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We introduce an efficient natural conjugate gradient algorithm for variational Bayesian learn-
ing. The algorithm is based on the geometry of the approximating distribution which is assumed
to have a sufficiently simple form for enabling efficient computations. The new algorithm is
most useful for models outside the conjugate exponential family, and it can provide superior
convergence compared with previous methods.

Variational Bayesian learning [5, 2] and related variational methods [4] have become popular
techniques in machine learning and graphical models. They often provide good approximations
and robustness against overfitting at a reasonable computational cost compared to sampling-
based methods.

Variational Bayesian learning is based on approximating the posterior distribution p(θ|X,H)
with a tractable approximation q(θ|ξ), where X is the data, θ are the parameters of the model
H, and ξ are the (variational) parameters of the approximation. The approximation is fitted by
maximizing a lower bound on marginal log-likelihood

B(q(θ|ξ)) =
〈

log
p(X,θ|H)

q(θ|ξ)

〉
= log p(X|H)−DKL(q(θ|ξ)||p(θ|X,H)), (1)

where 〈·〉 denotes expectation over q. This is equivalent to minimizing the Kullback–Leibler
DKL(q||p) divergence between q and p [2].

Finding the optimal approximation can be seen as an optimization problem, where the
lower bound B(q(θ|ξ)) is maximized with respect to the variational parameters ξ. This is often
solved using a variational EM algorithm by updating sets of parameters alternatively while
keeping the others fixed. Both VE and VM steps can individually implicitly optimally utilize
the Riemannian structure of q(θ|ξ) for conjugate exponential family models [7]. Nevertheless,
the EM based methods are prone to slow convergence, especially under low noise.

The formulation of variational Bayesian learning as an optimization problem allows applying
generic optimization algorithms to maximize B(q(θ|ξ)), but this is rarely done in practice because
the problems are quite high dimensional. Additionally many of the parameters are in different
roles and the lack of this specific knowledge of the geometry of the problem can seriously hinder
generic optimization tools.

In this work, we have applied natural gradient for optimizing the bound B(q(θ|ξ)). Natu-
ral gradient is in this variational Bayesian learning problem superior to conventional gradient,
because the space S = {ξ ∈ Rn} is a curved Riemannian manifold. For a scalar function F(ξ)
defined on a Riemannian manifold S, the direction of steepest ascent is given by the natural
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gradient [3]
∇̃F(ξ) = G−1(ξ)∇F(ξ). (2)

where the matrix G(ξ) = (gij(ξ)) is called the Riemannian metric tensor.
For the space of probability distributions q(θ|ξ), the most common Riemannian metric tensor

is given by the Fisher information matrix [1]

Iij(ξ) = gij(ξ) = E

{
∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)
∂ξj

}
= E

{
−∂2 ln q(θ|ξ)

∂ξi∂ξj

}
, (3)

where the last equality is valid given certain regularity conditions [6].
In approximate inference, the approximation q(θ|ξ) is often chosen such that disjoint groups

of variables are independent: q(θ|ξ) =
∏

i qi(θi|ξi). This simplifies the computation of the
natural gradient, as the Fisher information matrix becomes block-diagonal, and the required
matrix inversion can be performed very efficiently. This is a key point in our approach.

For getting an even more efficient algorithm for high-dimensional problems, we have com-
bined natural gradient learning with the conjugate gradient method [8]. We have compared
the resulting Riemannian conjugate gradient algorithm with the conjugate gradient algorithm
and with the heuristic algorithm for optimizing q(θ|ξ) introduced in [9] for the nonlinear state-
space model studied in [9]. For synthetic data, the Riemannian conjugate gradient algorithm
converged much faster than the standard conjugate gradient algorithm, while the heuristic al-
gorithm performed poorly. For real-world speech data, the Riemannian conjugate gradient
algorithm outperformed the heuristic algorithm by a factor more than 10 while the conjugate
gradient algorithm had problems in converging at all in a reasonable time.
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