
Learning Nonlinear State-Space Models for Control
Tapani Raiko and Matti Tornio
Neural Networks Research Centre
Helsinki University of Technology

P.O.Box 5400, FI-02015 TKK
Espoo, FINLAND

E-mail: tapani.raiko@hut.fi, matti.tornio@hut.fi

Abstract— This paper studies the learning of nonlinear state-
space models for a control task. This has some advantages over
traditional methods. Variational Bayesian learning provides a
framework where uncertainty is explicitly taken into account
and system identification can be combined with model-predictive
control. Three different control schemes are used. One of them,
optimistic inference control, is a novel method based directly on
the probabilistic modelling. Simulations with a cart-pole swing-up
task confirm that the latent state space provides a representation
that is easier to predict and control than the original observation
space.

I. I NTRODUCTION

Nonlinear control is difficult even in the case that the system
dynamics are known. If the dynamics are not known, the
traditional approach is to make a model of the dynamics
(system identification) and then try to control the simulated
model (nonlinear model-predictive control). The model learned
from data is of course not perfect, but these imperfections
are often ignored. The modern view of control sees feedback
as a tool for uncertainty management [11], but managing it
already in the modelling might have advantages. For instance,
the controller can avoid regions where the confidence in model
is not high enough [9].

The idea of studying uncertainty in control is not new.
It is known that the magnitude of motor noise in human
hand motion is proportional to muscle activation [10]. In
control theory, the theoretical foundations are already well
covered in [3]. In [14], a nonlinear state-space model is used
for control. The nonlinearities are modelled using piecewise
affine mappings. Parameters are estimated using the prediction
error method, which is equivalent to the maximum likelihood
estimate in the Bayesian framework.

Nonlinear dynamical factor analysis (NDFA) [17] is a
state-of-the-art tool for finding nonlinear state-space models
with variational Bayesian learning. This paper is about using
NDFA for control. In NDFA, the parameters, the states, and
the observations are real-valued vectors that are modelled
with parametrised probability distributions. Uncertainties from
noisy observations and model imperfections are thus taken
explicitly into account.

Learning is extremely important for control of complex
systems [2]. The proposed method involves learning in more
than one way. The original NDFA is based on unsupervised
learning. That is, it creates a model of the underlying dynamics
by passively making observations. When used for control,

though, control signals need to be selected either by following
an example or by maximising a reward. The model should thus
not only learn the dynamics, but also learn to help control.

The rest of the paper is structured as follows: In Section II,
a nonlinear state-space model is reviewed and in Section III
its use as a controller is presented. After experiments in
Section IV matters are discussed and concluded.

II. N ONLINEAR STATE-SPACE MODELS

Nonlinear dynamical factor analysis (NDFA) [17] is a
powerful tool for modelling the dynamics of an unknown noisy
system. NDFA scales only quadratically with the dimensional-
ity of the observation space, so it is also suitable for modelling
systems with fairly high dimensionality [17].

In NDFA, the observationsx(t) have been generated from
the hidden states(t) by the following generative model:

x(t) = f(s(t),θf) + n(t) (1)

s(t) = g(s(t − 1),θg) + m(t), (2)

whereθ is a vector containing the model parameters and time
t is discrete. The noise termsn(t) andm(t) are assumed to
be Gaussian and white. Only the observationsx are known
beforehand, and both the statess and the mappingsf and g

are learned from the data.
Multilayer perceptron (MLP) networks [6] suit well to

modelling both strong and mild nonlinearities. The MLP
network models forf andg are

f(s(t),θf) = B tanh [As(t) + a] + b (3)

g(s(t),θg) = s(t) + D tanh [Cs(t) + c] + d, (4)

where the sigmoidal tanh nonlinearity is applied component-
wise to its argument vector. The parametersθ include: (1)
the weight matricesA . . .D, the bias vectorsa . . .d; (2) the
parameters of the distributions of the noise signalsn(t) and
m(t) and the column vectors of the weight matrices; (3) the
hyperparameters describing the distributions of biases and the
parameters in group (2).

