, and we use a variety of computational
tricks to speed up the execution of our algorithm. This

1we counted this number manually

allows us to output association rules consisting of two
episodes represented by DAGs, and yet keep the size of
the output well under control.

Furthermore, apart from the traditional definition
of the confidence of an association rule, based on the
frequencies of the two episodes using a sliding window of
fixed size, we introduce two additional ways to define the
confidence, using either minimal windows or weighted
minimal windows. We show that all three methods
have their merits, and can be valuable and intuitive,
depending on the nature of the input sequence and the
wishes of the end user.

The rest of the paper is organised as follows: In Sec-
tion 2, we discuss the most relevant related work, before
presenting the main notations and concepts in Section 3.
Section 4 introduces the notion of association rules using
three different methods, while in Section 5 we discuss
how we can limit the size of the output by eliminat-
ing redundant association rules. The algorithms that
allow us to achieve this goal are presented in detail in
Section 6. In Section 7 we show the results of our exper-
iments, before presenting our conclusions in Section 8.
The code of the algorithm is available online2.

2 Related Work

The first attempt at discovering frequent subsequences,
or serial episodes, was made by Wang et al. [22]. The
dataset consisted of a number of sequences, and a
pattern was considered interesting if it was long enough
and could be found in a sufficient number of sequences.
A complete solution to a more general problem was later
provided by Agrawal and Srikant [2] using an Apriori-
style algorithm [1].

Looking for frequent general episodes in a single
event sequence was first proposed by Mannila et al. [14].
The Winepi algorithm finds all episodes that occur
in a sufficient number of windows of fixed length, and
generates association rules X ⇒ Y , where X ⊂ Y and
bothX and Y are frequent episodes. Specific algorithms
were given for the case of parallel and serial episodes,
but no algorithm for detecting general episodes was
provided. Tatti and Cule [18] extend the definition of
an episode to be able to depict simultaneous events.
They provide an algorithm for generating all frequent
episodes, but no association rules.

Mannila et al. also propose Minepi [14], an alter-
native interestingness measure for an episode, where the
frequency is defined as the number of minimal windows
that contain the episode. In this context, the authors
also define association rules. Unfortunately, this fre-
quency measure is not monotonically decreasing. How-

2http://adrem.ua.ac.be/implementations
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ever, the issue can be fixed by defining frequency as
the maximal number of non-overlapping minimal win-
dows [13, 17]. Zhou et al. [24] proposed mining closed
serial episodes based on the Minepi method. However,
the paper did not address the non-monotonicity issue
of Minepi. None of these follow-up papers handled the
problem of association rules.

Méger and Rigotti [15] propose a method for mining
association rules of the form X ⇒ Y , such that X and Y
are both serial episodes, and X is a prefix of Y . Cule et
al. [8] introduce an alternative interestingness measure
for episodes, combining frequency with the cohesion of
an episode. They further extend this work to mine
association rules [7], but the method works only for
parallel episodes.

A lot of research in the field of pattern discovery
has gone into eliminating redundancy. An important
way to tackle this problem is by outputting only closed
patterns. Within sequence mining, some research has
gone into outputting only closed subsequences, where a
sequence is considered closed if it is not properly con-
tained in any other sequence which has the same fre-
quency. Yan et al. [23], Tzvetkov et al. [20], and Wang
and Han [21] proposed methods for mining such closed
patterns, while Garriga [6] further reduced the output
by post-processing it and representing the patterns us-
ing partial orders. Harms et al. [12], meanwhile, experi-
ment with closed serial episodes. In another attempt to
trim the output, Garofalakis et al. [9] proposed a family
of algorithms called Spirit which allow the user to de-
fine regular expressions that specify the language that
the discovered patterns must belong to.

Pei et al. [16], and Tatti and Cule [19] considered
restricted versions of the general problem setup of
finding frequent episodes. The former approach assumes
a dataset of sequences where the same label can occur
only once. Hence, an episode can contain only unique
labels. The latter pointed out the problem of defining a
proper subset relationship between general episodes and
tackled it by considering only strict episodes, where two
nodes having the same label had to be connected by a
path. In our work, we adopt the latter approach, extend
it by allowing events in the sequence to take place at
the same time, and build on it further in order to mine
association rules.

Further interestingness measures for episodes, ei-
ther statistically motivated or aimed at removing bias
towards smaller episodes, were made by Garriga [5],
Gwadera et al. [10,11], Calders et al. [4], and Tatti [17].
All these methods, however, were limited to finding in-
teresting episodes, and stopped short of discovering as-
sociation rules between them.

Tackling redundancy within association rules, and

not only within the patterns they consist of, has been
done within the field of frequent itemset mining, but not
within episode mining. Bastide et al. [3] define rules as
non-redundant if they consist of a minimal antedecent
and a maximal consequent. We present a similar
approach, dealing with the complexity of terms such
as minimal and maximal in the context of episodes.

3 Preliminaries

In this section, we introduce the basic concepts that we
will use throughout the paper. First we will describe
our dataset.

