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Abstract. Possible changes of the growing season of trees would have
significant consequences on forest production. Predicting the onset of
tree growth on the basis of climate records can be used for estimating
the magnitude of such changes. Conventional methods for estimating the
onset of tree growth use cumulative temperature sums. These estimates,
however, are quite coarse, and raise questions about making better use
of the weather information available. We approach the problem of pre-
dicting the onset of tree growth with a predictor based on a combination
of a k-nearest neighbor regressor and a linear regressor. The inputs are
weighted sums of daily temperatures, where the weights are determined
by a subset of Bernstein polynomials chosen with a variable selection
methodology. The predictions are smoothed for consecutive days to give
more accurate results. We compare our proposed solution to the more
conventional approach. The proposed solution is found to be better.

1 Introduction

The amount and properties of wood produced are related to the timing and
rate of wood formation during the growing season. Wood formation depends on
genetical signaling, availability of resources for growth, temperature, tree water
and nutrient status, and the stage of ontogenic development (e.g. [1,2,3]).

Despite the basic nature of the wood formation process, our present knowl-
edge concerning the timing and rate of the phases of tree growth is surprisingly
fragmentary. An important factor behind the gaps of knowledge is the difficulty
in measuring xylem formation at short intervals. Point and band dendrometers
have been used traditionally to monitor cambial dynamics (e.g. [4,5]). Changes
in stem dimensions are not solely a result of wood formation; they are often
caused by other processes, especially changes in stem hydration [6,7,8,9]. Since
dendrometers measure stem radius or circumference changes rather than wood
formation, it is difficult to distinguish between true wood formation and hydro-
logical swelling and shrinking.
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In our previous study, we evaluated the use of cumulative sum (CUSUM)
charts for automatically determining the onset and cessation dates of radial
increase based on dendrometer data [10]. The CUSUM chart is a tool for auto-
matically detecting small changes in the mean of a signal solely based on the
data. In order to produce reliable results, one has to choose suitable parameter
values for the chart and onset and cessation levels for stem radius. Once config-
ured properly, the method produced results similar to those determined by an
expert. This study is a sequel to [10].

Our aim in this paper was to provide new insights into statistical methods
that could be used for predicting the onset of radial increase based on weather
data. During dormancy release and growth initiation in the boreal zone, the
role of temperature is more important than the role of photoperiod or water
availability [11,12,13]. Therefore, we compared different statistical methods to
evaluate whether the expressed signal between temperature and the onset of
radial increase could be strengthened by selection of appropriate method.

In this paper, we are dealing with two stochastic processes: one concerning
the environmental factors, specifically temperature, and the other concerning
the radial growth of trees. Our interest lies in modeling the relationship between
these processes. We control the complexity of our research problem by reducing
the growth process to a single number. Thus, our goal is to predict the onset date.
Similarly, the complexity in the temperature data is controlled by computing
features from a reasonably long sequence of past data. A subset of the features
is selected based on their performance in the prediction task.

The rest of the paper is organized as follows: Section 2 introduces the meth-
ods used, from traditional and new ways of summarizing temperatures, through
variable selection, to the prediction machinery. Section 3 describes our results.
Section 4 concludes the paper with a summary, some comments, and future
directions.

2 Material and Methods

2.1 Traditional Temperature Sums

One of the oldest ecological concepts is the “degree-day” or “physiological time”
unit which mainly stems from the relationship between development rate of many
organisms and temperature (e.g. [14]). Phenological phases of plants have been
found to be related to accumulation of air temperatures above some threshold
below which the development stops.