There are infinitely many models that can explain any given
data. In Bayesian learning, all the possible explanations are av-
eraged weighting by their posterior probability. The posterior
probability p(s,θ | x) of the states and the parameters after
observing the data, contains all the relevant information about
them. Variational Bayesian learning is a way to approximate

the posterior density by a parametric distributionq(s,θ). The
misfit is measured by the Kullback-Leibler divergence:

CKL =

∫

q(s,θ) log
q(s,θ)

p(s,θ | x)
dθds. (5)

The approximationq needs to be simple for mathemat-
ical tractability and computational efficiency. Variablesare
assumed to depend of each other in the following way:

q(s,θ) =
T

∏

t=1

m
∏

i=1

q(si(t) | si(t − 1))
∏

j

q(θj), (6)

wherem is the dimensionality of the state spaces. Further-
more,q is assumed to be Gaussian.

Learning and inference happen by adjustingq such that
the cost functionCKL is minimised. A good initialisation
and other measures are essential because the iterative learning
algorithm can easily get stuck into a local minimum of the
cost function. The standard initialisation is based on principal
component analysis of the data augmented with embedding.
Details can be found in [17].

A. Iterated Extended Kalman Smoothing

In a typical NDFA learning phase, both the model param-
eters θ and the statess are updated. The updating of the
network weights is computationally the most expensive part
of the process, so the speed of the updating of the states is
of minor importance [17]. In the control schemes studied in
this work, however, the model parameters can be kept fixed
and only the states are inferred. As a faster alternative to the
update process used in the NDFA Matlab package, extensions
of Kalman filtering [7] are explored.

Kalman smoothing estimates the state of a linear Gaussian
state-space model in a two-phase forward and backward pass.
Extended Kalman smoothing [1] does the same for a nonlinear
model by linearising the model based on the current estimate
of the states and then applying linear Kalman smoothing.
The process iterates between updating the states and the
linearisation.

Kalman-based methods are fast because they propagate
information through the whole time window in every itera-
tion, whereas the update rules included in NDFA propagate
information only one step forward and backward per iteration.
Unfortunately, Kalman-based methods have no guarantee of
convergence when applied to nonlinear systems. To solve this
issue we used iterated extended Kalman smoothing for finding
a good initialisation which was then improved by some NDFA
updates.

In this work, a non-variational Kalman smoother is used.
A variational Kalman smoother does exists [4], but as the
Kalman smoother is used only for the initialisation of NDFA,
the added complexity was not deemed worthwhile.

B. Task-Oriented Identification

When the dynamic system is controlled by a continuous-
valued control signal vectoru(t), it can be taken into account

t−1

t−1

t−1

s

x

s dynamics

x

t

t

g()

mixing mixing
f() f()

tu u t−1

t−1

t−1

s

x

s dynamics

x

t

t

mixing mixing
f() f()

t

g()

policy
u u

Fig. 1. Traditional model (left) and task-oriented identification (right).
Traditionally, the control signalsu(t) are coming from outside the model,
but in task-oriented identification they are within the model.

by replacing the equation of dynamics (2) with one of these
two options:

s(t) = g

([

u(t − 1)
s(t − 1)

]

,θg

)

+ m(t) (7)
[

u(t)
s(t)

]

= g

([

u(t − 1)
s(t − 1)

]

,θg

)

+ m(t). (8)

The first one (7) assumes that the control signal is coming
outside the model. The latter one (8) is called task-oriented
identification because it predicts the control signalsu(t) within
the model. Figure 1 illustrates these two options.

We choose to use task-oriented identification (Eq. 8) in this
paper for the following reasons. Firstly, it allows for three dif-
ferent control schemes described in the next section. Secondly,
it creates an opportunity to learn more. The learning algorithm
finds such a state space that the prediction of observations
and control signals is as accurate as possible. A well-learned
state space should thus make control easier. Thirdly, it is
biologically motivated. Different parts of the cerebellumcan
be used for motor control and cognitive processing depending
on where their outputs are directed [5].