Definition 1. We define a sequence event e =
(id(e) , lab(e) , ts(e)) as a tuple consisting of three en-
tries, a unique id number id(e), a label lab(e) coming
from an alphabet Σ, and a time stamp integer ts(e). We
will assume that if id(e) > id(f), then ts(e) ≥ ts(f). A
sequence is a collection of sequence events ordered by
their ids.

Note that we are allowing multiple events to have
the same time stamp even when their labels are equiva-
lent. For the sake of simplicity, we will use the notation
s1 · · · sN to mean a sequence ((1, s1, 1), . . . , (N, sN , N)).

Definition 2. Given a sequence s and two integers
i and j we define a subsequence s[i, j] = si, . . . , sj
containing all events occurring between i and j. We
define the length of subsequence s[i, j] as

len(s[i, j]) = ts(sj)− ts(si) + 1.

Our next step is to define the patterns we are interested
in.

Definition 3. An episode G is represented by a di-
rected acyclic graph with labelled nodes, that is, G =
(V,E, lab), where V = (v1, . . . , vK) is the set of nodes,
E is the set of directed edges, and lab is the function
lab : V → Σ, mapping each node vi to its label.

When there is no danger of confusion, we will use
the same letter to denote an episode and its graph.

Definition 4. A node n in an episode graph is a
descendant of a node m if there is a path from m to
n. In that case, node m is an ancestor of node n.

We are now ready to give a precise definition of an
occurrence of a pattern in a sequence.

Definition 5. Given a sequence s and an episode G
we say that s covers G, or G occurs in s, if there is
an injective map f mapping each node vi to a valid



index such that the node vi in G and the corresponding
sequence element sf(vi) have the same label, sf(vi) =
lab(vi), and that if there is an edge (vi, vj) in G, then
we must have f(vi) < f(vj). In other words, the parents
of vj must occur in s before vj. If the mapping f is
surjective, that is, all events in s are used, we will say
that s is an instance of G.

An example of a sequence covering an episode is
given in Figure 1.

a b

c d a c b a d b c d c a b d

Figure 1: An example of an episode covered by a
sequence.

In order to be able to discover association rules, we
must first be able to compare episodes using some sort
of a subset relationship.

Definition 6. Given two episodes G and H, we say
that G is a subepisode of H, denoted G ⊆ H, if the
DAG describing episode G is a subgraph of the DAG
describing episode H.

Definition 7. Given two episodes G and H, such that
G ⊂ H, we can express an association rule G⇒ H. We
call G the head of the rule, and H the tail of the rule.

4 Association Rules

In this section we present three possible methods to
measure the frequency of an episode and the confidence
of an association rule. The first one uses a sliding
window of fixed size, the second is based on disjoint
minimal windows, while the third one introduces the
concept of weighted minimal windows.

4.1 Using Fixed Windows We start off by defining
frequency of an episode in the traditional manner, based
on windows of fixed length. This definition corresponds
to the definition used in Winepi [14]. The frequency is
monotonically decreasing which allows us to do effective
pruning while discovering frequent episodes.

Definition 8. Given a window size ρ and an episode
s, we define the fixed-window frequency of an episode
G in s, denoted fr(G; s), to be the number of windows
of size ρ in s covering the episode,

frf (G; s) = |{s[i, i+ ρ− 1] | s[i, i+ ρ− 1] covers G}|.

We will use frf (G) whenever s is clear from the context.
An episode is σ-frequent (or simply frequent) if its
frequency is higher than or equal to some given threshold
σ.

In this context, association rules can be defined in
the traditional manner.

Definition 9. Given a window size ρ and episodes
X and Y , such that X ⊂ Y , we define the fixed-
window confidence of the association rule X ⇒ Y ,
denoted cf (X ⇒ Y ), to be the ratio of their respective
frequencies,

cf (X ⇒ Y ) =
frf (Y )

frf (X)
.

Informally, we can interpret this definition as fol-
lows: cf (X ⇒ Y ) is the percentage of windows that
contain X that also contain Y . In other words, if we
encounter a window that contains X, cf (X ⇒ Y ) rep-
resents the probability that the window also contains
Y .

4.2 Using Minimal Windows Using a sliding win-
dow of fixed length has some drawbacks, particularly in
the context of association rules, as can be seen in the
following examples.

Example 3. Consider a sequence within which subse-
quence abcd occurs frequently, using a fixed window of
size 4. Assume that, outside these occurrences, events
a, b, c and d never occur. The fact that frf ({a, d}) =
frf (a→ b→ c→ d) implies that cf ({a, d} ⇒ a → b →
c → d) = 1. However, cf ({b, c} ⇒ a → b → c → d) =
1
3 . Intuitively, though, looking at the pattern, we note
that every occurrence of {b, c}, just like every occurrence
of {a, d}, implies an occurrence of a→ b→ c→ d. The
confidences of the two rules do not reflect that.

Example 4. Consider sequence s1 within which subse-
quence abxycd occurs frequently, and sequence s2 within
which subsequence axbcyd occurs frequently, where x
and y are noise events and are not part of the patterns.
Assume we are using a fixed window of size 6, and that,
outside these occurrences, events a, b, c and d never oc-
cur. As in the previous example, cf ({a, d} ⇒ a → b →
c → d) = 1, but cf ({b, c} ⇒ a → b → c → d) is now
equal to 3

5 in s1 and 1
5 in s2. Once again, the confidence

values are not intuitive.