Most attempts to improve the concept have dealt with either different calcu-
lation procedures used to obtain degree day estimates [15,16,17], or including
additional climatic parameters, such as soil water availability (e.g. [18]). We will
limit ourselves to the modification of the method [19] commonly used in Fin-
land, which computes degree-day sum as the cumulative sum of the differences
between the daily mean temperature and the threshold of +5 ◦C (negative values
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are set to zero). At least five consecutive days meeting or exceeding the threshold
are needed in order for the degree-days to accumulate from a given day.1

2.2 Bernstein Polynomials as Basis Functions on the Past

Instead of reducing the sequence of previous daily temperatures into just one
value, we can compute several temperature features. Thus by making more ef-
fective use of temperature data, we hope to improve our ability to predict the
onset. For this purpose, we use Bernstein polynomials [20]:

Bd
i (x) =

(
d
i

)
xi(1 − x)d−i , i = 0, . . . , d . (1)

Bernstein polynomials have a special property: for any d ∈ {0, 1, 2, . . .}, the
polynomials of degree d sum to unity:

d∑
i=0

Bd
i (x) = 1 ∀ x ∈ IR . (2)

When limited to the range x ∈ [0, 1], the Bernstein polynomials are non-negative.
The polynomials are symmetric, Bd

i (x) = Bd
d−i(1 − x), and have roots at both

0 and 1, except that Bd
0 (0) = Bd

d(1) = 1. They also have a unique maximum
value in the range, at x = i/d for Bd

i (x). Some examples of the polynomials in
the limited range are shown in Fig. 1.
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Fig. 1. The Bernstein polynomials of degree 3

The polynomials have an application related to Bézier curves [20]. We use
them as weight functions in temperature features. Instead of summing temper-
atures above +5 ◦C as in the traditional temperature sum, we use the daily
temperature values even if they are lower than the threshold. Thus, when we

1 When computing the temperature sum every day in an online setting, this means a
delay of up to four days, i.e. the system is not causal.
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consider daily mean temperatures Ti and a history window of N previous days,
the Bernstein-weighted temperature features of degree d on day i are

sm(i) =
N∑

j=1

Bd
m

(
j − 1
N − 1

)
Ti−j , m = 0, . . . , d . (3)

Since the Bernstein polynomials sum to one, each day in the temperature
sequence gets equal weight, when we consider the combination of all temperature
features (3). It is clear that each temperature sum sm in (3) has a quite strong
correlation with some sn, at least for m and n that are close to each other. In
the next section, we discuss selecting a subset of the temperature features. As a
result of the selection, some days – or positions in the sequence of temperatures
of N previous days – will have more weight than others.

2.3 Selecting Basis Functions

We prefer relatively sparse or parsimonious models, because they are typically
easier to interpret and apply than more complex ones [21]. For selecting a suitable
subset of temperature features defined in (3), we employed Best First Search
(BFS) [22]. Simply testing all feature sets is infeasible due to the size of the
search space.

BFS is a wrapper method, i.e. it uses the machine learning algorithm as part
of the feature set search. In other words, the goodness of a feature set is defined
as its performance on the machine learning task at hand. The basic idea of the
algorithm is to advance in the state space, where a state represents a feature set.
New states are created by adding or removing one variable (simple operator)
or combining several additions or removals (compound operator) (Fig. 2). The
next state chosen is the one which has the lowest cost among the candidate
states. The search may start from any state. Typical choices are the empty set
or the full set of variables. The search proceeds until no major improvements to
the cost have been observed for a while. The exact behavior of the algorithm is
controlled with two user-definable parameters: one for setting the threshold for
considering a new state an improvement, the other for adjusting the stopping
criterion.

2.4 Smoothed Prediction with a Combination of a Parametric and
a Non-parametric Model

The k-nearest neighbor method (k-NN) is a traditional method used in classifica-
tion [23], but it can also be used for regression in an analogous way. We employed
a combination of a k-NN regression model and a linear regression model to pre-
dict the number of days until onset of radial increase. The aggregate prediction
is simply a weighted mean of the two parts. Temperature features (3) were used
as inputs and the number of days until the onset of radial increase as the target
variable. Figure 3 shows an example of the output of the predictor machine,
when predictions are made as a sequence, on consecutive days.
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The k-NN part of the predictor finds k days of the training set (reference
database) that are closest to the query day with respect to the temperature
features. The prediction of the k-NN part is effectively the mean of the target
variable on the neighboring days. When s is the vector of selected tempera-
ture features (3) on the query day, and si contains the corresponding values on
reference day i, the k closest days are found by computing the Euclidean dis-
tances (4) (or equivalently squared distances) over all the reference data, sorting