III. C ONTROL SCHEMES

So far only passive observation and learning has been
considered. Now we come to the question how the control
signals (or actions) are selected. That is, given the history
of observations. . . ,x(t0 − 2),x(t0 − 1) and control signals
. . . ,u(t0 − 2),u(t0 − 1), select a good control signalu(t0) at
the current timet0. Then, a new observationx(t0) is made and
time t0 is increased by one. Three different control schemes
and their cooperation are studied below and summarised in
Table I.

A. Direct Control (DC)

In direct control schemes, the neural network itself acts
as the controller. Many such schemes exists, including direct
inverse control, optimal control, and feedforward control[13].
Direct control can only mimic the control done in the data that
has been used for learning. It therefore requires examples of
correct control aiming at the same goal.

Equation (8) provides a prediction of the control signal
u(t0) based on the previous control signalu(t0 − 1) and the

−10 0 10 20 30 40 50
−2

0

2

4

time t

ob
se

rv
at

io
n

x(
t)

−10 0 10 20 30 40 50

−10

−5

0

5

10

time t

co
nt

ro
l s

ig
na

l u
(t

)

Fig. 2. Optimistic inference control (see Section III-B). The inferred
observations and control signals are plotted with confidence intervals. The
current time ist0 = 0 and after timet0 + Tc = 40, the observationx(t) is
assumed to be at the desired levelr.

previous estimate of the hidden states(t0−1). The prediction
mapping is called the policy in Figure 1. A control method that
we simply call direct control (DC), chooses the control signal
by collapsing the inferred probability distributionq(u(t0)) to
its expected value. When the control signalu(t0) is selected
and the observationx(t0) is made, the two probability distri-
bution collapse and these changes affect the estimates of the
statess(t) that are then re-inferred. This works as the error
feedback mechanism.

B. Optimistic Inference Control (OIC)

Optimistic inference control (OIC) is a novel method which
works as follows. Assume that after a fixed delayTc, the
desired goal is reached. That is, (some components of) the
observationsx are at the desired levelr. Given this optimistic
assumption and the observations and control signals so far,
infer what happens in between. Then choose the expectation
of q(u(t0)) as before. An example situation is illustrated in
Figure 2.

OIC in a nutshell:
Given observations. . . ,x(t0 − 2),x(t0 − 1) and
control signals. . . ,u(t0 − 2),u(t0 − 1)
1: Fix futurex(t0 + Tc) = x(t0 + Tc + 1) = · · · = r

2: Infer the distributionq(u(t), s(t),x(t)) for all t
3: Select the mean ofq(u(t0)) as the control signal
4: Observex(t0) and releasex(t0 + Tc)
5: Increaset0 and loop from1

OIC propagates the same evidence forwards as the DC and
additionally, the evidence from the desired future backwards.
The inference is conceptually simple, but algorithmicallydif-
ficult. The information from the future needs to flow through
tens of nonlinear mappingsg before it affectsu(t0).

In case there are constraints for control signals or obser-
vations, they are forced after every inference iteration. If the
horizon is set too short or the goal is otherwise overoptimistic,

TABLE I

CONTROL SCHEME SUMMARY

Scheme Based on Data Speed

DC internal MLP task-oriented fast

OIC probabilistic inference general slow

NMPC cost minimisation general slow

the method becomes unreliable. Even with a realistic goal, it
is not in general guaranteed that the iteration will converge to
the optimal control signal, as the iteration may get stuck ina
local minimum. The inferred control signals can be validated
by releasing the optimistic future and re-inferring. If thefuture
changes a lot, the control is unreliable. Note that OIC does not
require goal-oriented data, because different goals can beset
by changing the desired future.