The problem with basing the definition of confi-
dence of an association rule on the fixed-window fre-
quencies of the two episodes is that this approach fo-
cuses on the occurrences of the episodes in the windows,
rather than on their occurrences in the sequence. In the



above examples, while there are some windows that con-
tain {b, c} and not a → b → c → d, it still holds that
every occurrence of {b, c} in the sequence can be found
within an occurrence of a → b → c → d. Our first step
towards addressing this issue is to consider a different
definition of the frequency of an episode in a sequence.

Definition 10. Given a sequence s and an episode
G, a window s[a, b] is called a minimal window of
G in s, if len(s[a, b]) ≤ ρ, s[a, b] covers G, and if
no proper subwindow of s[a, b] covers G. We define
b(s[a, b]) = ts(sa) as the beginning of the window, and
e(s[a, b]) = ts(sb) as its end. We denote the set of all
minimal windows of G in s with mw(G; s), or simply
mw(G), when s is known from the context. Given a set
of minimal windows W , we define a function dis(W ) to
be equal to 1 if all windows in W are pairwise disjoint,
and 0 otherwise.

An attempt was made to define frequency of an
episode as the number of its minimal windows [14].
However, this measure proved to be non-monotonic. In
order to satisfy the downward-closed property, we need
to consider only the non-overlapping windows [13,17].

Definition 11. The disjoint-window frequency of an
episode G in a sequence s, denoted frm(G), is defined
as the maximal number of non-overlapping minimal
windows within s that contain episode G. Formally,

frm(G) = max {|W | |W ⊆ mw(G) , dis(W ) = 1} .

A naive way to define the confidence of an associa-
tion rule X ⇒ Y in the disjoint-window context would
be to, once again, compute the ratio between the fre-
quencies of Y and X. The following example shows that
this might not be very intuitive either.

Example 5. Consider sequence s1 within which subse-
quence abcxyd occurs 100 times, and sequence s2 within
which subsequence abcbcd occurs 100 times, where x
and y are noise events and are not part of the pat-
terns. Assume that, outside these occurrences, events
a, b, c and d never occur. Denote G = {b, c} and
H = a → b → c → d. In s1, frm(G) = 100 and

frm(H) = 100. Therefore, fr(G)
fr(H) = 1. However, in

s2, frm(G) = 200 and frm(H) = 100, and fr(G)
fr(H) = 0.5.

Clearly, in both sequences, each occurrence of G implies
an occurrence of H, and the results for s2 are not sat-
isfactory.

While defining the frequency of an episode using
minimal windows solved some of the problems inherent
in the fixed-window method, we clearly still need to find

a better way to define the confidence of an association
rule. Intuitively, we wish the confidence of rule X ⇒ Y
to express the probability of encountering a minimal
window of Y having encountered a minimal window of
X. More formally, we wish to know what percentage
of minimal windows of X are contained within minimal
windows of Y . However, in order to do this, we are
forced to drop the constraint that the minimal windows
in question must be disjoint. The reasoning behind this
decision is shown in the following example.

Example 6. Consider sequence s = abcadbcbcd. De-
note G = {b, c} and H = a→ b→ c→ d. The disjoint-
window frequency of H is 1, but the sequence contains
two overlapping minimal windows of H. There are three
minimal windows of G, and each of them is contained
within a minimal window of H. However, if we were
to only use non-overlapping windows of H, we would be
faced with two problems. First of all, the confidence of
rule G⇒ H would depend on our choice of disjoint min-
imal windows — if we chose the first minimal window of
H, s[1, 5], we would find two occurrences of G outside
it and the confidence of the rule would be 1

3 , whereas
if we chose the second minimal window of H, s[4, 10],
we would find just one occurrence of G outside it, and
the confidence would be 2

3 . More importantly, whichever
choice we made, we would not be able to get the correct
result, showing that every occurrence of G is contained
within an occurrence of H.

Now that we have seen that we cannot define
the confidence of an association rule using either the
disjoint-window frequencies, or the containment of the
disjoint occurrences, of the two episodes, we are ready
to present a definition that corresponds exactly to our
intuition.

Definition 12. Given episodes X and Y , such that
X ⊂ Y , and a minimal window s[a, b] of episode
X. Assume there exists a minimal window s[c, d] of
Y such that c ≤ a and b ≤ d, then we define the
minimal-extensibility of occurrence s[a, b] of X into an
occurrence of Y as

extm(s[a, b], X, Y ) = 1.

If there exists no such minimal window of Y , we define
extm(s[a, b], X, Y ) = 0.

Definition 13. Given episodes X and Y , such that
X ⊂ Y , we define the minimal-window confidence of the
association rule X ⇒ Y , denoted cm(X ⇒ Y ), to be the
proportion of minimal windows of X that are contained
within a minimal window of Y ,

cm(X ⇒ Y ) =
1

|mw(X)|
∑

w∈mw(X)

extm(w,X, Y ).