0,0,0,0

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,1,0,1 0,0,1,1

1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1

1,1,1,1

Compound operators

Simple operators  

Fig. 2. Structure of state space in BFS, when selecting from four possible variables
and creating new nodes using both simple and compound operators. Each state is a set
of input variables (1 = “variable present”, 0 = “variable absent”). Arrow from node a
to node b means that b is a child of a.
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Fig. 3. Example output of the prediction machine. The measured onset region, deter-
mined by the minimum and maximum onset dates of the individual trees, is marked
by the dashed lines.
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the distances, and choosing the indices i that correspond to the k smallest dis-
tances. Due to the non-parametric nature of the k-NN part, the training data
set becomes a part of the model, and is always needed when new predictions are
made.

di =
√

(s − si)T (s − si) (4)

The other part of the composite predictor is a simple linear regression on
selected temperature features (3), with time until onset of radial increase as the
target variable. When s and β are the chosen temperature features (accompa-
nied by a constant term) and regression coefficients, respectively (both column
vectors), the regression model is as in (5). The regression result yr is rounded
to the closest integer, which may be considered superfluous, because the final
output of the combined model is also rounded.

yr = sT β (5)

In an ideal situation, the predictor would always point to the same onset date,
independent of the day on which the prediction is made. When the predictions
are made as a sequence, the predicted onset date will, however, fluctuate. We
did a simple smoothing of the predictor’s output by taking a weighted mean
of the new prediction and the previous one. Then the effect of old, unsmoothed
predictions, undergoes exponential decay as the prediction sequence is extended.
The smoothing operates with unrounded values, but the final output is rounded
to a precision of one day. Since the predictor actually gives the time until onset,
the number of days separating the previous and current predictions is subtracted
from the previous result before it is used as part of the new prediction. The
smoothing process (without integer rounding) can be written as

ỹi = αyi + (1 − α)ỹi−1

= α[yi + (1 − α)yi−1 + . . . + (1 − α)i−2y2] + (1 − α)i−1y1 , (6)

where α ∈ (0, 1] adjusts the level of smoothing, ỹi is the i:th smoothed prediction
in the prediction sequence, and yi is the corresponding “novelty”, the new part
in the prediction. Note that the first prediction in the sequence is a special case,
where no smoothing is applied.

2.5 Dendrometer Data

Sample trees were selected at two sites located 300 m from each other in Tuusula,
southern Finland. In the first stand, the Norway spruce trees were growing in
a pure spruce stand on fertile mineral soil classified as Oxalis-Myrtillus forest
type [24]. Mean stem diameter of the sample trees at breast height was 27 cm
and relative crown length was 68 %. The sample trees were monitored during the
growing seasons of 2001–2005. In the second stand, four Norway spruce and four
Scots pine trees were monitored during the growing seasons of 2002–2003, and
another four spruce and four pine trees during the growing seasons of 2004–2005.
They were growing in a mixed spruce-pine stand on a relatively fertile mineral
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soil classified as Myrtillus forest type [24]. The total number of observations
(year × tree combinations) was, thus, 57. The stands and sample trees have
been described in detail in [10].

Stainless-steel band-dendrometers were installed on each tree at a height of
about 2 m. Changes in tree girth were measured at a resolution of 0.1 mm, corre-
sponding to diameter change of about 0.03 mm. The output of the dendrometers
was stored as 1-h averages. From these measurements, the daily values of stem
circumference were calculated as the mean of hourly values and the circumference
changes were converted to radial changes assuming a circular stem cross-section.
The dendrometer has been described in detail in [5].

For each year and tree, the onset date of radial increase was determined
visually and verified by the CUSUM method [10]. Depending on the year, we have
the onset date of either 5 (year 2001) or 13 (2002–2005) trees. Because we wanted
to evaluate the methods described above, i.e. detailed biological interpretation
of the increment onset is beyond the scope of this study, we averaged the data
from both sites and tree species. As mentioned above, swelling and shrinkage of
the tree, caused by changes in water level, add noise to the data.