C. Nonlinear Model Predictive Control (NMPC)

Nonlinear model predictive control (NMPC) [13] is based
on minimising a cost functionJ defined over a future window
of fixed length Tc. For example, the quadratic difference
between the predicted future observationsx and a reference
signalr can be used:

J(s(t0),u(t0), . . . ,u(t0 + Tc − 1)) =

Tc
∑

τ=1

|x(t0 + τ) − r|
2
.

(9)
ThenJ is minimised w.r.t. the control signalsu and the first
oneu(t0) is executed.

In this paper, the states and observations (but not control
signals) are modelled probabilistically so we actually minimise
the expected costEq{J}. The current guessu(t0), . . . ,u(t0+
Tc − 1) defines a probability distribution over future states
and observations. This inference can be done with a single
forward pass, when ignoring the policy mapping, that is, the
dependency of the state on future control signals. In this case,
it makes sense to ignore the policy mapping anyway, since the
future control signals do not have to follow the policy.

Minimisation ofEq{J} is done with a certain quasi-Newton
algorithm [12]. For that, the partial derivatives∂x(t2)/∂u(t1)
for all t0 ≤ t1 < t2 ≤ t0 + Tc are computed efficiently based
on the chain rule and dynamic programming. Details are left
for future publications due to lack of space.

The use of a cost function makes NMPC very versatile.
Costs for control signals and observations can be set for
instance to restrict values within bounds etc. Quadratic costs
such as (9) make things easy for the optimisation algorithm.

IV. EXPERIMENTS

Mechanical dynamical systems are easily understandable by
people and thus illustrative as examples. We chose a simulated
system to ease experimentation. To make the setting more
realistic, the controllers do not have access to the simulation
equations but have to adapt to control an unknown system
instead.

F

y

φ

Fig. 3. The cart-pole system

A. Cart-Pole Swing-Up Task

The Cart-Pole system [8] is a classic benchmark for non-
linear control. The system consist of a pole (which acts as an
inverted pendulum) attached to a cart (Figure 3). The force
applied to the cart can be controlled, and the goal is to swing
the pole to an upward position and stabilise it. This must be
accomplished without the cart crashing into the walls of the
track. Note that a linear controller cannot perform the swing-
up.

The observed variables of the system are the position of the
carty, angle of the pole measured from the upward positionφ,
and their first derivativesy′ andφ′. Control input is the force
F applied to the cart. The detailed dynamics and constraints
for the simulated cart-pole system can be found in [8].

A discrete system was simulated with a time step of∆t =
0.05s. The possible force was constrained between−10N and
10N, and the position between−3m and3m. The system was
initialised to a random state around[y, y′, φ, φ′] = [0, 0,−π, 0]
with a standard deviation of 0.1 for all the observed variables.

B. Simulation

All simulations were ran with both low (σ = 0.001) and
high (σ = 0.1) level of Gaussian additive observation noise.
Gaussian process noise withσ = 0.001 was used in all the
simulations and the training data set. For the NMPC and OIC
methods the length of the control horizon was set to 40 time
steps corresponding to 2 seconds of system’s real time. The
simulations were run for 60 time steps corresponding to 3
seconds of real time to ensure that the controller was able to
stabilise the pole.

To study the benefits of using a hidden state-space in
modelling the dynamics of an unknown system, a comparison
model was built which used identity mappingI instead of an
MLP f for the observation mapping. In practice this means
replacing (1) with

x(t) = s(t) + n(t). (10)

Also, a modified version of the problem was considered, where
only two observations, the location of the carty and the angle
of the poleφ, were available.

C. Implementation

The NDFA package version 0.9.5, the scripts for running the
experiments, and the used training data are publicly available1.