4.3 Weighted Minimal Windows The problem
with using minimal windows is that they do not take the
cohesion of a pattern into account. A minimal window
of size 2 will make the same contribution towards the
frequency of an episode as a minimal window of size 10.
Similarly, using only minimal windows, the confidence
of the association rule X ⇒ Y would depend solely on
the inclusion of minimal windows of X inside minimal
windows of Y , regardless of how much the window would
need to be expanded in order to find the whole of Y . The
following example illustrates these problems further.

Example 7. Consider sequences s1 = axbcyd and s2 =
abxycd. Episode b→ c occurs once in each sequence, so
its disjoint-window frequency would be equal to 1 in each
sequence. However, the implied pattern an occurrence of
a b is followed by an occurence of a c is clearly stronger
in s1, where b is immediately followed by a c. In both
sequences, the minimal window of b → c is contained
within a minimal window of a → b → c → d, and
the confidence of the rule b → c ⇒ a → b → c → d
using minimal windows would therefore be equal to 1
for both sequences. However, the meaning of the rule,
an occurrence of episode b→ c is likely to be contained
within a nearby occurrence of a → b → c → d,
can be seen more clearly in s2. In s1, we must look
much further before we encounter the whole of the larger
episode.

To address these problems, we must first modify the
definition of the frequency of an episode in a sequence.

Definition 14. The total weight of a set of windows
W in a sequence s, denoted tw(W ), is defined as

tw(W ) =
∑
w∈W

1

len(w)
.

The weighted-window frequency of an episode G in
a sequence s, denoted frw (G), is defined as

frw (G) = max {tw(W ) |W ⊆ mw(G) , dis(W ) = 1} .

Informally, the shorter the window, the greater
its contribution towards the overall frequency of the
episode. Note that, once again, we need to consider
only non-overlapping windows in order to satisfy the
downward-closed property. However, this time, as the
following example illustrates, we need to be much more
careful as to which windows we choose, hence the need
to maximise the sum of the windows’ inverse lengths,
rather than simply their number.

Example 8. Consider sequence s = abxywzcbaxywzc
and parallel episode X = {a, b, c}. s contains three

minimal windows of this episode, namely s[1, 7], s[7, 9]
and s[8, 14]. Note that the second minimal window
overlaps with both the first and the third, so the disjoint-
window frequency of X would be equal to 2. The two
windows that would count towards this frequency would
be s[1, 7] and s[8, 14]. However, if we want to maximise
the sum of the inverse lengths of the windows, we cannot
simply take the maximal number of non-overlapping
windows and then compute this sum. In our example,
we have two possible sets of non-overlapping windows,
s[1, 7] and s[8, 14], and s[7, 9] alone. In the first case,
we have two windows of size 7, and the resulting sum
would be 2

7 . In the second case, we have one window
of size 3, and the sum would, therefore, be equal to
1
3 . We see that by choosing a smaller number of non-
overlapping windows, we actually get a higher weighted-
window frequency for the episode. We conclude that
frw (X) = 1

3 .

As was already shown in Example 7, we also need
to take the various lengths of the minimal windows into
account when computing the confidence of association
rules. For reasons similar to those discussed in Sec-
tion 4.2, we once again cannot take only the disjoint
minimal windows into account. Intuitively, we want the
confidence of rule X ⇒ Y to correspond to the like-
lihood of encountering the whole of Y once we have
encountered X. The nearer the whole of Y is to X on
average, the higher the confidence should be.

Definition 15. Given episodes X and Y , such that
X ⊂ Y , and a minimal window s[a, b] of episode X.
Assume there exists a minimal window s[c, d] of Y such
that c ≤ a and b ≤ d, and that this is the smallest
window that contains both Y and s[a, b], then we define
the weighted-extensibility of occurrence s[a, b] of X into
an occurrence of Y as

extw(s[a, b], X, Y ) =
len(s[a, b])

len(s[c, d])
.

If there exists no such minimal window of Y , we define
ext(s[a, b], X, Y ) = 0.

Definition 16. Given episodes X and Y , such that
X ⊂ Y , we define the weighted-window confidence of
the association rule X ⇒ Y , denoted cw(X ⇒ Y ), to be
the average weighted-extensibility of an occurrence of X
into an occurrence of Y ,

cw(X ⇒ Y ) =
1

|mw(X)|
∑

w∈mw(X)

extw(w,X, Y ).

The following example illustrates that, when ex-
tending an occurrence of X in order to find an occur-
rence of Y , it is important that we find the smallest such
occurrence.



Example 9. Consider sequence s = axybca and
episodes X = b → c and Y = {a, b→ c}. Sequence
s contains one minimal window of X, namely s[4, 5].
This occurrence of X can be extended in search of an
occurrence of Y . There are two candidate minimal win-
dows of Y that can be considered, s[1, 5] and s[4, 6]. If
we choose the former, the extensibility of s[4, 5] into Y
would equal 2

5 , and if we use the latter, this value would
rise up to 2

3 . Since we are interested in how far we need
to look in order to extend an occurrence of X into an
occurrence of Y , we clearly need to look for the smallest
minimal window of Y that satisfies the conditions.

We now show what effect the new definitions would
have on the patterns discussed in Example 7.

