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1 Introduction

The development of microarray technology has enabled simultaneous expression
measurements from tens of thousands of genes [1]. Many gene expression exper-
iments produce time series data with only a few (around 5) time points, due
to the high measurement costs. The time series usually represent the dynamic
response of an organism to a change in conditions, e.g. application of some drug
or other treatment. Here we share some of the experiences we gained while ana-
lyzing such data sets, originating from a collaborative project. More information
about that work can be found in [2].

We focus on a particular clustering algorithm designed for short time series
data [3]. We found that some inaccuracies in the original presentation of the
algorithm need to be addressed. In addition to providing corrections for the
problems, we also present an extension to the algorithm.

2 The Clustering Algorithm

The clustering algorithm discussed here was first introduced in [3]. Roughly
speaking, the algorithm consists of two phases: selection of model profiles (cluster
prototypes) and clustering itself. The clustering phase also includes assessment
of the statistical significance of each cluster. After reviewing some benefits and
disadvantages of the clustering algorithm as a whole, we briefly introduce the
original profile selection algorithm. Then we propose some changes to it.

The clustering algorithm has basically two benefits compared to traditional
algorithms like k-means. First, the cluster prototypes are chosen to be distinct,
in other words as different as possible. Traditional algorithms might use several
similar cluster prototypes to represent typical patterns in the data, and neglect
less typical patterns. The second advantage of the clustering algorithm is tied to
the first one. Namely, as shown in [3], the statistical test used in the clustering
algorithm is able to detect the significance of some small clusters that would go
unnoticed with a less sophisticated method.

The statistical significance test used in the clustering algorithm is compu-
tationally demanding. Therefore, the algorithm is only suitable for short time
series. With today’s computer technology, the practical upper limit for the algo-
rithm is probably something less than ten time points.



2.1 The Original Profile Selection Algorithm

The purpose of the profile selection phase is to select m distinct model profiles
from a set of candidate profiles P . The set P is constructed by fixing the value
at the first time point to zero, and allowing the change between values at consec-
utive time points to be anything in the range of −c, . . . ,+c discrete units. That
is, the change can be at most c units either way, up or down. When the number
of time points is n, the set P contains (2c + 1)n−1 profiles. The set of distinct
profiles R is selected with Alg. 1. The algorithm is a greedy approximation to
the problem of finding the set R that satisfies

arg max
R:R⊂P,|R|=m

min
p1,p2∈R

d(p1, p2) . (1)

The distance measure used in (1) is

d(x, y) = 1 − ρ(x, y) , (2)

where x and y are vectors representing model profiles, and ρ(x, y) is the corre-
lation coefficient (Pearson’s correlation) between the vectors. [3]

Algorithm 1 SelectVectorsMaxMinDist A greedy algorithm for choosing
m distinct profiles (appeared in [3])

SelectVectorsMaxMinDist(d, P, m)

1 let p1 ∈ P be the profile that always goes down one unit between time points
2 R← {p1}
3 L← P \ {p1}
4 for i← 2 to m

5 do let p ∈ L be the profile that maximizes minp1∈Rd(p, p1)
6 R← R ∪ {p}
7 L← L \ {p}
8 return R

2.2 Extensions

While implementing the clustering algorithm, some aspects about the profile
selection phase aroused our attention. As can be seen from the definition of the
correlation coefficient ρ,

ρ(x, y) =

∑n
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, ai = xi − x, bi = yi − y , (3)

it is not defined when x or y is the constant zero profile, where the value at each
time point is zero. Therefore, the zero profile must be removed from the set P



before profile selection, or the profile selection algorithm will fail. The number
of profiles remaining in P is (2c + 1)n−1

− 1.
In addition to removing the zero profile, we introduce a procedure to further

reduce the amount of profiles in P . The procedure is based on the fact that
some profiles are equal with respect to distance measure (2). From a set of equal
profiles, only one profile is needed. We choose to keep the “basic” profile and
remove its multiples. This is done in Alg. 2. The removal of redundant profiles
takes time, but also speeds up profile selection. The procedure also has a cosmetic
side: the “simplest” possible profile always represents each equivalence class of
profiles.

Algorithm 2 RemoveRedundant A simple algorithm for removing redundant
model profiles

RemoveRedundant(P, c, n)

1 R← {}
2 let Primes be the set of all prime numbers up to and including c

3 while |P | > 0
4 do let p be any profile in P

5 P ← P \ {p}
6 nonredundant ← true

7 let pi, i ∈ 1, . . . , n, be the values at each time point of p

8 for each prime in Primes

9 do if each pi is divisible by prime

10 then nonredundant ← false

11 break

12 if nonredundant

13 then R← R ∪ {p}
14 return R

Algorithm 1 is greedy in the sense that it selects one locally optimal profile at
a time. However, this approach fails at times. Figure 1 represents profile selection
with parameters n = 6, c = 3, when the redundant profiles have been removed
with Alg. 2. The two first selected profiles are in Fig. 1a. When choosing the
third profile, there are 180 profiles that are equally good optimal choices in the
greedy sense. Six of these are shown in Fig. 1b.

Our updated profile selection procedure is a randomized algorithm [4] that
simply chooses one of the “equally good” profiles by random. The algorithm
(Alg. 3) also has a user-specifiable parameter repeats, that adjusts the level of
compromise between running time and the quality of the approximative solu-
tion to (1). Preliminary experiments with our extended algorithm indicate an
improvement in the minimum distance between selected model profiles. With a
large number of repeats it pays off to reduce the search space by removing the
redundant profiles with Alg. 2.



(a) The two first profiles (b) Six of the equally good options
when choosing the third profile

Fig. 1: Ambiguity in greedy profile selection (n = 6, c = 3). Algorithm 1 fails when
there is no single best choice.

Algorithm 3 SelectVectorsMaxMinDistRandom A randomized greedy
algorithm for choosing m distinct profiles

SelectVectorsMaxMinDistRandom(d, P, m, repeats)

1 distbest ← −∞
2 for i← 1 to repeats

3 do Rt ← SelectHelper(d, P, m)
4 disttemp ←min(p1,p2)∈Rt×Rt

d(p1, p2)
5 if disttemp > distbest
6 then distbest ← disttemp

7 R← Rt

8 return R

SelectHelper(d, P, m)

1 let p1 ∈ P be the profile that always goes down one unit between time points
2 R← {p1}
3 L← P \ {p1}
4 for i← 2 to m

5 do let p ∈ L randomly be one of the profiles that maximize minp1∈Rd(p, p1)
6 R← R ∪ {p}
7 L← L \ {p}
8 return R



3 Summary

We examined some shortcomings of the profile selection phase of the clustering
algorithm introduced in [3]. The removal of the constant zero profile is a manda-
tory step. The removal of redundant profiles is optional, and has the potential of
reducing the time required for profile selection. Finally, Alg. 3 fixes the problem
with the original profile selection algorithm and multiple “equally good” profiles.
It also includes a possibility of improved results with multiple repeats.
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