1http://www.cis.hut.fi/projects/bayes/software/

During the training phase for indirect methods, training data
with 2500 samples was used. In [18], different reinforcement
learning algorithms require from 9000 up to 2500000 samples
to learn to control the cart. Most of the training data consisted
of a sequence generated with semi-random control where the
only goal was to ensure that the cart does not crash into the
boundaries. Training data also contained some examples of
hand-generated sections to better model the whole range of
the observation and the dynamic mapping. The model was
trained for 500000 iterations, which translates to three days of
computation time. Six-dimensional state spaces(t) was used
because it resulted in a model with the lowest cost function
(Eq. 5).

For the direct control method, training data consisted of
30 examples of successful swing-ups with 100 samples each.
They were generated using the NMPC method with a horizon
length of 40 time steps. Four-dimensional state space proved
to be the best here, and the model was trained for 100000
iterations.

For all the models, the first 1000 iterations of the training
were run with the embedded versions of the data to avoid
bad local optima. Time-shifted versions of the observed data
x(t− τ), with τ = 1, 2, 4, 8, 16 , were used in addition to the
original data.

The states(t) was estimated using the iterated extended
Kalman smoother. A history of five observations and control
signals seemed to suffice to give a reliable estimate. The
reference signalr was φ = 0 and φ′ = 0 at the end of the
horizon and for five observations beyond that.

To take care of the constraints in the system with NMPC,
a slightly modified version of the cost function (9) was used.
Out-of-bounds values of the location of the cart and the force
incurred a quadratic penalty, and the full cost function is of
the form

J1(t0,u) =J(t0,u)+ (11)
Tc
∑

τ=1

(min(10, |u(t0 + τ)|) − 10)2+

Tc
∑

τ=1

(min(3, |xy(t0 + τ)|) − 3)2,

wherexy(t) refers to the location componenty of the obser-
vation vectorx(t).

D. Simulation Results

For all the control schemes, the cart-pole simulation was
run for 100 times and the number of successful swing-ups
was collected. As in [8], a swing-up is considered successful if
the final angle is between−0.133π and0.133π, final angular
velocity between−2rad/s and2rad/s, and the cart has not
crashed into the boundaries of the area during swing-up.

The results of all the simulations are collected in Table II.
For each simulation type, the number of successful swing-
ups and the number of partial successes are listed. The partial
successes include all the simulation runs that at some point

10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2

4

6

8

10

time t

y (m)
φ (rad)
F (N)

Fig. 4. Example of a successful swing-up with NMPC and low noise. The
cart starts from the middle with the pole hanging down, and goes left to swing
the pole up.

TABLE II

RESULTS: NUMBER OF SUCCESSFUL AND SEMI-SUCCESSFUL(IN

BRACKETS) SWING-UPS WITH LOW AND HIGH NOISE LEVELσ.

Setting σ = 0.001 σ = 0.1
Direct Control 14 (48) 4 (31)
Optimistic Inference Control 97 (100) 94 (98)
NMPC 100 (100) 94 (95)
NMPC (only y andφ observed) 14 (66) 1 (21)
NMPC (f = I) 100 (100) 70 (70)
NMPC (f = I, only y andφ) 0 (0) 0 (0)

reached the desired state, but possibly still failed eitherbecause
the pole was not stabilised or the cart crashed into a wall.

1) Direct Control: The direct control could perform the
swing-up part of the task quite well, but there were problems
with stabilising the pole. Further testing is still needed to verify
if the performance of the method can be improved by extra
training with pole stabilising data.

2) Indirect Control: Even though there was some modelling
error left in the model used with indirect control schemes,
both methods performed extremely well under low noise
conditions. Even with added noise, the performance was pretty
satisfactory. Examples of successful swing-ups can be found
in Figures 4 and 5.

3) Performance:With modern hardware (2.2 GHz AMD
Opteron) the direct control typically worked in real-time with
the cart-pole simulation. On average, the traditional NMPC
method was about 20 times slower than real-time and OIC
more than 100 times slower. The bad performance of OIC
resulted from the Kalman smoothing (see Section II-A) not
converging and having to switch to the slow update mode.
Further optimisations to the algorithms or improvements in
hardware are clearly required, before systems with fast dy-
namics can be controlled.