Example 10. Consider sequences s1 = axbcyd and
s2 = abxycd, and episodes X = b → c and Y = a →
b → c → d. First of all, we see that frw (X; s1) = 1

2 ,
while frw (X; s2) = 1

4 . However, we also see that
cw(X ⇒ Y ) equals 1

3 in s1 and 2
3 in s2. This shows

that both problems mentioned in Example 7 have been
successfully addressed.

Table 1 shows an overview of the results of applying
the three methods presented in Sections 4.1, 4.2 and 4.3
on the patterns and sequences discussed in Examples 7
and 10.

Pattern s1 s2

frf (X) 5 3
frf (Y ) 1 1
cf (X ⇒ Y ) 0.2 0.33

frm(X) 1 1
frm(Y ) 1 1
cm(X ⇒ Y ) 1 1

frw (X) 0.5 0.25
frw (Y ) 0.17 0.17
cw(X ⇒ Y ) 0.33 0.67

Table 1: An overview of all presented methods applied
to the sequences given in Example 7. The window size
used for the fixed-window method was 6.

5 Eliminating Redundancy

In this section, we will denote the frequency of an
episode G with fr(G), and the confidence of a rule
X ⇒ Y with c(X ⇒ Y ), regardless of which method we
are using, as what follows applies to all three methods.

It is a known fact in episode mining that two differ-
ent DAGs may actually represent the same episode. To

tackle this redundancy, we must impose some restric-
tions on the types of DAGs we will discover.

Definition 17. An episode G is called transitively
closed if for two nodes n and m, such that there exists
a path from n to m, there also exists an edge from n to
m.

Definition 18. An episode G is called strict if for any
two nodes v and w in G sharing the same label, there
exists a path either from v to w or from w to v.

As has been shown by Tatti and Cule [19], the
issue of the above mentioned redundancy is resolved
within the class of transitively closed strict episodes.
Therefore, we will mine only association rules consisting
of strict, transitively closed episodes. In the remaining
text, we consider episodes to be strict and transitively
closed, unless stated otherwise.

A traditional step towards further reducing the
output is to generate only closed episodes.

Definition 19. An episode G is closed if there exists
no episode H, such that G ⊂ H and fr(G) = fr(H).

However, we want to eliminate redundancy within
the association rules we output, and not only among the
frequent episodes. In fact, what we want to achieve is
to output only the rules that give us most information.
More precisely, we want the left-hand side to be minimal
(the most general episode) and the right-hand side
maximal (the most specific episode), among all those for
which the rule holds. To achieve this, we first need to
define what exactly we mean by minimal in this context.

Definition 20. An episode G is free if there exists no
episode H, such that H ⊂ G and fr(G) = fr(H).

If we wish to fully eliminate redundancy in the
output, we must consider only those rules that consist of
a free episode on the left-hand side, and a closed episode
on the right-hand side.

Definition 21. Given two association rules R1 =
X1 ⇒ Y1 and R2 = X2 ⇒ Y2, we say that R1 is a
subset of R2 if X2 ⊆ X1 and Y1 ⊆ Y2. In this case, we
denote R1 ⊆ R2. If X2 ⊂ X1 or Y1 ⊂ Y2, we denote
R1 ⊂ R2.

Unlike the frequency of an episode, the confidence
of an association rule is not necessarily a monotonotic
measure, given this subset relationship between rules.
The following example illustrates that, given rules R1

and R2, such that R1 ⊂ R2, the confidence of R1 could
be smaller than, greater than, or equal to the confidence
of R2.



Example 11. Consider sequence s = aacbabda, using
the minimal window method. Consider episodes G1 = a,
G2 = a → b, G3 = a → c → b and G4 = a → c → b →
d, and rules R1 = G1 ⇒ G4, R2 = G2 ⇒ G4 and R3 =
G2 ⇒ G3. Clearly, it holds that G1 ⊂ G2 ⊂ G3 ⊂ G4,
and therefore R3 ⊂ R2 ⊂ R1. To compute the disjoint-
window confidence of the three rules, we first need to
identify all minimal occurrences of the four episodes in
s. There are four minimal occurrences of G1, s[1, 1],
s[2, 2], s[5, 5] and s[8, 8], two minimal occurrences of
G2, s[2, 4] and s[5, 6], one minimal occurrence of G3,
s[2, 4], and one minimal occurrence of G4, s[2, 7]. For
R1, we see that two of the four minimal occurrences of
G1 can be found within a minimal occurrence of G4,
and therefore cm(R1) = 0.5. For R2, we find that
both minimal occurrences of G2 can be found within a
minimal occurrence of G4, so cm(R2) = 1. Finally,
for R3, we see that just one minimal occurrence of
G2 can be found within a minimal occurrence of G3,
and cm(R3) = 0.5. To sum up, R3 ⊂ R2 ⊂ R1, but
cm(R1) = cm(R3) < cm(R2).

Example 11 illustrates that we cannot apply the
usual definition of closure to association rules. It is
possible for two rules, R1 and R2, such that R1 ⊂ R2,
to have the same confidence purely by coincidence.
However, in such a case, we cannot derive the confidence
of R1 using the confidence of R2, and we cannot leave
R1 out of the output. We must therefore be a little bit
more careful when defining non-redundant rules.