Temperature data at 3-hour intervals were obtained from a meteorological
station of the Finnish Meteorological Institute located about 5 km from the
study stands. From the temperature measurements, the average daily values
were calculated as arithmetic means.

2.6 Test Setting

We run feature selection with BFS, selecting from a total of 40 or 20 temperature
features weighted with Bernstein polynomials, corresponding to all polynomials
of degree 39 or 19, respectively. The search is started from the empty set of
features. Years 2001–2004 are used for the feature selection in a 4-fold cross-
validation setting, where the onset date on one year is predicted based on data
from the remaining three years. Year 2005 is reserved as a (very limited) test set
for later use. From each year, days 81–200 are included, counting from the start
of the year. The temperature features are computed from 80 previous days, i.e.
the temperatures on days {x − 80, . . . , x − 1} are reduced to 40 or 20 numbers
to be associated with day x.

The feature selection also incorporates the selection of k for k-NN. In our
setting, the cost function of BFS tests the prediction machine with values of k
ranging from 5 to 50 in steps of 5. The cost is the MSE of all predictions, where
the predictions are made for each date in the range of 101–160 (April 11–June
9 in the case of “no leap year”). For comparison, the measured annual average
onset dates range from 133 to 144. The average was taken over all the years;
there are 4 · (160 − 101 + 1) = 240 error values to be averaged. In the feature
selection phase, the prediction sequence is not smoothed: α = 1 in (6). For later
tests, α = 0.4 was used, and the predictor was started at day 81, which allowed
a stabilizing period of 20 days before the measurement of prediction error. The
value of α was chosen by non-rigorous testing towards the goal of minimizing
error. The results are not sensitive to the specific choice of this parameter.
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3 Results

The traditional temperature sum alone does not provide an accurate prediction
about the onset date (Fig. 4). When excluding the smallest values of temperature
sum, the average onset date over different years could quite well be explained
by a straight line. The variance between years, however, is large.

The performance of the Bernstein-weighted temperature features is presented
in Table 1. The bottom part of the table lists comparative results, with no
feature selection or using just the traditional temperature sum. In these cases,
the k range tried was 10 to 110 in steps of 5. RMSE 1 means the square root of
the error measure used in the feature selection tests: the mean of squared errors
in the predictions sequences. For RMSE 2, each annual prediction sequence is
reduced to a single error measure, where the onset date given by the predictor is
set to be the first date in the sequence, where the predicted onset date and the
date of prediction intersect, i.e. according to the predictor, growth has already
started. The error is derived from the difference of this intersection date and
the date derived from the girth band data. When only predicting the onset on
one year, RMSE 2 would reduce to the absolute value of this error, but in the
table, we also show the sign of the error. “Valid.” is the error in the validation
tests used for selecting the features and k. “Test” and “Pseudo” are errors done
with the selected features and k, using data from all the year (2001–2005). In
the former case, only the year 2005 is predicted with the other years serving as
reference data. In the latter case, all the years are predicted one by one, with
the remaining years as reference data.

With our settings for BFS, the number of states evaluated was about 8000
out of 220 or 25000–35000 out of 240. The search was set to stop, when the 500
latest state expansions have not resulted in a cost smaller than 1.001 times the
best known cost.
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Fig. 4. The number of days until the onset of radial increase plotted against tempera-
ture sum in different years
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Table 1. Prediction error. The k-NN component was always used. Also linear re-
gression was used in some tests (see first column). The bottom part of the table shows
comparative results. The column marked with ∗ holds the signed absolute error instead
of RMSE.