Fig. 5. Example of a successful swing-up with NMPC and high noise. The
system is plotted with the observation noise included.

4) Dynamic Model Based Directly on the Observations:
With the modified model using the observation space as the
state space, the performance was still perfect when the noise
level was low. However, with high noise level, the original
model performed clearly better than the modified model.

5) Models with Fewer Observations:Even though most of
the information on the speedy′ and the angular velocityφ′

can still be inferred taking into account past observations, in
practice the problem of learning the dynamics of the system
becomes harder and relying on past observations increases the
reaction time. The model with hidden state could still perform
the swing-up with some success, but a model based directly on
observations could not handle the swing-up at all. This result
was to be expected, as the dynamic mapping (8) alone cannot
adequately describe the modified system.

6) Horizon length:Horizon length was of no great impor-
tance to the performance of the NMPC or the OIC. All horizon
lengths between 30 and 45 time steps had similar performance.
Horizon lengths between 25 and 30 had problems with the
cart crashing to the walls. Horizons shorter than 25 time
steps could not reliably perform the swing-up task because
the reference signal became too unrealistic.

Very long horizons were also problematic. First of all,
they increase the computational burden of the algorithm. The
increase in the number of the parameters often also leads into
increase in the number of local minima, which makes the
optimisation problem more involved. In addition, because only
an approximative model of the system is available, predictions
far to the future become more unreliable. This can lead the
algorithm to choose an optimisation strategy which is not
feasible in practice.

V. D ISCUSSION ANDCONCLUSION

Three different control schemes were studied in the frame-
work of nonlinear state-space models. Direct control is fast to
use, but requires the learning of a policy mapping, which is
hard to do well. Optimistic inference control is a novel method
based on Bayesian inference answering the question: “Assum-
ing success in the end, what will happen in near future?” It
is based on a single probabilistic inference but unfortunately
neither of the two tested inference algorithms work well with
it. The third control scheme is a probabilistic version of the
standard nonlinear model-predictive control, which is based
on optimising control signals based on a cost function. The
latter two schemes are both indirect control methods and they
performed comparably well in the experiments.

A. Future Work

When learning from data, the model represents well only
those phenomena that appear in the data. If the data is too
uniform, the model will not become robust. In other words,
one should balance between exploration and exploitation. In
this paper, the data sets are generated partly by hand and all
the control schemes aim at exploitation only. A good starting
point for taking exploration into account is in [16].

For direct control, the model was learned using examples
of control with a single goal in mind. It is straightforward
to generalise this into a situation with a selection of different
goals. The dynamics of the system stays the same regardless
of the goal and only the policy mapping (see Figure 1) needs
to be changed for each goal.

The direct and indirect control methods can be used to-
gether. One can use the data produced by indirect control
methods for learning the direct controller. This can be done
even offline, that is, simulating the estimated model and
sampling observations from their predicted distributions. This
can be compared to dreaming. The enhancement of the task-
oriented identification (policy mapping) in turn helps the
indirect methods, too. This idea is comparable to temporal
difference learning [15] where the difference of temporally
successive predictions is used for adjusting the earlier one. One
should be careful, though. If the examples given for learning
are fluent all the time, the robustness of the model might start
to decrease.

When faced with an unknown state, the best thing to do
is often first decrease the uncertainty by for example looking
around, and then take action based on what has been revealed.
This is called probing. Unfortunately the simple posterior
approximation used in this paper does not allow such plans.
The future actions (control signals) need to depend on future
states but unfortunately they are assumed to be independent
here. An interesting continuation is to use another posterior
approximation, such as particle filters, for allowing that.

B. Main Results

Selecting actions based on a state-space model instead of
based on the observation directly has many benefits: Firstly,
it is more resistant to noise because it implicitly involves
filtering. Secondly, the observations (without history) donot
always carry enough information about the system state.
Thirdly, when nonlinear dynamics are modelled by a function
approximator such as an multilayer perceptron network, a
state-space model can find such a representation of the state
that it is more suitable for the approximation and thus more
predictable.