Definition 22. Given episodes X and Y , such that
X ⊂ Y , the association rule R = X ⇒ Y is not
closed if there exists a rule R1, such that R ⊂ R1 and
c(R) = c(R1), and there exists no rule R2, such that
R ⊂ R2 ⊂ R1 and c(R) 6= c(R2). An association rule
that does not satisfy these conditions is closed.

Formally, given a sequence s, a user-chosen win-
dow size ρ, a frequency threshold σ and a confidence
threshold φ, we will output all closed association rules
of the form X ⇒ Y , where X ⊂ Y , fr(Y ) ≥ σ, and
c(X ⇒ Y ) ≥ φ.

6 MARBLES

In this section, we present our algorithms. We start off
by describing the first step, mining frequent episodes,
before moving on to the algorithms we developed for
mining closed association rules.

6.1 Mining episodes In order to generate associa-
tion rules, we first need to generate frequent episodes.
As our goal is to mine only closed association rules we
do not need to consider all frequent episodes. We will
resort to i-closed episodes [19].

Due to space restrictions we will only sketch the
necessary definitions. For more formal definitions, we
refer the reader to Section 5 in the paper that originally
introduced the concept of i-closure. [19].

Definition 23. An i-closure is a function icl(G; s) =
H mapping an episode G to an episode H such that
G ⊆ H. H is constructed from G in two phases. Firstly,
if an event with a label l occurs in every minimal window
of G and there is no node in G labelled with l, then we
add a new node into G with label l. This is repeated until
no new additions are possible. In the second phase, we
add new edges. If in every instance of G a node v occurs
before a node w, then we add an edge from v to w.

Definition 24. Given a sequence s, we say that an
episode G is i-closed if G = icl(G; s). From the
fundamental properties of the closure , it follows that
G is the maximal episode for which the closure is equal
to G. Similarly, we say that G is i-free (or an i-
generator) if there is no H such that H ⊂ G and
icl(G; s) = icl(H; s). In other words, G is a minimal
episode that can produce icl(G; s).

Note that there can be several minimal episodes
that have the same i-closure but only one maximal
episode.

The reason we are using i-closed episodes is that we
can use them to generate closed association rules.

Proposition 6.1. Let X ⇒ Y be a closed association
rule. Then X is i-free and Y is i-closed.

Proof. All three confidence measures depend only on
the minimal windows of X and Y . As demonstrated
in the proof of Theorem 6 in the original paper [19],
if two episodes, say G and H, have the same i-closure,
i.e., icl(G; s) = icl(H; s), then they have exactly the
same minimal windows. This implies that c(X ⇒
Y ) = c(X ⇒ icl(Y ; s)) proving that Y must be
i-closed. Similarly if we have X ′ ⊆ X such that
icl(X ′; s) = icl(X; s), then c(X ⇒ Y ) = c(X ′ ⇒ Y )
which immediately implies that X = X ′. Consequenly,
X must be i-free.

To mine episodes we employ the MineEpisodes al-
gorithm given in the original paper [19]. The algorithm
follows a standard BFS-approach for closed patterns by
discovering first all frequent i-free patterns and comput-
ing the closure of each i-free episode. Hence, the out-
put of this algorithm are all frequent i-free episodes and
their closures. Typically, free patterns are suppressed
from the final output but in this case we need them to
generate the left-hand side of the association rules.



MineEpisodes can either use fixed windows or
minimal windows as a frequency constraint. The al-
gorithm computes the frequency by first discovering all
minimal windows and then computing the frequency us-
ing the discovered windows. We extend the algorithm to
handle weighted minimal windows by introducing a dy-
namic program (given in Algorithm 1). The algorithm
takes a list of minimal windows for an episode G and
computes frw (G).

Algorithm 1: WeightFrequence. Computes
weighted frequency frm(X).

input : list of minimal windows
V = {v1, . . . , vN} of episode X

output: frm(X)
1 j ← 1;
2 foreach vi ∈ V do
3 while j ≤ N and e(vi) ≥ b(vj) do
4 j ← j + 1;

5 di ← j;

6 cN+1 ← 0;
7 for i = N . . . 1 do
8 ci ← max(1/len(vi) + cdi , ci+1);

9 return c1;

Consider that we have an ordered list of minimal
windows V = {v1, . . . , vN}. We need to select a subset
of V , containing disjoint windows that maximise the
total weight. In order to do that, let ci be the maximal
weight of a subset of disjoint windows of {vi, . . . , vN}.
Then it is easy to see that

ci = max(1/len(vi) + cd, ci+1) ,

where d is the index of the next minimal window vd that
is disjoint with vi. The left side in the max corresponds
to using vi in the subset and the right side corresponds
to omitting vi from the so far best disjoint collection.

The algorithm first finds di, the index of the next
disjoint window for each vi and then constructs the
weights ci. Both steps require O(N) time and memory.