#Features RMSE 1 (sequence) RMSE 2 (i.sect)
Model Chosen Total k Valid. Test Pseudo Valid. Test∗ Pseudo

lin + k-NN 16 40 5 5.2 5.0 4.9 6.4 5 5.8
k-NN 16 40 35 5.3 5.2 5.0 5.5 −2 4.5

lin + k-NN 8 20 5 5.4 6.4 5.3 5.1 6 5.5
k-NN 9 20 25 5.4 3.5 4.8 6.6 5 6.0

lin + k-NN 40 40 90 5.7 5.9 5.2 4.9 2 4.4
lin + k-NN 20 20 105 5.8 6.0 5.2 5.2 2 4.4
k-NN on temperature sum 50 8.5 2.5 7.0 8.7 1 6.9
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Fig. 5. Bernstein weighting functions chosen in rows 1 and 3 of Table 1. In the figures,
the most distant past is at the right end of the x-axis. Top row: 16/40 features. Bottom
row: 8/20 features. Left column: individual weighting functions. Right column: sum of
weights on the left.

We look at the “RMSE 1” results first, because that is the optimization cri-
terion in the validation tests. The tests, which average the error over several
years, show that the Bernstein polynomial temperature features produce pre-
diction accuracy superior to the traditional temperature sum. Adding one year



Smoothed Prediction of the Onset of Tree Stem Radius 109

of data always improved the average performance. The results from the predic-
tion of a single year’s growth (column “Test”) show that although close to each
other on the average, the different predictor settings may give quite different
results for any individual year. Note that the “truth” used as the basis of the
error measure is quite uncertain: when considering the onset dates suggested by
each girth band on a given year, the standard deviation ranges from about 3.7
to 9.0, averaging at 6.8 (days). The error measure “RMSE 2” shows generally
similar results in the sense that the traditional temperature sum is outperformed
by the new features. Also here the variation in a single year’s results is clearly
seen.

The optimal k decreases noticeably, when linear regression is also used in the
predictor machine. It seems that the addition of the simple regression model,
quite logically, regularizes the output of the k-NN model. A similar effect is
achieved with an increased k. When feature selection is omitted (the first two
rows in the bottom part of Table 1), the optimal k is very large despite the
presence of linear regression.

Figure 5 shows the features chosen by BFS in two of our tests. The results
look almost the same. In both cases, some highly correlated features are included,
but features concentrated in the middle part of the history window are curiously
missing.

4 Summary and Conclusions

In this paper, we presented a method for predicting the onset of stem radius
increase. The method is based on temperature features weighted with Bernstein
polynomials, and a combination of two simple regression methods operating on
those features. A subset of the features was selected with BFS. The motivation
for the development of the features was to extract more information from the
temperature time series than what is possible with the traditional temperature
sum, thus improving prediction performance.

In our cross-validation tests, the proposed temperature features outperformed
the traditional temperature sum. However, prediction accuracy still shows a large
year-to-year variation. There are at least two plausible reasons for the variation:
the nature of the dendrometer data (swelling, shrinking), and factors left out of
the model (everything but temperature).

After these initial steps with the prediction framework, we can think of ap-
plications for it. For example, we could try to find a possible trend in the past
onset dates. However, the potential differences between the current and past
environment would have to be considered: have the environmental factors not
included in the model changed so much over the years, that a model developed
using present data is not valid for the past? Another application possibility is
the modeling of phenomena other than the onset of stem radius increase.

Acknowledgments. This work has been funded by the Academy of Finland, in
the research project ”Analysis of dependencies in environmental time series data”



110 M. Korpela et al.

(AD/ED), grant number 116853. We are greatly indebted to Tapio Huttunen for
skilful technical assistance in maintenance of the girth bands.

References

1. Fritts, H.C.: Tree Rings and Climate. Academic Press, London (1976)
2. Savidge, R.A.: Xylogenesis, genetic and environmental regulation. IAWA Jour-

nal 17, 269–310 (1996)
3. Vaganov, E.A., Hughes, M.K., Shashkin, A.V.: Growth Dynamics of Conifer Tree

Rings. Ecological Studies, vol. 183. Springer, Heidelberg (2006)
4. Yoda, K., Suzuki, M., Suzuki, H.: Development and evaluation of a new type of

opto-electronic dendrometer. IAWA Journal 21(4), 425–434 (2000)
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