When task-oriented identification is used, the state represen-
tation becomes such that also the control signals become easier
to predict, that is, control becomes easier. The learned policy
mapping can also be straightforwardly used for direct control.
We think that task-oriented identification should also help
indirect control methods but this is yet to be experimentally
confirmed.

Nonlinear state-space models seem promising for complex
control tasks, where the observations about the system state
are incomplete or the dynamics of the system is not well
known. The experiments with a simple control task indicated
the benefits of the proposed approach. There is still work left in
combating high computational complexity and in giving some
guarantees or proofs on performance especially in unexpected
situations or near boundaries.

ACKNOWLEDGEMENT

The authors would like to thank Harri Valpola, Sampsa
Laine, Kai Zenger, Heikki Hÿotyniemi, and Antti Honkela
for fruitful discussions and comments. This research has been
funded by the Finnish Centre of Excellence Programme (2000-
2005) under the project New Information Processing Princi-
ples, and by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.

REFERENCES

[1] B. Anderson and J. Moore.Optimal Filtering. Prentice-Hall, Englewood
Cliffs, NJ, 1979.

[2] K.J. Åström, P. Albertos, M. Blamke, A. Isidori, W. Schaufelberger, and
R. Sanz.Control of complex systems. Springer, 2001.

[3] Y. Bar-Shalom. Stochastic dynamic programming: Caution andprobing.
IEEE Transactions on Automatic Control, 26(5):1184–1195, October
1981.

[4] M. J. Beal and Z. Ghahramani. The variational Kalman smoother.
Technical Report 003, Gatsby Computational Neuroscience Unit, 2001.

[5] K. Doya. What are the computations in the cerebellum, the basal ganglia,
and the cerebral cortex?Neural Networks, 12(7):961–974, 1999.

[6] S. Haykin. Neural Networks – A Comprehensive Foundation, 2nd ed.
Prentice-Hall, 1999.

[7] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[8] H. Kimura and S. Kobayashi. Efficient non-linear control by combining
Q-learning with local linear controllers. InProceedings of the Sixteenth
International Conference on Machine Learning, pages 210–219, San
Francisco, CA, USA, 1999.

[9] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and B. Likar.Predictive
control with Gaussian process models. InProceedings of IEEE Region
8 Eurocon 2003: Computer as a Tool, pages 352–356, 2003.

[10] G.G. Murray and K. Sykes. The variation of hand tremor with force in
healthy subjects.Journal of Physiology, 191:699–711, 1967.

[11] R. Murray, K. J. Åström, S. P. Boyd, R. W. Brockett, and G. Stein.
Future directions in control in an information-rich world.IEEE Control
Systems Magazine, 23(2):20–33, April 2003.

[12] J. Nocedal and S. J. Wright.Numerical Optimization. Springer-Verlag,
New York, 1999.

[13] M. Nørgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen.Neural
Networks for Modelling and Control of Dynamic Systems. Springer-
Verlag London Limited, 2001.

[14] F. Rosenqvist and A. Karlström. Realisation and estimation of piecewise-
linear output-error models.Automatica, 41(3):545–551, March 2005.

[15] R. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[16] S. B. Thrun. The role of exploration in learning control. In D. A. White
and D. A. Sofge, editors,Handbook of Intelligent Control: Neural, Fuzzy
and Adaptive Approaches, pages 527–559. Van Nostrand Reinhold,
Florence, Kentucky, 1992.

[17] H. Valpola and J. Karhunen. An unsupervised ensemble learning
method for nonlinear dynamic state-space models.Neural Computation,
14(11):2647–2692, 2002.

[18] P. Wawrzynski and A. Pacut. Model-free off-policy reinforcement
learning in continuous environment. InProceedings of the International
Joint Conference on Neural Networks, pages 1091–1096, Budapest,
Hungary, July 2004.