6.2 Mining association rules Now that we have
mined episodes, the next step is to build association
rules. In order to do that, we introduce Marbles
given in Algorithm 2. The algorithm takes as input
episodes mined in the first step and builds rules from
these episodes. We assume that episodes are provided
in specific groups. The input consists of a list of pairs,
where the first element is an i-closed episode, say X,
and the second element is a list, say G, of all i-free
episodes that have X as their closure. The reason

for this grouping is that the confidence is equal for
all rules of form G ⇒ Y , where G ∈ G. In fact,
c(G⇒ Y ) = c(X ⇒ Y ).

Of the three definitions of confidence given in Sec-
tion 4, the fixed-window confidence is the only one that
is monotonic. Confidence based on (weighted) minimal
windows is not monotonic, hence we have to resort to
an exhaustive enumeration.

Algorithm 2: Marbles. Mines closed associa-
tion rules.
input : confidence threshold φ, list X of pairs

(X,G), where X is an i-closed episode
and G are the i-free episodes having X
as their i-closure

output: list of closed association rules
1 R ← ∅;
2 foreach (X1,G1), (X2,G2) ∈ X s.t. X1 ⊆ X2 do
3 foreach G ∈ G1 do
4 add R = G⇒ X2 to R;
5 if c(R) < φ then mark R;

6 foreach R1 ∈ R do
7 S ← ∅;
8 foreach R2 ∈ R, R1 ( R2 do
9 remove any rule S from S s.t. R2 ⊆ S;

10 if there is no S ∈ S s.t. S ⊆ R2 then
11 add R2 to S;

12 if there is S ∈ S s.t. c(R1) = c(S) then
13 mark R1;

14 return unmarked rules from R;

The first loop in the algorithm discovers all confi-
dent association rules using i-free and i-closed episodes.
This set contains all closed association rules, and pos-
sibly some redundant rules. To remove the redundant
rules, for each rule R1, we first construct a set of its
minimal superrules S. If any of the rules in S has the
same confidence as R1, we mark R1 as non-closed, and
consequently purge it from output.

In order to implement this algorithm efficiently,
we need an efficient technique for enumerating all su-
perepisodes of a given episode (used in the first loop)
and for enumerating all superrules of a given associa-
tion rule (used in the second loop). Assume that we
have a list of episodes E . We begin by grouping E into
groups EL, where L is a multiset of labels and EL con-
tains episodes containing exactly the labels L. We then
create index lists for these groups of form Il,o, such that
Il,o contains EL, where l occurs in L o times. Within
each group EL, for each edge e, we create an index list
of episodes Ie to contain all episodes containing edge e.



When searching for superepisodes of a given
episode, say G, we first find episode groups EL whose
labels are a superset of or equal to the labels of G. After
this is done, we then find a mapping between the labels
of G and L (if there are several, we test them all). Once
a mapping is found we map the edges of G and find all
episodes that contain the edges of G.

To query association rules, we build a similar in-
dexing structure, only now we group rules by their head
episode. We index these groups using the head episode
and within each group we index each rule with its tail.

Our final missing step in the algorithm is to actually
compute the confidence. Computing confidence using
fixed-windows is trivial. Hence, we focus on computing
confidence based on minimal windows. The algorithms
are given in Algorithm 3 and 4.

Algorithm 3:MinWinConfidence. Computes
confidence cm(X ⇒ Y ).

input : list of minimal windows
V = {v1, . . . , vN} of episode X, list of
minimal windows W = {w1, . . . , wM} of
episode Y

output: cm(X ⇒ Y )
1 u← 0; i← 1;
2 foreach v ∈ V do
3 while i ≤M and e(wi) ≤ e(v) do
4 i← i+ 1;

5 if b(wi) ≤ b(v) then u← u+ 1;

6 return u/N ;

The algorithm MinWinConfidence takes as input
two ordered lists of minimal windows, V for the head
episode and W for the tail episode. The algorithm then
enumerates windows in V and tries to find a covering
window from W . Since W and V are ordered, we do not
need to search the covering window from beginning but
instead from the last inspected window. This brings the
run-time to O(|V |+ |W |).

The algorithm WeightConfidence is similar to
MinWinConfidence. It also takes two ordered lists
of minimal windows as input, V for the head episode
and W for the tail episode. The only difference is
that this time we do not need to simply find any
covering window, but the smallest such window. This
costs us an extra for-loop which brings the run-time to
O(|V |+ |W |+ |V |C), where C is the average number of
windows in W covering a window v ∈ V . In practice,
this number is small, making the algorithm efficient.

Algorithm 4: WeightConfidence. Computes
weighted confidence cw (X ⇒ Y ).

input : list of minimal windows
V = {v1, . . . , vN} of episode X, list of
minimal windows W = {w1, . . . , wM} of
episode Y

output: cw (X ⇒ Y )
1 c← 0; i← 1;
2 foreach v ∈ V do
3 while i ≤M and e(wi) ≤ e(v) do
4 i← i+ 1;

5 j ← i;
6 l←∞;
7 while j ≤M and b(wj) ≤ b(v) do
8 if len(w) ≤ l then
9 l← len(w);

10 i← j;

11 j ← j + 1;

12 c← c+ len(w) /l;

13 return c/N ;

7 Experiments

We tested our algorithm on two real-world datasets —
a text dataset, and a train delay dataset.

The first set of experiments was done on a text
dataset, address, consisting of the inaugural addresses
by the presidents of the United States3, merged to form
a single long sequence. We processed the sequence using
the Porter Stemmer4 and removed the stop words. The
resulting sequence was 62 066 words long, and contained
5 295 different items.

We used a window of size 15 for all our experi-
ments, we kept the frequency threshold fixed and varied
the confidence threshold σ. The main goal of our ex-
periments was to demonstrate how we tackle the prob-
lem of pattern explosion. Table 2 shows how the total
number of confident association rules compared with
the number of closed rules we discovered, using the
fixed-window, minimal-window, and weighted-window
method, respectively. The results show that the re-
duction was significant at all thresholds. In all our
experiments we pushed the frequency threshold as low
as possible, until the algorithm for generating all con-
fident association rules began to take too long or ran
out of memory. This demonstrates the need to generate
i-closed and i-free episodes as an intermediary step, as
our algorithm for mining only the closed rules ran much

3taken from http://www.bartleby.com/124/pres68
4http://tartarus.org/~martin/PorterStemmer/

http://www.bartleby.com/124/pres68
http://tartarus.org/~martin/PorterStemmer/


faster, and could handle much lower frequency thresh-
olds.

method σ φ closed total

fixed 62 1.0 492 55 529
0.8 2 525 147 483
0.6 5 680 177 698
0.4 9 183 198 049
0.2 12 080 210 224
0.0 45 079 262 050

minimal 8 1.0 469 1 299
0.8 1 610 3 234
0.6 4 544 7 173
0.4 9 457 13 101
0.2 15 627 20 553
0.0 50 364 59 278

weighted 1 1.0 2 143 39 459
0.8 4 209 52 903
0.6 10 072 83 987
0.4 17 379 106 627
0.2 21 099 122 560
0.0 88 098 214 560

Table 2: The comparison of the number of closed asso-
ciation rules and the total number of rules discovered in
the address dataset, using the three different methods.
The window size ρ used in all experiments was 15.

Our second set of experiments was conducted on a
dataset consisting of trains delayed at a single railway
station in Belgium. The dataset consists of actual
departure times of delayed trains, coupled with train
numbers, and contains 10 115 events involving 1 280
different train IDs, stretching over a period of one
month. For the fixed-window method, a window of 30
minutes was chosen by a domain expert. The time
stamps were expressed in seconds, so a single train
being delayed on a particular day would be found in
1 800 windows. Therefore, the fixed-window frequency
threshold for interesting patterns had to be set relatively
high. The results of our experiments are shown in
Table 3. Again, it is clearly visible that our algorithm
significantly reduces the size of the output.

Note that, because of the data characteristics, the
majority of the frequent episodes have a small number
of nodes. Therefore, most of the rules consist of small
episodes on both sides. Such rules tend to be closed, and
the reduction in the size of the output mainly occurs at
thresholds where association rules consisting of larger
episodes begin to appear in the output.

We can also observe that the reduction depends a
lot on the characteristics of the dataset. For example, in

method σ φ closed total

fixed 20500 1.0 2 594 6 012
0.8 33 368 72 477
0.6 70 905 140 986
0.4 93 565 178 936
0.2 93 999 179 713
0.0 93 999 179 713

minimal 18 1.00 252 81 470
0.95 302 82 549
0.90 740 130 543
0.85 789 131 572
0.80 896 133 602

0 – 0.60 960 135 126

weighted 0.03 1.0 4 775 47 019
0.8 18 338 73 810
0.6 43 935 127 543
0.4 72 356 177 442
0.2 92 944 222 646
0.0 149 245 327 433

Table 3: The comparison of the number of closed asso-
ciation rules and the total number of rules discovered
in the trains dataset, using the three different methods.
The window size ρ used in all experiments was 1800.

the dense address dataset, the reduction is largest in the
fixed-window setting, while in the sparse trains dataset,
the minimal-window method gives the best reduction.

8 Conclusions

In this paper, we present a complete association rule
miner for strict episodes, a large subclass of gen-
eral episodes, represented by directed acyclic graphs
(DAGs). We approach the problem from three angles,
defining the frequency using windows of fixed size, min-
imal windows, and weighted minimal windows. While
the first method is computationally the least demand-
ing, we show that the other two can be more intuitive
and meaningful. We define and mine association rules
within all three settings.

Furthermore, we tackle the problem of pattern
explosion. The pattern explosion is exponential already
when it comes to itemsets, it is much more of a
problem within the field of episodes, and it culminates
when we attempt to generate association rules between
general episodes. We define closed association rules,
thus eliminating all redundant rules from the output.
Our algorithms take advantage of various properties
of closed rules, such as the fact that the left-hand
side must consist of a free episode, and the right-hand
side of a closed episode, which allows us to discover



closed association rules efficiently. Our experiments
demonstrate that the reduction in the size of the output
is considerable.

In future work, we intend to investigate if it is
possible to extend this work to the complete class of
general episodes, dropping the constraint that they
must be strict. An interesting property of the confidence
of an association rule is that it is not always a monotonic
measure. Further research could also be dedicated to
examining if it would still be possible to somehow prune
some of the rules, based on some other criteria.
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